ATS: a language to make typeful programming real and fun

Hongwei Xi

Boston University

Work partly funded by NSF grant CCR-0229480
ATS

ATS is a programming language with a type system rooted in the framework ATS. In ATS, a variety of programming paradigms are supported in a typeful manner, including:

- Functional programming (available)
- Imperative programming with pointers (available)
- Object-oriented programming (available)
- Modular programming (available)
- Assembly programming (under development)

Here is the current homepage of ATS:

http://www.cs.bu.edu/~hwxi/ATS/ATS.html
Applied Type System (ATS)

ATS is a recently developed framework to facilitate the design and formalization of (advanced) type systems in support of practical programming.

The name applied type system refers to a type system formed in ATS, which consists of two components:
- static component (statics), where types are formed and reasoned about.
- dynamic component (dynamics), where programs are constructed and evaluated.

The key salient feature of ATS: statics is completely separate from dynamics. In particular, types cannot depend on programs.
Examples of applied type systems:

- The simply-typed λ-calculus
- The second-order polymorphic λ-calculus (System F)
- The higher-order polymorphic λ-calculus (System F_ω)
- Dependent ML (DML)
- The second-order polymorphic λ-calculus with guarded recursive types (impredicative formulation)
Non-Examples of applied type systems:

- The dependent λ-calculus (λP)
- The calculus of constructions (λC)
Syntax for statics

The statics is a simply typed language and a type in the statics is referred to as a sort. We write b for a base sort and assume the existence of two special base sorts \textit{type} and \textit{bool}.

\begin{align*}
\text{sorts} \quad \sigma & ::= \ b \ | \ \sigma_1 \rightarrow \sigma_2 \\
\text{c-sorts} \quad \sigma_c & ::= \ (\sigma_1, \ldots, \sigma_n) \Rightarrow \sigma \\
\text{sta. terms} \quad s & ::= \ a \ | \ s_c(s_1, \ldots, s_n) \ | \ \lambda a : \sigma . s \ | \ s_1(s_2) \\
\text{sta. var. ctx.} \quad \Sigma & ::= \ \emptyset \ | \ \Sigma, a : \sigma
\end{align*}

In practice, we also have base sorts \textit{int} and \textit{addr} for integers and addresses (or locations), respectively. Let us use B, I, L and T for static terms of sorts \textit{bool}, \textit{int}, \textit{addr} and \textit{type}, respectively.
Some static constants

\[
\begin{align*}
1 & : \ (_ \Rightarrow \text{type}) \\
\text{true} & : \ (_ \Rightarrow \text{bool}) \\
\text{false} & : \ (_ \Rightarrow \text{bool}) \\
\to & : \ (\text{type}, \text{type}) \Rightarrow \text{type} \\
\exists & : \ (\text{bool}, \text{type}) \Rightarrow \text{type} \\
\wedge & : \ (\text{bool}, \text{type}) \Rightarrow \text{type} \\
\leq & : \ (\text{type}, \text{type}) \Rightarrow \text{bool} \quad \text{(impredicative formulation)}
\end{align*}
\]

Also, for each sort \(\sigma\), we assume that the two static constructors \(\forall_{\sigma}\) and \(\exists_{\sigma}\) are assigned the sc-sort \((\sigma \to \text{type}) \Rightarrow \text{type}\).
Constraint relation

A constraint relation is of the following form:

$$\Sigma; \vec{B} \models B$$

where \vec{B} stands for a sequence of static boolean terms (often referred to as assumptions).

Here is an interesting question:

Is deduction modulo a special case where \vec{B} is empty?
Some (unfamiliar) forms of types

- Asserting type: $B \land T$
- Guarded type: $B \supset T$

Here is an example involving both guarded and asserting types:

$$\forall a : \text{int}. a \geq 0 \supset (\text{int}(a) \rightarrow \exists a' : \text{int}. (a' < 0) \land \text{int}(a'))$$

This type can be assigned to a function from nonnegative integers to negative integers.
Syntax for dynamics

dyn. terms \(d ::= x \mid dc(d_1, \ldots, d_n) \mid \)
\(\text{lam } x.d \mid \text{app}(d_1, d_2) \mid \)
\(\sqcup^+ (v) \mid \sqcap^- (d) \mid \)
\(\forall^+ (v) \mid \forall^-(d) \mid \)
\(\land (d) \mid \text{let } \land (x) = d_1 \text{ in } d_2 \mid \)
\(\exists(d) \mid \text{let } \exists(x) = d_1 \text{ in } d_2 \)

values \(v ::= x \mid dcc(v_1, \ldots, v_n) \mid \text{lam } x.d \mid \)
\(\sqcup^+ (v) \mid \forall^+ (v) \mid \land (v) \mid \exists(v) \)

dyn. var. ctx. \(\Delta ::= \emptyset \mid \Delta, x : s \)
Typing judgment

A typing judgment is of the following form:

\[\Sigma; \vec{B}; \Delta \vdash d : T \]
A datatype declaration in ATS

```
datatype list (type, int) =
    | {a: type} nil (a, 0)
    | {a: type, n: int | n >= 0}
        cons (a, n+1) of (a, list (a, n))
```

The concrete syntax means the following:

\[
\begin{align*}
nil & : \forall a : type. \ list(a, 0) \\
cons & : \forall a : type. \forall n : int. \\
 & \quad n \geq 0 \supset ((a, \ list(a, n)) \Rightarrow \ list(a, n + 1))
\end{align*}
\]
A function declaration in ATS

fun append {a:type, m:nat, n:nat} (xs: list (a, m), ys: list (a, n)) : list (a, m+n) =
case xs of
 | nil () => ys
 | cons (x, xs) =>
 cons (x, append (xs, ys))

The concrete syntax means that the function append is assigned the following type:

\[\forall a : type. \forall m : nat. \forall n : nat. \]
\[(list(a, m), list(a, n)) \rightarrow list(a, m + n) \]
fun concat \{a: type, m: nat, n: nat\}
 (xss: list (list (a, m), n))
 : list (a, m*n) =
 case xss of
 | nil () => nil
 | cons (xs, xss) =>
 append (xs, concat xss)

Unfortunately, this code currently cannot pass type-checking in ATS because non-linear constraints on integers are involved.
We introduce a new sort $prop$ into the statics and use P for static terms of sort $prop$, which are often referred to as props.

A prop is like a type, which is intended to be assigned to special dynamic terms that we refer to as proof terms.

A proof term is required to be pure and total, and it is to be erased before program execution. In particular, we do not extract programs out of proofs. Consequently, we can and do construct classical proofs.
A dataprop declaration in ATS

dataprop MUL (int, int, int) =
| \{n:int\} MULbas (0, n, 0)
| \{m:nat, n:int, p:int\}
 MULind (m+1, n, p+n) of MUL (m, n, p)
| \{m:pos, n:int, p:int\}
 MULneg (¬m, n, ¬p) of MUL (m, n, p)

The concrete syntax means the following:

\[
0 \times n = 0 \\
(m + 1) \times n = m \times n + n \\
(-m) \times n = -(m \times n)
\]
A proof function declaration in ATS

prfun lemma {m:nat, n:nat, p:int} .<m>.
 (pf: MUL (m, n, p)): [p >= 0] prunit =
 case* pf of
 | MULbas () => '()
 | MULind pf' =>
 let prval _ = lemma pf' in '()' end

The proof function proves:

\forall m : nat. \forall n : int. \forall p : int. \textbf{MUL}(m, n, p) \rightarrow (p \geq n) \land 1

We need to verify that \textit{lemma} is a total function:

\begin{itemize}
 \item \langle m \rangle is a termination metric.
 \item \textit{case*} requires pattern matching to be exhaustive.
\end{itemize}
An example of programming with theorem proving

fun concat {a:type, m:nat, n:nat} (xss: list (list (a, n), m)) : [p:nat] '(MUL (m, n, p) | list (a, p)) = case xss of | nil () => '(MULbas | nil) | cons (xs, xss) => let val '(pf | res) = concat xss in '(MULind pf | append (xs, res)) end

Remark Proofs are completely erased before program execution. In other words, there is no proof construction at run-time.
Stateful views

A stateful view is a linear prop (not a linear type).

- Given a type T and an address L, $T@L$ is a primitive stateful view meaning that a value of the type T is stored at the location L.

- Given two stateful views V_1 and V_2, we use $V_1 \otimes V_2$ for a stateful view that joins V_1 and V_2 together.

- We also provide a means for forming recursive stateful views.
A dataview declaration in ATS

\[
\text{dataview arrayView (type, int, addr) =}
\begin{align*}
| & \{a:\text{type}, l:\text{addr}\} \\
 & \text{ArrayNone (a, 0, l)} \\
| & \{a:\text{type}, l:\text{addr}\} \\
 & \text{ArraySome (a, n+1, l) of} \\
 & \ (a @ l, \text{arrayView (a, n, l+1)})
\end{align*}
\]

The concrete syntax means the following:

\[
\begin{align*}
\text{ArrayNone} & : \forall a : \text{type.} \forall l : \text{addr. arrayView(a, 0, l)} \\
\text{ArraySome} & : \forall a : \text{type.} \forall n : \text{nat.} \forall l : \text{addr.} \\
 & \ (a@l, \text{arrayView (a, n, l + 1)}) \rightarrow \\
 & \text{arrayView (a, n + 1, l)}
\end{align*}
\]

ATS: a language to make typeful programming real and fun – p.20/32
Some built-in functions

dynval getPtr : // read from a pointer
{a: type, l: addr} (a@l | ptr l) -> (a@l | a)

dynval setPtr : // write to a pointer
{a1: type, a2: type, l: addr}
(a1@l | ptr l, a2) -> (a2@l | unit)

getPtr : \(\forall a : type. \forall l : addr. (a@l, \text{ptr}(l)) \rightarrow (a@l, a)\)

setPtr : \(\forall a_1 : type. \forall a_2 : type. \forall l : addr.\)
\((a_1@l, \text{ptr}(l), a_2) \rightarrow (a_2@l, 1)\)
A viewtype is a linear type.

\[
\text{viewtypes } \quad VT := T | V \times VT
\]

The intuition is that the construction of values of viewtypes may consume resources.
Accessing the first element of an array

```
fun getFirst {a:type, n:pos, l:addr}
   (pf: arrayView (a, n, l) | p: ptr l)
: '(arrayView (a, n, l) | a) =
   let
       prval ArraySome (pf1, pf2) = pf
       val '(pf1 | x) = getPtr (pf1 | p)
   in
       '(ArraySome (pf1, pf2) | x)
   end

getFirst  : ∀a : type.∀n : int.∀l : addr.n > 0 ⊢
             (arrayView(a, n, l), ptr(l)) → arrayView(a, n, l) * a
```
A proof function for view change

prfun takeOutLemma
 {a:type, n:int, i:nat, l:addr | i < n} .<i>.
 (pf: arrayView (a, n, l))
 : '(a @ l+i, a @ l+i -o arrayView (a, n, l)) =
 let
 prval ArraySome (pf1, pf2) = pf
 in
 sif i > 0 then
 let
 prval '(pf21, pf22) =
 takeOutLemma {a, n-1, i-1, l+1} (pf2)
 in
 '(pf21, llam pf21 => ArraySome(pf1, pf22 pf21))
 end
 else '(pf1, llam pf1 => ArraySome (pf1, pf2))
 end

ATS: a language to make typeful programming real and fun – p.24/32
Subscripting an array

// introducing a type definition
typedef natLt (n: int) = [a: nat | a < n] int n

// implementing array subscription
fun get {a:type, n:int, i:nat, l:addr | i < n} (pf: arrayView (a, n, l) | p: ptr l, i: int i)
: `(arrayView (a, n, l) | a) =
 let
 prval `(pf1, pf2) = takeOutLemma {a, n, i, l} (pf)
 val `(pf1 | x) = getPtr (pf1 | p padd i)
in
 `(pf2 pf1 | x)
 end
Persistent stateful views

Given an ephemeral stateful view \(V \), we can form a boxed persistent view \(\square V \). In concrete syntax, we use \(! \) for \(\square \).

- First and foremost, there is no relation between \(\square \) and the modal operator \(! \) in linear logic.
- A function is allowed to make use of a boxed view \(\square V \) only if it treats \(V \) as an invariant, that is, the type of the function is of the following form:

\[
V \star VT \rightarrow V \star VT'
\]

- For instance, \(\text{getPtr} \) is assigned the following type

\[
\forall a : \text{type.} \forall l : \text{addr.} \ (a@l, \text{ptr}(l)) \rightarrow (a@l, a)
\]

which indicates that \(\text{getPtr} \) treats \(a@l \) as an invariant.
Implementing references (1)

typedef ref (a: type) =
 [l:addr] (!(a@l) | ptr l)

dynval getRef : {a: type} ref a -> a

dynval setRef : {a: type} (a, ref a) -> unit
Implementing references (2)

fun getPtr0 {a:type, l:addr}
 (pf: a @ l | (*none*) | p: ptr l)
 : a = getPtr (pf | p)

fun getRef {a:type} (r: ref a): a =
 let
 val '(pf | p) = r
 in
 getPtr0 (pf | (*none*) | p)
 end
fun setPtr0 {a:type, l:addr}
 (pf: a @ l | (*none*) | p: ptr l, x: a)
 : unit = setPtr (pf | p, x)

fun setRef {a:type} (r: ref a, x: a): unit =
 let
 val ' (pf | p) = r
 in
 setPtr0 (pf | (*none*) | p, x)
 end
Time for a demo

The demo is about two implementations of functional lists ...
Related work

Here is only a fraction:

- Theorem proving systems: NuPrl, Coq, ...
- (Meta) Logical Frameworks: Twelf, ...
- Functional Languages: Delphin, Omega, Vera, ...
- Dependently Typed Functional Languages: Cayenne, Dependent ML, Epigram, ...
- Separation logic, ...
- Vault, Effective theory of refinements, L^3, ...
Conclusion and future directions

- We have outlined a design to support programming with theorem proving.
- In addition, we have carried out this design in the programming language ATS.
- We are currently also keen to formally support reasoning on properties such as deadlocks and race conditions. After all, multi-threaded programming is simply indispensable in general software practice.