Programming with Theorem Proving in ATS
(Functional Part)

Hongwei Xi

Boston University

Work partly funded by NSF grant CCR-0702665
Motivation for the research

To support advanced types such as dependent types and linear types in practical programming.

- Pure type inference in the style of ML is no longer available.
- The programmer may need to construct proofs to validate type equality.
What is ATS?

ATS is a programming language with a type system rooted in the framework *Applied Type System*. A variety of programming styles are currently supported in ATS, which include:

- Functional Programming
- Imperative Programming (with Explicit Pointers)
- Object-Oriented Programming
- Multithreaded Programming (with Pthreads)

More information on ATS is available at:

http://www.ats-lang.org
Current status of ATS

The current implementation of ATS is done in Objective Caml. After type-checking, programs in ATS are compiled into C (by atscc) and then into assembly (by gcc).
Fibonacci function (version 1)

fun fib1 (x: int): int =
 if x > 1 then fib1 (x-1) + fib1 (x-2) else x
Fibonacci function (version 2)

// [Nat] is the type for natural numbers
typedef Nat = [i:int | i >= 0] int (i)

fun fib2 (x: Nat): Nat =
 if x > 1 then fib2 (x-1) + fib2 (x-2) else x
Fibonacci function (version 3)

fun fib3 (x: Nat): Nat =
 let
 fun loop (x: Nat, a0: Nat, a1: Nat): Nat =
 if x > 0 then loop (x-1, a1, a0 + a1)
 else a0
 in
 loop (x, 0, 1)
 end
Fibonacci function (version 4)

```plaintext
dataprop FIB (int, int) = // specification
  | FIB_bas_0 (0, 0)
  | FIB_bas_1 (1, 1)
  | {i:nat} {r0,r1:int}
        FIB_ind (i+2, r0+r1) of (FIB (i, r0), FIB (i+1, r1))
```

Some explanation of the syntax:

\[
\begin{align*}
FIB_bas_0 & : () \rightarrow FIB(0, 0) \\
FIB_bas_1 & : () \rightarrow FIB(1, 1) \\
FIB_ind & : \forall i : nat. \forall r_0 : nat. \forall r_1 : nat. \\
& \quad (FIB(i, r_0), FIB(i + 1, r_1)) \rightarrow FIB(i + 2, r_0 + r_1)
\end{align*}
\]
Fibonacci function (version 4)

fun fib4 {n:nat} .<n>.
 (x: int n): [r:int] (FIB (n, r) | int r) = // implementation
 let
 fun loop {i,j:nat | i+j == n} {r0,r1:int}
 (pf0: FIB (j, r0), pf1: FIB (j+1, r1) | x: int i, a0: int r0, a1: int r1)
 : [r:int] (FIB (n, r) | int r) =
 if x > 1 then
 loop (pf1, FIB_ind (pf0, pf1) | x-1, a1, a0 + a1)
 else (pf0 | a0)
 in
 loop (FIB_bas_0 (), FIB_bas_1 () | x, 0, 1)
 end

fib4 : \forall n : nat. int(n) \rightarrow \exists r : int. (FIB(n, r) | int(r))
loop : \forall i : nat.\forall j : nat.\forall r_0 : int.\forall r_1 : int. (i + j = n) \supset
 (FIB(j, r_0), FIB(j + 1, r_1) | int(i), int(r_0), int(r_1)) \rightarrow
 \exists r : int. (FIB(n, r) | int(r))
Applied Type System (ATS)

ATS is a recently developed framework to facilitate the design and formalization of (advanced) type systems in support of practical programming.

The name *applied type system* refers to a type system formed in *ATS*, which consists of two components:

- a static component (statics), where types are formed and reasoned about, and
- a dynamic component (dynamics), where programs are constructed and evaluated.

The key salient feature of *ATS*: statics is completely separate from dynamics. In particular, types cannot depend on programs.
Examples of applied type systems

- The simply-typed λ-calculus
- The second-order polymorphic λ-calculus (System F)
- The higher-order polymorphic λ-calculus (System F_ω)
- Dependent ML (DML)
- The second-order polymorphic λ-calculus with guarded recursive types (impredicative formulation)
Non-Examples of applied type systems

- The dependent \(\lambda \)-calculus (\(\lambda P \))
- The calculus of constructions (\(\lambda C \))
Type equality

The notion of type equality plays a pivotal rôle in type system design. However, the importance of this role is often less evident in commonly studied type systems. For instance,

- The simply typed \(\lambda \)-calculus: two types are considered equal if and only if they are syntactically the same;
- The second-order polymorphic \(\lambda \)-calculus: two types are considered equal if and only if they are \(\alpha \)-equivalent;
- The higher-order polymorphic \(\lambda \)-calculus: two types are considered equal if and only if they are \(\beta \eta \)-equivalent.

The situation immediately changes when dependent types come into the picture.
The statics is a simply typed language and a type in the statics is referred to as a \textit{sort}. We write b for a base sort and assume the existence of two special base sorts \textit{type} and \textit{bool}.

\begin{align*}
\text{sorts} & \quad \sigma ::= b \mid \sigma_1 \rightarrow \sigma_2 \\
\text{c-sorts} & \quad \sigma_c ::= (\sigma_1, \ldots, \sigma_n) \Rightarrow \sigma \\
\text{sta. terms} & \quad s ::= a \mid sc(s_1, \ldots, s_n) \mid \lambda a : \sigma. s \mid s_1(s_2) \\
\text{sta. var. ctx.} & \quad \Sigma ::= \emptyset \mid \Sigma, a : \sigma
\end{align*}

In practice, we also have base sorts \textit{int} and \textit{addr} for integers and addresses (or locations), respectively. Let us use B, I, L and T for static terms of sorts \textit{bool}, \textit{int}, \textit{addr} and \textit{type}, respectively.
Some static constants

1 : () ⇒ type
true : () ⇒ bool
false : () ⇒ bool
→ : (type, type) ⇒ type
⊇ : (bool, type) ⇒ type
∧ : (bool, type) ⇒ type
≤ : (type, type) ⇒ bool (impredicative formulation)

Also, for each sort σ, we assume that the two static constructors ∀σ and ∃σ are assigned the sc-sort (σ → type) ⇒ type.
A constraint relation is of the following form:

$$\Sigma; \vec{B} \models B$$

where \vec{B} stands for a sequence of static boolean terms (often referred to as assumptions).
Some (unfamiliar) forms of types

- Asserting type: $B \land T$
- Guarded type: $B \supset T$

Here is an example involving both guarded and asserting types:

$$\forall a : \text{int}. a \geq 0 \supset (\text{int}(a) \rightarrow \exists a' : \text{int}. (a' < 0) \land \text{int}(a'))$$

This type can be assigned to a function from nonnegative integers to negative integers.
Syntax for dynamics

\[\text{dyn. terms} \quad d ::= x \mid dc(d_1, \ldots, d_n) \mid \]
\[\quad \text{lam } x.d \mid \text{app}(d_1, d_2) \mid \]
\[\quad \forall^+(v) \mid \forall^-(d) \mid \]
\[\quad \forall^+(v) \mid \forall^-(d) \mid \]
\[\quad \land(d) \mid \text{let } \land (x) = d_1 \text{ in } d_2 \mid \]
\[\quad \exists(d) \mid \text{let } \exists(x) = d_1 \text{ in } d_2 \]

\[\text{values} \quad v ::= x \mid dcc(v_1, \ldots, v_n) \mid \text{lam } x.d \mid \]
\[\quad \exists^+(v) \mid \forall^+(v) \mid \land(v) \mid \exists(v) \]

\[\text{dyn. var. ctx.} \quad \Delta ::= \emptyset \mid \Delta, x : s \]
A typing judgment is of the following form:

\[\Sigma; \vec{B}; \Delta \vdash d : T \]
A function declaration in ATS

fun concat {a:type} {m,n:nat} (xss: list (list (a, m), n)) : list (a, m*n) =
case+ xss of
 | nil () => nil ()
 | cons (xs, xss) => append (xs, concat xss)

Unfortunately, this piece of code currently cannot pass type-checking in ATS because non-linear constraints on integers are involved.
We introduce a new sort \textit{prop} into the statics and use P for static terms of sort \textit{prop}, which are often referred to as props.

A prop is like a type, which is intended to be assigned to special dynamic terms that we refer to as proof terms.

A proof term is required to be pure and total, and it is to be erased before program execution. In particular, we do not extract programs out of proofs.
A dataprop declaration in ATS

dataprop MUL (int, int, int) =
 | {n:int} MULbas (0, n, 0)
 | {m,n,p:int | m >= 0}
 MULind (m+1, n, p+n) of MUL (m, n, p)
 | {m,n,p:int | m > 0}
 MULneg (~m, n, ~p) of MUL (m, n, p)

The concrete syntax means the following:

\[
0 \times n = 0 \\
(m + 1) \times n = m \times n + n \\
(-m) \times n = -(m \times n)
\]
A proof function declaration in ATS

prfun lemma {m,n:nat} {p:int} .<m>.
 (pf: MUL (m, n, p)): [p >= 0] void =
 case+ pf of
 | MULbas () => ()
 | MULind pf' =>
 let prval _ = lemma pf' in () end

The proof function proves:

\[\forall m : \text{nat}. \forall n : \text{nat}. \forall p : \text{int}. \ MUL(m, n, p) \rightarrow (p \geq 0) \land 1 \]

We need to verify that lemma is a total function:

- \(\langle m \rangle \) is a termination metric.
- case+ requires pattern matching to be exhaustive.
An example of PwTP

fun concat {a: type} {m, n: nat} (xss: list (list (a, n), m)) : [p: nat] (MUL (m, n, p) | list (a, p)) =
 case+ xss of
 | nil () => (MULbas () | nil ())
 | cons (xs, xss) =>
 let val (pf | res) = concat xss in
 (MULind pf | append (xs, res))
 end

Remark Proofs are completely erased before program execution. In other words, there is no proof construction at run-time.
Related work

Here is only a fraction:

- Theorem proving systems: NuPrl, Coq, ...
- (Meta) Logical Frameworks: Twelf, ...
- Functional Languages: Delphin, Omega, ...
- Dependently Typed Functional Languages: Cayenne, Dependent ML, Epigram, ...
Conclusion

We have outlined a design to support programming with theorem proving.

In addition, we have carried out this design in the programming language ATS.

This is a flexible design. In addition to intuitionistic proofs, linear proofs can also be constructed and manipulated in ATS to support reasoning on resources such as memory. Please find more details about ATS at: http://www.ats-lang.org
The end of the talk

Thank you!