Generalized λ-calculi

(Abstract)

Hongwei Xi

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
email: hwxii@cs.cmu.edu Fax: +1 412 268 6380

We propose a notion of generalized λ-calculus, which include the usual call-by-name λ-calculus, the usual call-by-value λ-calculus, and many other λ-calculi such as the λ_c-calculus[3], the λ_{hn}^{β}-calculus[5], etc. We prove the Church-Rosser theorem and the standardization theorem for these generalized λ-calculi. The normalization theorem then follows, which enables us to define evaluation functions for the generalized λ-calculus. Our proof technique mainly establishes on the notion of separating developments[4], yielding intuitive and clean inductive proofs.

This work aims at providing a solid foundation for evaluation under λ-abstraction, a notion which is pervasive in both partial evaluation and run-time code generation for functional programming languages.

Definition 1. We use the following for λ-terms and contexts:

\[
L,M,N := x \mid (\lambda x.M) \mid M(N) \quad (\text{contexts}) \quad C := [] \mid (\lambda x.C) \mid M(C) \mid C(M)
\]

We use $\text{FV}(M)$ for the set of free variables in M.

Definition 2. (General λ-abstraction) We define function abs on λ-terms as follows:

\[
\text{abs}(x) = 0 \quad \text{abs}(\lambda x.M) = \text{abs}(M) + 1 \quad \text{abs}(M(N)) = \text{abs}(M) + 1
\]

Note $n+1 = n+1$ if $n > 0$ and $0+1 = 0$. M is a general λ-abstraction if $\text{abs}(M) > 0$.

We use λ for the set of λ-terms; lam for the set of λ-abstractions; glam for the set of general λ-abstractions; var for the set of variables.

Definition 3. The body of a general λ-abstraction M is defined as $\text{bd}(M) = \text{gbd}(M,0)$, where gbd is defined as follows.

\[
\text{gbd}(\lambda x.M, 0) = M[x := \bullet] \quad \text{gbd}(\lambda x.M, n+1) = \lambda x.\text{gbd}(M, n) \quad \text{gbd}(M(N), n) = \text{gbd}(M, n+1)(N)
\]

A general redex is of form $M(N)$ where M is a general λ-abstraction. The contractum of a general redex $M(N)$ is $\beta(M, N) = \text{bd}(M)[\bullet := N]$.

Definition 4. Let S_1 and S_2 be sets of λ-terms; we say S_1 is closed under S_2 if $M[x := N] \in S_1$ for all $x \in \text{FV}(M)$ and $N \in S_2$. $R = (\mathcal{F}, \mathcal{V})$ is a closed redex set(c.r.s) if \mathcal{F} contains only general λ-abstractions and both \mathcal{F} and \mathcal{V} are closed under β.

Definition 5. Given a closed redex set $R = (\mathcal{F}, \mathcal{V})$; $M(N)$ is a $\beta_{\mathcal{R}}$-redex if $M \in \mathcal{F}$ and $N \in \mathcal{V}$; $M_1 \overset{\beta_{\mathcal{R}}}{\rightarrow} M_2$ if $M_1 = C[M(N)]$ for some $\beta_{\mathcal{R}}$-redex $M(N)$ and $M_2 = C[\beta(M, N)]$; $\overset{\beta_{\mathcal{R}}}{\rightarrow}$ is the reflexive and transitive closure of $\overset{\beta_{\mathcal{R}}}{\rightarrow}$; we use σ for a (finite) $\beta_{\mathcal{R}}$-reduction sequence, and $\sigma(M)$ for the λ-term to which σ reduces M.

Given a c.r.s. \mathcal{R}; the general λ-calculus $\lambda_{\mathcal{R}}$ studies the reduction $\overset{\beta_{\mathcal{R}}}{\rightarrow}$. We write $\lambda_{\mathcal{R}} \vdash M \equiv_{\mathcal{R}} N$ if there exist $M = M_0, M_1, \ldots M_{2n-2}, M_{2n} = N$ such that $M_2i+1 \overset{\beta_{\mathcal{R}}}{\rightarrow} M_2i$ and $M_2i+1 \overset{\beta_{\mathcal{R}}}{\rightarrow} M_{2i+2}$ for $0 \leq i < n$.

Remark. The (usual call-by-name) λ-calculus is $\lambda_{\mathcal{R}}$ for $\mathcal{R} = (\text{lam}, \lambda)$; the (usual) call-by-value λ-calculus is $\lambda_{\mathcal{R}}$ for $\mathcal{R} = (\text{lam}, \text{lam} \cup \text{var})$; the $\lambda_{\mathcal{R}}$ in [3] is $\lambda_{\mathcal{R}}$ for $\mathcal{R} = (\text{glnf}, \text{glnf})$; the call-by-need λ-calculi[1] closely relates to $\lambda_{\mathcal{R}}$ for $\mathcal{R} = (\text{glnf}, \text{lam} \cup \text{var})$. It can be readily verified that every \mathcal{R} mentioned above is a c.r.s.

The notion of residuals of a $\beta_{\mathcal{R}}$-redex under $\beta_{\mathcal{R}}$-reductions can be defined as usual[2]. Note that the conditions imposed on the definition of closed redex set are crucial for making the definition go through.
Definition 6. (Involvedness) Given a β_R-reduction sequence σ form M; a β_R-redex in M is involved in σ if the β_R-redex or one of its residuals is contracted in σ.

Definition 7. (β_R-development) Given a λ-term M and a set S of β_R-redex in M; $\sigma : M \xrightarrow{\beta} N$ is a β_R-development (of S) if it contracts only β_R-redexes in S and their residuals.

Lemma 8. (Separation) Let $M = M_1(M_2)$ be a β_R-redex and σ be a β_R-development σ from M in which M is involved; $\sigma(M)$ is of form

$$\sigma_1(bd(M_1)), \ldots, \sigma_n(M_2)),$$

where σ_1 is a β_R-development from $bd(M_1)$ and σ_i are β_R-developments from M_2 for $i = 1, \ldots, n.$

Lemma 8 plays a major role in the proofs of the following theorems. Please see [4] for details.

Theorem 9. (Church-Rosser) For any given c.r.s. R, if $\lambda R \vdash M_1 \equiv_R M_2$, then there exists N such that $M_1 \xrightarrow{\beta} N$.

Definition 10. Let $R = (\mathcal{F}, \mathcal{V})$ be a c.r.s. and $\beta_R(M)$ be the set of all β_R-redexes in M for every λ-term M; a relation on $\beta_R(M)$ is given as follows.

$$\lll_R(M) = 0 \quad \text{if } M \text{ is a variable};$$

$$\lll_R(\lambda x.M) = \lll_R(M);$$

$$\lll_R(M(N)) = \lll_R(M) \cup \lll_R(N) \cup (\beta_R(N) \times \beta_R(N)) \cup \{ (M(N), L) : L \in \beta_R(M) \cup \beta_R(N) \}$$

$$\lll_R(M(N)) = \lll_R(M) \cup \lll_R(N) \cup (\beta_R(N) \times \beta_R(M)) \quad \text{if } M(N) \text{ is a } \beta_R\text{-redex};$$

$$\lll_R(M(N)) = \lll_R(M) \cup \lll_R(N) \cup (\beta_R(M) \times \beta_R(N)) \quad \text{if } M \in \mathcal{F} \text{ and } N \notin \mathcal{V};$$

$$\lll_R(M(N)) = \lll_R(M) \cup \lll_R(N) \cup (\beta_R(M) \times \beta_R(N)) \quad \text{if } M \notin \mathcal{F}.$$

Note that $\lll_R(M)$ is a linear order for every M; the standard β_R reduction sequences can then be defined accordingly, which leads to the following theorem.

Theorem 11. (Standardization) Given any β_R-reduction sequence $\sigma : M \xrightarrow{\beta} N$; then there exists a standard β_R-reduction sequence $\text{std}_R(\sigma) : M \xrightarrow{\beta} N$.

Let the first β_R-redex in M be the first one according to order $\lll_R(M)$, then the normalizing strategy is the one which always reduces the first β_R-redex in a term.

Corollary 12. (Normalization) If $\lambda R \vdash M \equiv_R N$ for some N in β_R-normal form, then the normalizing strategy reduces M to N.

We can then define a evaluation function for λR according to the normalizing strategy, establishing a functional programming language upon λR.

In conclusion, we have shown that the generalized λ-calculi can unify many existing λ-calculi. We are currently studying $\lambda_{t.d.}$ investigating its application to partial-evaluation and run-time code generation.

References

4. Hongwei Xi (1996), Separating Developments, Manuscripts. Available through:
 http://www.cs.cmu.edu/~huxi/papers/SepDep.ps

This article was processed using the LATEX macro package with LLNCS style.