
Forward Security

Adaptive Cryptography: Time Evolution

Gene Itkis?

Computer Science Department
Boston University

Abstract. We survey the development of forward security and relate it to other concepts and trends
in modern cryptography.
Ordinary digital signatures have an inherent weakness: if the secret key is leaked, then all signatures,
even the ones generated before the leak, are no longer trustworthy. Forward-secure digital signatures
were proposed to address this weakness: they ensure that past signatures remain secure even if the
current secret key is leaked.
Similarly for the case of ordinary encryption, adversary that successfully exposed a secret key is typically
able to expose even the old messages sent long before exposure. Forward-secure encryption ensures that
the past messages are protected even if the current secret key is exposed.
We discuss forward security as a special case of key-evolving cryptography.

Keywords: cryptography, forward security, forward secrecy, forward-secure schemes, digital signatures,
encryption, key exposures, public key infrastructures, PKI, revocation, recovery, key evolution.

? This material is based upon work supported by the National Science Foundation under Grant No. 0311485

Table of Contents

Survey: Forward Security (Abstract) . 1
Gene Itkis (Boston U.)
1 Security and Secret Keys . 3
2 Introduction by example: Forward-Secure Signatures . 3

2.1 Digital Signatures . 3
2.2 Limitations of Signatures . 5

3 Key Security . 5
3.1 Key-Evolution . 6

4 Threshold and Forward Security: Overview . 7
4.1 Threshold and proactive cryptography . 7
4.2 Forward-Secure Cryptography . 8

5 Key-Evolution: Functional Definitions for Forward-Security . 9
5.1 Common Procedures . 10
5.2 Specific example: Forward-Secure Signatures . 11
5.3 Security Definitions . 11

6 Forward-Secure Pseudo-Random Generators . 12
6.1 Definitions . 12
6.2 Schemes . 12
6.3 Symmetric Cryptography: from fsPRG to fsMAC, Audit Logs, and Encryption 14
6.4 Forward-Secure Public Key Crypto: Naive Generic Construction 14

7 Forward-Secure Signatures . 15
7.1 Generic Constructions . 15
7.2 Concrete Constructions . 16

8 Forward-Secure Public Key Encryption . 17
9 Conclusion . 18

9.1 Forward-Security: Open Problems . 18
9.2 Evolving Cryptography: Beyond Forward-Security . 19
9.3 From Theory to Practice . 21

Glossary . 21
References . 22

Forward Security: Survey 3

1 Security and Secret Keys

As our world is growing increasingly dependent on digital systems, security of these systems is
becoming increasingly critical. In addition to accidental failures, threats of malicious attacks must
be addressed by the security systems of today and tomorrow.

Connectivity of the digital systems has become an integral part of their functionality. However,
connectivity could also provide malicious attackers with an easy access to the system, in particular
allowing them to mount their attacks even from the other side of the globe.

Physical isolation is hardly ever an option in achieving protection, and so most systems must rely
on other mechanisms for their security. These mechanisms, be they simple passwords authentication
or sophisticated cryptographic tools, generally depend on maintaining some secrets (keys).1

Thus, security of a system hinges on the condition that the attackers cannot gain access to its
secret keys. This condition may be difficult to satisfy, especially since these keys must be actively
used by the system. One might try to make it harder for an adversary to expose the secret keys.
To this end one might utilize special devices (such as smart-cards), multiple factor mechanisms
(e.g., regular passwords, combined with smart-cards, and biometric mechanisms), etc. But our
experience shows that no matter how strong is the protection of the secret keys, it is very likely
that a sufficiently motivated adversary will succeed sooner or later and expose these keys. Thus,
an experienced security systems designer will plan explicitly for the event of key exposures.

Therefore, the goals for a security system design can be formulated as threefold: (a) make key
exposures as difficult and as expensive for adversaries as possible, (b) if/when the keys are exposed,
minimize the damage; (c) recover from the exposures.

Modern cryptography offers a number of tools and techniques to assist in these tasks. These
tools include threshold/proactive and forward-secure schemes. More recently, intrusion-resilient
cryptography has been introduced, combining the proactive and forward-secure approaches. Key-
evolution is one common theme in these techniques.

In this survey, we review these techniques, focusing on the forward-security.
The rest of the paper is structured as follows: Section 2 discusses digital signature and their

limitation. Signatures schemes are then used throughout the survey as a default example for illus-
trations. Section 3 discusses various strategies for addressing security of the secret keys. Section 4
surveys the literature and history of the key concepts. The definitions for the key-evolving schemes
are given in Section 5. And Sections 6, 7, and 8 survey various forward-secure schemes. Finally, Sec-
tion 9 concludes with some open problems and other research directions related to forward-security.

2 Introduction by example: Forward-Secure Signatures

We use digital signatures as our standard example throughout this survey below. So, in the next
subsection we introduce this important cryptographic tool.

2.1 Digital Signatures

Digital signatures are an important tool, critical to applications ranging from the widely used
SSL/TLS to the more futuristic e-commerce, digital checks and digital cash. Digital signatures are
discussed in greater detail in Sections 112 and 177 in this Handbook, as well as in much of the
cryptographic literature.
1 Auguste Kerckhoffs advocated that the security of the system be dependent only on the secrecy of these keys as

early as 1883[79].

4 Gene Itkis

Intuitively, digital signatures are used to authenticate digital documents, much as the hand-
written signatures are used to authenticate the documents written on paper. In the case of the
traditional paper documents, the document contents and signature are bound together physically
— by the paper that contains both. Even in the physical world the security of this binding can be
questioned. But in the digital domain, such physical binding is simply non-existent. Thus, in the
digital world the signature must be bound directly to the document content.

In both physical and digital case, there are two separate tasks: signing and verifying. The task
of signing on behalf of a particular user should ideally be possible only for the user himself2. The
verification typically should be possible for any member of the public.

The digital signature is thus characterized by the two algorithms: Sign and Ver. Both must
take the document text (message) m as the input. The first, generates a signature σ, and the second
takes that signature as the input.

It is convenient to use the same signing and verifying algorithms for all the users. Thus, both
algorithms must also take as input some information that is unique to the particular user. For the
case of the verification, this information should be public and is thus referred to as the user’s public
key PK. Since only the particular user should be able to generate his signatures, the unique per-user
information for signing must be secret and thus referred to as secret (or private) key SK.

Some systems allow the PK to be simply the user’s ID [117, 57, 56]. However, such identity-
based schemes are often harder to construct, and therefore the association between the users and
their public keys is often left out to the Public Key Infrastructures (PKI) (see, e.g., section 61 in
this Handbook). In either case, the pair PK, SK must be generated (perhaps from some additional
parameters) – this is done by the algorithm KeyGen.

Thus, the following triplet gives the functional description of a signature scheme.

KeyGen(1k) −→ (SK, PK): key generation
Input: a security parameter k ∈ N (given in unary)
Output: a pair (SK, PK), the secret key and public key

Sign(SK,m) −→ σ: signing
Input: the secret key SK and the message m to be signed
Output: signature σ of m

Ver(PK,m, σ) −→ valid|fail: verification
Input: the public key PK, a message m, and an alleged signature σ
Output: valid or fail. Usually, it is required that Ver(PK,m,Sign(SK,m)) −→ valid.

Intuitively, a signature scheme is secure if it is infeasible for an adversary without SK to compute
any signature σ for a message m, such that Ver(PK,m, σ) outputs valid. This remains infeasible
even if the adversary adaptively obtains legitimate signatures for many other messages of the ad-
versary’s choice. See [63] (or many subsequent papers and books) for precise definitions of signature
security.
2 It may be possible and desirable for the user to delegate authority vested in the signature to another party. In

the physical world, this is usually achieved by explicit delegation of authority — e.g., power of attorney. Such
delegations are also possible in the digital scenarios as well. But digital signatures potentially allow a stronger
notion: a limited delegation of ability to generate signatures themselves. For example, using intrusion-resilient
signatures [72] the user can enable another party to generate his signatures but only if they are tagged with a
particular date.

Forward Security: Survey 5

2.2 Limitations of Signatures

Ordinary digital signatures have a fundamental limitation: if the secret key of a signer is compro-
mised, all the signatures (past and future) of that signer become suspect. Even though the signer
might know which signatures were issued by him and which by the impostor (using the stolen key),
there is no way for the verifier to distinguish them.

Thus upon such a secret key compromise, the signer should revoke his public key (itself a non-
trivial problem), and obtain a fresh key pair. But what to do with the already issued signatures
(i.e., those issued before the compromise — in good faith)? Re-issuing them with the new key
is expensive or even impossible (imagine having to do this for a certification authority, or in the
absence of reliable and exhaustive records of the past signatures). What is even worse, a dishonest
signer may see a key compromise as a golden opportunity to repudiate (some) previously signed
documents. In fact, he might even fake a compromise himself (for example, by anonymously posting
his secret key on the Internet and claiming to be the victim of a computer break-in).

3 Key Security

The above makes clear the importance of the security of the signer’s secret key: both to prevent
the actual key compromise as well as make the “faked” key compromises less believable.

Threshold Crypto: Space Dimension. One way to improve the security of the secret keys is
to distribute it among different computers in such a way that breaking into individual computers
would not affect security of the key, at least until sufficiently many of these computers have been
compromised. This approach has been explored by threshold cryptography. For example, similarly
to the secret-sharing scheme of Shamir [116], for any integers n ≥ t > 0, the signing key SK can be
shared among n computers, so that any t of them, working together, can generate valid signatures.
But breaking into any t− 1 of them gives no information about SK to the adversary (i.e., adversary
learns nothing from these break-ins) ; in fact any t − 1 shares of SK look completely random. The
signing algorithm would then become a protocol executed by a sufficiently large subset (t or more) of
these share-holding computers. The security definitions would have to be adjusted correspondingly
— in particular, the SK cannot be reconstructed from the shares in any of these computers, since
then it might be exposed (stolen) there.

Proactive Crypto: Time Evolution of Sharing. A particularly strong, proactive version of
the threshold cryptography tolerates even compromises of all the computers — as long as they were
not simultaneous. This is achieved by introducing an aspect of time evolution: while the threshold
cryptography shared a secret key statically, the proactive cryptographic schemes would constantly
re-share the keys. Thus the exposed key-shares would not help the adversary after that key sharing
changed. To apply this to the above threshold signatures example, assume that at some point after
an adversary breaks into a computer, the computer is completely “cleaned up”, so the adversary
looses control over that computer and access to the information on it (except the information, that
the adversary already stolen). Then, the proactive techniques allow the signature scheme above to
be strengthened to tolerate adversary eventually breaking into all n computers, as long as < t are
corrupted at a time.

Limits of Proactive Security. However, even in the case of proactive security, the “combined”
state of the system remains unchanged — the secret key being shared is the same, only the specifics
of how it is stored evolve with time. Therefore in the case of the total exposure (e.g. simultaneous
compromise of all the computers holding key shares), the issue of past signatures remains.

6 Gene Itkis

Price of Proactive/Threshold Security. A major drawback of the threshold and proactive
systems is that any transaction — such as generating a signature — requires at least t parties
(i.e., participating computers) to perform joint computation: by executing a particular protocol to
achieve the desired result. Such a communication can be inconvenient, inefficient, and sometimes
even impossible. It also increases vulnerability of the participating computers.

3.1 Key-Evolution

Exploring Time Dimension. A radically different approach to protecting the keys is to securely
erase them — a securely erased key cannot be stolen. So, the signatures generated with such
a key cannot be repudiated by a fallacious claim of exposure (assuming that the key was not
exposed prior to the erasure3). Then the signatures generated with the secret key before it was
erased should remain trustworthy forever — even after the signer’s computer is compromised. This
approach motivates an essential evolution of the whole system to occur in time, where the past is
fundamentally irreproducible.
Frequent Rekeying. The problem with erasing the secret key, of course, is that the signer can
no longer produce signatures with it. With ordinary signatures, this means that the corresponding
public key is now useful only for past signatures, and a new public key needs to be issued (and ap-
propriately certified and disseminated) for the future ones. This makes such an approach expensive
and inconvenient.
Forward-Secure Signatures. The goal of forward-secure signature schemes is to provide the
benefits of frequent rekeying without incurring the costs of changing public keys (and associated
overhead). They enable the signer to frequently erase the secret key while maintaining the same
public key. The notion of a forward-security originated from the notion of “perfect forward secrecy”
for key agreement [65], which protects past traffic even after long-term keys are compromised.4

To be more precise, in a forward-secure signature scheme the total time that the public key is
valid (for example, one year) is divided into T time periods (for example, 365 days). At the end of
each time period, the signer computes the next secret key from the current one (via a key update
algorithm) and erases the current secret key. Each signature includes an essential new component:
the time period during which the signature is issued. The forward-security property means that
even if the adversary obtains the current secret key, she still cannot forge signatures for past time
periods.
Limitations of Forward-Security. Just as for ordinary signature schemes, for the forward-
secure signatures the signer is still expected to promptly detect key compromise. The sooner the
determination is made and key revoked, the less damage the adversary can do. Thus, in particular,
3 This assumption should not be taken lightly, of course. But it does offer a significant extra level of comfort. For

example, imagine that a user decides to abbrogate a contract he signed a year earlier, by claiming that the secret
key used to sign the contract has been stolen and the other party of the contract forged the signature using this
stolen key. This claim would look much more dubious if the only way the alleged key compromise could have
occurred is if it took place at least a year earlier. It is even more dubious if the signer has not discovered the
key compromise until the terms of the contract began to look less attractive than they did at the time of the
signing (and alleged key exposure!). While no full-proof security for the signatures appears to be possible, the
secure erasure of the relevant key does seem to offer a greater degree of comfort. A slight further improvement of
this comfort level is offered by other models, such as key-insulated and intrusion-resilient cryptography [46, 72],
where the only time the key could have been stolen was on the day of the contract signing.

4 The term “forward” in “forward-security” and “forward secrecy” is viewed by many as confusing. One can argue
that “backward” would be more appropriate since such schemes protect transactions that happened before a key
exposure. On the other hand, “forward” can be justified, because if a transaction occurs when the key is secure,
then it will remain secure in the future, even after future key exposures.

Forward Security: Survey 7

forward-security does not remove the need for intrusion detection and for prompt key revocation
(which both are rather problematic in practice).

Beyond Forward-Security. These limitations motivate research into extending the forward-
security approach. Some extensions, such as intrusion-resilient and key-insulated schemes [72, 68,
44, 46, 47], aim to protect future as well as past signatures, thus making prompt detection of key
compromise and key revocation less crucial for many applications. In particular, intrusion-resilient
schemes allow to reduce the reliance on the revocation. Another extension, cryptographic tamper-
evidence [69], addresses the issue of detection of key compromises. This extension capitalizes on the
dynamically evolving nature of some of the schemes. Such evolution may enable detection of use of
exposed keys even after a total compromise of the system (i.e., after all the secrets in the system
have been exposed). Forward-security focuses on the evolution of the secret keys. However, there
may be some benefits in evolution of the public keys as well — e.g., to allow a controlled repudiation
of signatures generated with secret keys extorted from the user. This problem was considered in
[103] and then further developed in [74], which not only restricted the possible repudiation to avoid
its abuse, but also provided more efficient solutions. This was achieved by explicit generalization
of the key-evolving schemes to include both secret key and public key evolution.

4 Threshold and Forward Security: Overview

In this section, we provide the survey of the bibliographic references to the main results in the
areas of threshold and forward-security. We view these as the two dimensions along which the
cryptography developed in response to the need to address key exposures.

4.1 Threshold and proactive cryptography

Much of the work focused on distributing secrets and computation in such a way that an adversary
must commit multiple breaches before security of the system fails. Examples include the general
and fascinatingly powerful (albeit inefficient in practice) multi-party computation methods (e.g.,
[59, 60, 18, 36]) and the more specific (and thus more efficient) threshold cryptography methods (e.g.,
[41, 108, 23, 55, 40, 127, 95, 118]).

Proactive security takes this approach further by forcing the adversary not only to break into
many computers in order to learn anything, but also to accomplish all these breaks nearly simul-
taneously [107, 67, 40, 53, 32, 10, 33].

However, both threshold and proactive approaches require the cooperation of multiple parties
for every cryptographic operation (even when there are some semi-trusted parties involved, as
in [12]). It is difficult to apply them routinely in many settings, where the amount of data and
processing demand greater efficiency and applications demand greater usability.

Another common approach to protecting secrets has been to keep them on computationally
weak portable devices, such as smart cards. In order to make them usable for computationally
intensive cryptographic tasks, approaches such as “server-aided” (e.g., [84, 109, 13, 104, 98, 75]) and
“remotely-keyed” (e.g., [19, 20, 91, 21, 92, 125]) have been proposed (all-or-nothing transforms have
been proposed as another solution to this problem, see [112, 26, 27, 120]). Furthermore, the devices
can be made less likely to succumb to off-line attacks using the techniques of [94, 93].

The security against partial key exposures —when only some portion of a secret key gets into
the adversary’s hands— has been addressed in [31, 43, 48]. This approach may be useful in the
cases when learning all the bits of a key is difficult for the adversary (e.g., for some devices, such

8 Gene Itkis

as smart-cards, malicious probing of some bits might damage other bits — allowing the adversary
to extract only partial information from the device).

None of the above approaches, however, addressed what happens in the case when the secret
key is exposed: they simply increase the difficulty of stealing the secrets.

4.2 Forward-Secure Cryptography

Origins. Traditionally, forward-security (including the term itself) is traced back to the work
of Christoph Günther [65] on key exchange protocols. This work, in particular proposes a notion
of “perfect forward secrecy”. This property essentially requires that the confidentiality of the past
messages is not compromised even after the long-term secrets are exposed. This definition, however,
does not in any way imply the key evolution, which we believe is fundamental to forward-security.

Continuing to focus on the forward secrecy (i.e., confidentiality of the past messages), Adam
Back in cypherpunk email discussion proposed the idea of a public key cryptosystem, which would
generate a sequence of private and corresponding public keys SKi, PKi [9]. That is, ideally Back
wished for two “non-reversible” functions f1, f2, such that f1(SKi) = SKi+1 and f2(PKi) = PKi+1.
Of course, the messages encrypted for public key PKi would still be decrypted with the private key
SKi. But now, an adversary would not be able to decrypt those messages if she had only SKi+1. So,
Bob could certify and advertise his public key PK0, and every day he could generate a new private
key from the old one, securely erasing the old keys. Then Alice could send Bob a message on day i
using key PKi = f i2(PK0). Then even if Bob’s key is exposed any time after day i, the message would
remain confidential.

We can simplify the above notation to make it look more modern (i.e., matching the notation
of [15]): without loss of generality, set PKi

∆= 〈PK, i〉, where PK is the public key of Bob. Then the PKi
as defined by Back above, could be computed from 〈PK, i〉 “on the fly” as f i2(PK). This computation
could be integrated into the decryption or signature verification algorithms as needed.

In the same draft, Back proposed a scheme which was not quite as good as the above ideal: while
coming up with f1 above was easy, f2 turned out to be much harder5. So, instead of computing new
public keys from the previous ones, Back’s scheme computed them from the corresponding private
keys. Then the sender of the message would simply be provided with all the public keys. In this
case, f1 could be any pseudo-random function, and the ElGamal/DH encryption [42, 50] would use
the key PKi = gSKi mod p, for some large prime p and a generator g of Z∗p .

In the subsequent year, Ross Anderson proposed [7] to apply the same approach to signatures.
He also observed that identity-based cryptosystem (those where the identity of a user served as his
public key) can be adopted to provide forward-security: simply use combination of the public key
and the date as the identity.

Key-Evolving Schemes and Forward-Secure Signatures. These initial ideas were formal-
ized and further developed in by Bellare and Miner [15]. In particular, they provided the formal
definitions for the key-evolving signature schemes and their security. The definitions we use below
are closely base on the definitions of [15]. New forward-secure signature schemes were proposed in
the same paper, followed by more constructions [83, 5, 71, 96, 82]).

Generic and Concrete Schemes. All the proposed schemes can be divided into two general
categories: the generic and concrete.
5 Indeed, only some seven years later this problem would be resolved, and even then only based on a less common

bilinear Diffie-Hellman assumption [34]. Forward-secure public key encryption based on the standard DH, discrete
log, or factoring assumptions remains an open problem to the day of this writing.

Forward Security: Survey 9

A generic scheme is constructed from any ordinary (non-forward-secure) scheme used as a black-
box. The security of the forward-secure scheme is then reduced to the security of the underlying
ordinary scheme (i.e., if some adversary can efficiently compromise the forward-secure scheme, then
we can construct an adversary compromising the security of the underlying ordinary scheme). The
efficiency of a generic scheme is usually measured in terms of the number of the invocations of the
underlying ordinary scheme, the number of the ordinary keys, etc.

Both Back’s and Anderson’s schemes above, while originally presented as concrete schemes,
could be generalized to generic ones.

A concrete scheme usually starts from a specific ordinary scheme and modifies it to achieve
desired properties. A concrete scheme security is thus reducible to the specific cryptographic as-
sumption, such as the strong RSA assumption, or hardness of discrete log, or bilinear Diffie-Hellman
assumption, etc. The efficiency of the concrete schemes is measured in terms of the number of specific
operations used (e.g., modular multiplications). As with many ordinary schemes, this necessitates
expressing the costs in terms of two security parameters. For example, for the ordinary schemes
such as Fiat-Shamir [52, 51], Guillou-Quisquater [64], and many others, one security parameter l
characterizes the length of the modulus, while the other k determines the number of rounds, the
length of the query, or the length of a hash function output. Typically, these differ by an order of
magnitude: k is typically in the range 128–160, and l is usually in the 1024–2048 range.

Of the above schemes, [15] proposed both generic and concrete schemes; [9, 7, 83, 96] proposed
generic constructions (though originally described as concrete); the constructions of [5, 71, 82, 34]
are concrete.
Forward-Secure Public Key Encryption. Forward-secure public key encryption proved
harder to achieve, and the first — and so far the only — result in that area was obtained only
recently [34] (although some “approximations” of forward-secure encryption were put forward by
[123, 46]).
Forward-Security for All Tasks. So far we really surveyed forward-security only for public
key signatures and encryption. Providing forward-security for other tasks has also been considered.

For example, Krawczyk [83] constructed a generic forward-secure pseudo-random number gener-
ator, which he then used to construct a forward-secure public key signature scheme. Bellare and Yee
[17] also provide definitions, careful analysis and constructions for forward-secure pseudo-random
generators as well as for forward-secure symmetric signature and encryption schemes.

Forward-secure versions of group [119], threshold [4, 122, 90], and blind [49] signature schemes
were defined and constructed (these are concrete constructions). One may also observe that the
typical group key management schemes (also referred to as secure multicast) generally include
forward-security in their definitions (see [126, 124, 35], and subsequent work); these however, are
traditionally considered as a separate topic.

Also [3] generalized and analyzed the Fiat-Shamir paradigm of turning ID schemes into signa-
tures. They extend their analysis to include forward-security.

5 Key-Evolution: Functional Definitions for Forward-Security

The main functional distinction of forward-secure versions of cryptographic tools is the explicit
use of time in all algorithms (such as encrypting or signing). In addition, since the secret key in
forward-secure schemes can evolve, there are procedures to handle such an evolution.

Below we outline the functional definitions for general key-evolving schemes that can include
some mechanisms beyond forward-security. These definitions are based on [74], which in turn gener-
alized the definitions of [15], where key-evolving schemes were introduced formally. We also separate

10 Gene Itkis

here the key evolution aspect from the specifics of the cryptographic mechanism (e.g., key evolution
is functionally independent from whether we deal with forward-secure signatures or forward-secure
encryption).

5.1 Common Procedures

Key Generation. Key generation procedure generates typically a pair of keys (PK0, SK0), for
the initial time period 0. For symmetric cryptography schemes, the public key PK can be assumed
to be null. This procedure is essentially similar to the corresponding one without evolution as in
section 2.1: setting T = 0 makes the two completely identical.

KeyGen(1k,T) −→ (SK0, PK0): key generation
Input: a security parameter k ∈ N (given in unary), and the total number of periods, T ,
Output: a pair (SK0, PK0), the initial secret key and public key;

The maximum number of updates —the total number of time periods T— is required for some
forward-secure schemes. Different approaches for eliminating this bound are considered in [96, 68].

Key Evolution. Key evolution procedure changes key Kt (which can be either SK or PK) for the
current period t into the key Kt+∆ for the next time period t + ∆ (typically, ∆ = 1, so the next
time period is t + 1). This evolution can be either deterministic or randomized. This procedure is
the one that is germane to the forward-secure (and other key-evolving) schemes.

KUp(Kt [, µ][,∆]) −→ Kt+∆[, µt]: key update
Input: the current key Kt [, and optionally, the update message µ] [, and, optionally, the number

∆ > 0 by which to increment the time period; by default ∆ = 1]
Output: The new key Kt+∆ [and optionally, the update message µt];

Previously, only ∆ = 1 has been considered and unless stated otherwise, we will assume ∆ = 1
below. However, in some cases it might be beneficial to skip computing some of the keys. Naturally,
for ∆ > 1 the update can be achieved by ∆ successive key updates incrementing time by one. But
in some cases more efficient updates are possible and desired.

The key evolution is typically done in a coordinated fashion: private and public keys evolve
synchronously.

For the ordinary forward-security, the public key PKt
∆= 〈PK, t〉 always consists of the invariant

part PK and the current time period number t. Thus, the public key evolution is trivial: it simply
increments the time period number. Evolution of the secret keys is usually more complex, for
security reasons, and depends on the specific scheme.

For some schemes, such as in [74], it may be useful to allow greater freedom of the secret key
evolution: e.g., make it randomized. This can increase the sophistication of the public key updates
and require a greater level of coordination between the public and private key evolutions. The
optional parameter/output µ in the KUp above provides the mechanism for such coordination:
The private key update in this case generates an update message µt , which is then used as the
optional input argument µ for the public key update.

Addition of time into the functional definitions of the standard cryptographic procedures is
straight-forward. We include as an example such definitions for the case of the signatures.

Forward Security: Survey 11

5.2 Specific example: Forward-Secure Signatures

Functional Definition for Signing and Verifying. Finally, here we include the functional
definition of the standard signing and verifying procedures for signatures, adapted for the forward
security.

Sign(SKt ,m) −→ σt : signing
Input: the secret key SKt for the current period t and the message m to be signed,
Output: signature σt of m (the time period t of the signature generation is included in σt);

Ver(PKt ,m, σ) −→ valid|fail: verification
Input: the public key PKt , a message m, and an alleged signature σ (including the signing time

period t′),
Output: valid or fail.

The verification procedure may impose additional conditions depending on the public key time
period and the time of the signature generation, e.g., t ≥ t′.

Thus, the full functional definition for the forward-secure signatures is obtained by combining
the above KeyGen,Sign,Ver procedures with KUp applied to the SKt (with no optional argument
µ) at the end of each period t (no update message µt is generated in this case either). The public
key update, which in this case simply increments the date, is usually not considered explicitly in
the literature. But implicitly it is also assumed to be performed at the end of each time period
(also without the optional input and output).

Note, that functional definition for ordinary (not forward-secure) signatures can be obtain from
the above by eliminating all subscripts (denoting time) and omitting the key evolution KUp,
leaving only the KeyGen,Sign,Ver procedures.

5.3 Security Definitions

The modern definitions of security tend to be based on adversary trying to distinguish certain
inputs (e.g. encryptions of two known messages, or random vs. pseudo-random strings) or generate
some output (e.g., a valid signature). A scheme is secure if no adversary could succeed with a
probability significantly different than for a very simplistic adversary guessing at random.

The different types of security (e.g., known-plaintext, chosen-ciphertext, chosen-message, etc.)
are captured by the specific powers of the adversary, including the information given to her. In
this respect, forward-security introduces two issues into these security definitions: First, adversary
queries are now to include references to the time period for which the query is made (e.g., for which
an adversary-chosen message is to be signed in the chosen message attack).

Second, and more important, the adversary is given the secret key SKt for the time period t of
her choice. But then the adversary’s attack, in order to be considered successful, is restricted to
the time period < t.

This restriction is quite intuitive: Since the key-evolution algorithm is known, the adversary
can use it to obtain secret keys SKt′>t from the exposed SKt. Thus the restriction simply requires
adversary to succeed in the period that is not trivially compromised. The details of which periods
exactly are not “trivially compromised” might get more complicated in some other key-evolving
models such as intrusion-resilient, or key-insulated.

Next, we consider different specific schemes. For each we sketch the security definitions and
outline and/or survey the main constructions.

12 Gene Itkis

6 Forward-Secure Pseudo-Random Generators

6.1 Definitions

Notation. For any set S we write x R← S to denote that x is chosen from the set S with the uniform
probability (i.e., x chosen randomly from S). For strings a, b, let a||b denote their concatenation,
and |a| the length of string a. Let adversary A be any probabilistic polynomial time (ppt) algorithm.

Pseudo-Random Generators (PRG) Definition. Intuitively, for parameters k,m > k, a
function G : {0, 1}k −→ {0, 1}m is a pseudo-random generator (PRG) if it is infeasible to distinguish
its output from random. More precisely, set s R← {0, 1}k, x0 ← G(s), x1

R← {0, 1}m, and b R← {0, 1}.
Then A’s (distinguishing) advantage is defined as |Prob[A(xb) = b]− 1/2|. G is a PRG for any ppt
adversary A, if her distinguishing advantage is small6 for sufficiently large k.

Forward-Secure PRG (fsPRG) Definition. To extend this to the forward-secure setting,
we use the KeyGen and KUp procedures to generate and update the secret keys (seeds) SKt for
periods t. Without essential loss of generality and for the sake of avoiding extra notation, let the
pseudo-random bits generated from SKt in the period t be denoted as PKt.7

To define the advantage, for some period i, set x0 ← PK0|| . . . ||PKi−1, x1
R← {0, 1}|x0|, and

b
R← {0, 1}. Similarly to the above, the advantage of A is |Prob[A(xb, SKi) = b]− 1/2| (note that A

is also given SKi, so assuming deterministic key-evolution, A can generate all SKt>i and thus PKt>i
on her own). And just as above, a key-evolving PRG is forward-secure if the advantage is small for
all the ppt adversaries.

The period i above can be adaptively determined by the adversary, but choosing it at random
would reduce the adversary’s advantage at most by a factor of 1/T .

6.2 Schemes

Many of the classical PRG schemes implicitly provide forward-security. However, this is not the case
for some PRG schemes. For example, [17] shows that the alleged-RC4 PRG is not forward-secure.

Hard-core Iteration. A common approach to PRG constructions is to iterate a one-way per-
mutation on the initial seed, at each iteration outputting a hard-core bit [22, 128, 58]. (Intuitively,
a bit b() is hard-core (or hidden) for a function f() if b(x) is not predictable from f(x); see [22, 58]
for full definitions.) The security proofs for such PRGs can usually be easily extended to include
forward-security.

Indeed, let KUp(SKt) be a pseudo-random permutation, and let PKt = b(SKt), where b() is a
hard-core bit for KUp(). Then the hybrid proof of [128] implies the forward-security of the scheme.

Similarly, the proofs for the more general PRG of [66] based on any one-way function can be
extended to include forward-security as well. In other words, their PRG is a fsPRG as well.

PRG Iteration. [83, 17] propose a construction of a fsPRG from any PRG. This construction is
similar to the one above based on the one-way permutations, except two parts of the pseudo-random
generator output is used in place of both the one-way permutation and hard-core bit (indeed, for a
6 We leave the details of defining what exactly is to be considered small. Popular choices include exponential or

super-polynomial.
7 If the number of pseudo-random bits for each period is too large — e.g., if we wish to extend the definition to

pseudo-random functions — then PKt can be treated as the “daily seed”, i.e., to be used as the seed for (another)
pseudo-random generator/function (forward-secure or not) used to generate the bits for the period t. Of course, in
this case PKt must be sufficiently long and kept secret and erased at the end of the period t. This case is trivially
reducible to the main case above.

Forward Security: Survey 13

random x, one-way permutation f with a hard-core bit predicate b, the string f(x)||b(x) is pseudo-
random). We present their construction in a slightly generalized form.

Let G : {0, 1}k −→ {0, 1}2k, and let G0 denote the first k bits output by G, while G1 —
the last k bits (thus G(s) = G0(s)||G1(s) for all s). For any bit b, define Fb(s)

∆= Gb(s); and
Fxb(s)

∆= Gb(Fb(s)).

Tree View. This can be viewed as in terms of trees: Consider a binary tree with each node having
a label and a value. The root is labeled with an empty string; a left child of any node extends the
parent’s label with 0, while a right child extends it with 1. Let s be a value stored at the root,
and let a node labeled l store Fl(s). Clearly, the value of the left child of any node is computed by
applying G0 to the parent’s value (respectively, G1 for the right child).

Consider a completely unbalanced tree where each leaf has label 1t0. This tree corresponds to
the fsPRG construction of [83, 17]. Namely, SKt = F1t+1(s) and PKt = F1t0(s) = G0(SKt−1).

General Tree, Prefixless Construction. It is easy to generalize this construction, if desired,
to other trees, including infinite ones. Specifically, consider any (possibly infinite) set of finite
prefixless labels L: if x, y ∈ L then x is not a prefix of y. Let li be the i-th smallest label in L. We
can also refer to it as the prefixless (or self-delimiting) encoding of i according to L.

Now, we set PKt
∆= Flt(s). The secret key SKt must contain all the values from which the PKt′>t

can be derived.
For a node labeled l, define the ancestor set P (l) to be the set of all the ancestors of l (excluding

l). In other words, P (l) are the nodes on the path from l to the root.
Define the right set R(l) of l be the set of all the right children of P (l) that are not in P (l).

R(l) is the minimal set of nodes such that for any l′ ≤ l R(l) contains no ancestors of l′, but for
each l′′ > l it contains exactly one ancestor of l′′. In other words, R(lt) is the minimum set of nodes
from which the values for all lt′′>t, but for no lt′≤t can be derived. Thus, as before, for each leaf lt,
we set PKt

∆= Flt(s). Now, the SKt
∆= {〈Fl(s), l〉|l ∈ R(lt)}.

The above completely unbalanced tree is one example of prefixless encodings — essentially
writing i in unary notation and marking its end with 0. Then for any leaf lt = 1t0, R(lt) = {1t+1}.
Thus, that construction is a special case of our more general tree construction, using a very simple
and inefficient prefixless encoding.

The efficiency of the encoding does not influence much the fsPRG constructions under consid-
eration. More efficient schemes can be beneficial in the cases when many intermediate values need
not be computed, that is when ∆ > 1 in the key update KUp (see sec. 5.1).

Moreover, essentially similar constructions are used later for other schemes (e.g., signatures)
and will be able to benefit from better encodings.

Prefixless (Self-Delimiting) Encodings. Self-delimiting encodings are a well-known concept,
playing an important role, in particular, in Kolmogorov Complexity [87–89], and in some scheduling
problems, e.g., in [70]. In the context of forward-security they were utilized for the first time in [68]
in a way similar to the one described here.

Various prefixless encodings abound. The simplest one handling infinite sets of inputs is probably
to view each string t as an integer represented in unary (using only 1s), and delimited with a single
0: lt = 1t0. That’s the one implicitly used above in the schemes of [83, 17] Of course, such an
encoding is very inefficient: |lt| = 2t. However, a simple bootstrapping strategy can make it much
more efficient: lt can consist of the length |t| of t, encoded in a prefixless notation, followed by t
itself. In this case |lt| = 2|t| = 2 lg t. Iterating this one more time we can get a prefixless encoding
for which |lt| = lg t + 2 lg lg t = (1 + o(1)) lg t. For practical purposes, it probably makes sense to

14 Gene Itkis

stop here, though further iteration may yield better asymptotics (e.g. iterating lg∗ t times, we can
get |lt| = lg t+ lg lg t+ ...+ lglg∗ t t+ lg∗ t).

Another approach to achieve prefixless encoding, (instead of using unary notation at the base
step) can represent each bit as two bits, 0 as 00, 1 as 01, and use 11 to mark the end of the string.
Clearly this encoding can be easily improved by encoding t in ternary and using 10 to represent the
ternary digit 2. Then |lt| = 2 log3 t < 1.6 lg t. Further reductions are possible: essentially, for any
monotone function f such that

∑
1/f ≤ 1 it is possible to achieve an encoding such that lt ≤ f(t).

In particular, for any ε > 0 there exists a prefixless encoding such that |lt| ≤ (1 + ε) lg t + O(1).
These methods can also be used in the same bootstrapping strategy.

6.3 Symmetric Cryptography: from fsPRG to fsMAC, Audit Logs, and Encryption

It is possible to define a forward-secure version of Message Authentication Codes (MAC) and sym-
metric encryption (see [17]). Intuitively the concepts are fairly straight-forward: the functional def-
inition is obtained by adding the corresponding MAC or encrypt/decrypt functions to the common
forward-security KeyGen,KUp functions of the sec. 5.1.

The forward-secure constructions use the ordinary MAC or encrypt/decrypt functions and follow
from the fsPRG directly: the key for each period is generated by the fsPRG and then used by the
ordinary (non-forward-secure) functions. Namely, in the above notation, PKt is used as an ordinary
MAC or encryption/decryption key for the period t.

Another nice application for the forward-secure MACs —audit logs authentication— is sug-
gested in [17] (a similar but more heuristic solution was also proposed in [113]). The basic idea is to
authenticate a computer log using a forward-secure MAC. In this case, an intruder cannot modify
the past entries into the log without being detected (having all entries numbered and equating the
entry number with the time period eliminates undetected deletions as well). The log’s verification,
however, can be done on a separate machine which stores the original SK0 and can thus verify the
log. In fact, forward-securely encrypting the logs may offer even better security.

Our more efficient prefixless construction can be beneficial in this application — many times an
inspector may not be interested in accessing the log in a linear fashion. Rather it may be desired
to extract specific log entries as fast as possible. In such cases, computing the desired PKt from the
root SK0 in the time logarithmic — rather than linear — in t would improve efficiency significantly.

6.4 Forward-Secure Public Key Crypto: Naive Generic Construction

Before we move on to discuss specific forward-secure public key cryptosystems, we discuss a simple
but inefficient way of constructing a forward-secure cryptosystem (whether public key signatures,
encryption or anything else) out of any ordinary one (same task, but no forward-security). Refer
to the ordinary cryptosystem (and all its functions) used in the construction as the basic one(s).
We shall use it as a black-box in our construction.

First, using the basic key-generation function, generate T public/secret key pairs 〈pt, st〉 for all
t ∈ {0,T − 1}. Then publish all public keys pt. For time period t use the ordinary scheme with
the public/secret keys pt and st. The forward-secure secret key SKt for time period t is then SKt =
{〈i, si〉|i ≥ t}. The forward-secure public key in general must contain all PKt = {〈i, pi〉|0 ≤ i < T}.

Such a naive scheme is very inefficient: it requires both public and secret storage to store T
ordinary keys (for the secret storage this number is decreasing with time as T − t keys stored at
time t).

We can reduce the secret storage to one key plus whatever is required by the fsPRG: use fsPRG
to provide the pseudo-random bits for the key-generation. Now, generate key pairs 〈pt, st〉 twice:

Forward Security: Survey 15

after the first generation publish all the pt. Then use the fsPRG re-generate the secret (and public)
keys as needed for each period. This idea is further extended to obtain some of the generic signature
constructions below.

7 Forward-Secure Signatures

Forward-secure signature schemes can be divided into two categories: those that use (in a black-box
manner) arbitrary signature schemes, and those that modify specific signature scheme. We refer to
the first category as generic or black-box constructions, and to the second as concrete or explicit
constructions. The ordinary scheme(s) used as a black-box in the generic constructions is referred
to as the basic scheme.

Below we consider these two groups separately.

7.1 Generic Constructions

In the generic constructions, typically a master public key is used to certify (perhaps via a chain of
certificates) the basic public key used for each time period. Usually, this requires increase in storage
space (compared to the basic scheme) by a noticeable —at least logarithmic— factor: to maintain
the current (public) certificates and the (secret) keys for issuing future certificates.

Generic forward-secure schemes also require longer verification times than the ordinary signa-
tures do: the verifier must verify the certification of the basic key for the current time period, in
addition to verifying the actual signature with that basic key. The verification of the basic key can
require multiple signature verifications — for each step of the certification chain. There is, in fact,
a trade-off between storage space and verification time.

Static Schemes. The scheme proposed by Anderson [7] is the first scheme of this type. It uses a
flat — one level — certification hierarchy. The public key PK for his scheme is the certification key.
All the basic keys and their certificates are generated at the key-generation stage (certificate for
each basic public key includes the time period for which this key is to be used). The certification
secret key is then destroyed. The rest of the scheme is then pretty much the same as in sec. 6.4,
except each signature is augmented by the certificate for the corresponding public key. Thus, for
this scheme the public key is just a single basic public key. However the secret key must contain T
basic secret keys and as many certificates.

Krawczyk [83] improves this construction, reducing the secret key storage to only the secret key
of a fsPRG (in his construction a single secret). This is achieved by recomputing the secret keys
with the help of the fsPRG as described above in sec. 6.4. This still leaves the storage of as many
as T certificates.

Further optimization (also suggested in [83]) is to use the standard Merkle tree-hash construction
[100]: Consider a finite binary tree; let each leaf store arbitrary value and each non-leaf store a hash
of its children, for some cryptographic hash function. Then the root can serve as the certification
key, where each leaf l is certified with the values in the nodes adjacent to its path to the root
P (l). This construction reduces both the secret and public key sizes to 1. However, its signature
verification requires an additional T hash function evaluations, and an update at time t takes time
linear in T − t.

The above two variants illustrate the trade-off between the storage space on the one hand and
verification and update times on the other. However, using the recent results on traversing Merkle
trees [121], it is possible to reduce all these cost — storage, verification and update — to logarithmic.

16 Gene Itkis

In all the above schemes, all the basic public keys are generated at the setup time — that’s
why we group them under the heading of static schemes. In particular, these schemes must have
a known upper bound T on the number of time periods. Moreover, the setup time is proportional
to T (for some of the above schemes, even the update time or storage are linear in T). Next we
consider schemes which remove this limitation.

Dynamic Schemes. The above schemes constructed their certification tree completely at the setup
time — next we consider schemes that construct the certification hierarchy on the “as needed” basis.
That is, at each time the signer maintains the current basic key as well as (the minimal set of) the
basic keys required to certify all the future (but not the past) basic keys.

The first such scheme was proposed by Bellare and Miner [15]. Essentially, they used a certifica-
tion tree of height lg T . This resulted in the verification needing to check additional lg T certification
signatures. It was observed in [99] for standard (and in [5] for the forward-secure schemes, which use
similar certificates) that each certifying public key is used only for authenticating a single message
— the corresponding certificate of the children’s public keys, and thus one-time signatures [85, 100]
are sufficient for this purpose. These signatures offer greater efficiency (see, e.g., [111] and references
there).

A few different certification topologies have been considered. A balanced lg T height tree used
in [15] limits the total number of periods. This limit was extended to be exponential in a security
parameter k by [96]. Their tree consists of a relatively small balanced tree each leaf of which is a
root of another balanced tree. The height of a tree rooted at the i-th leaf of the top tree is i. Thus
for a top tree of height lg k it contains k trees (for simplicity, assume k is a power of 2). Thus the
whole tree contains T = 2k − 1 leaves.

As pointed out in [68], both of the above tree structures represent special cases of prefixless
encoding, and any other prefixless encoding will work for this purpose and may offer greater effi-
ciency. In particular, using this approach, T is truly unbounded and the signatures at time period
t require checking lg t+ o(lg t) certifications.

The same prefixless coding construction can be applied to the static schemes to reduce the
signature length and verification time at time t to be logarithmic in t (as opposed to T in the
original constructions). The cost of update is still likely to require time (and probably storage)
logarithmic in T . This motivates a further study of applying the techniques of [121, 77] to traversing
“slanted” Merkle trees (e.g., corresponding to the prefixless encodings).

While we can achieve compatible or even lower costs of running (but not setup) for the static
schemes, the dynamic schemes still have advantage of being able to support unbounded number of
periods (i.e., T = ∞), while the static schemes cannot handle even very large values of T , since
the setup still takes Ω(T).

7.2 Concrete Constructions

A number of forward-secure schemes based on specific number-theoretic assumptions and ordinary
signature schemes have been proposed. As most of the practical ordinary signature schemes, most
of the proposed concrete forward-secure schemes are in the random oracle model. Clearly, any
security proof in the random oracle model is no more than a “heuristic evidence” of security when
the random oracle is instantiated by some cryptographic hash function, as is the common practice.8

Forward-secure signature scheme, whose security is proven based only on a Strong RSA assumption
(i.e., without the random oracle) was recently proposed by [30]. In addition to not relying on random
8 Use of random oracles in cryptography is a topic of on-going debate. For example, [81] surveys some of the recent

results intended to cast doubt on the random oracle model, but interprets them as actually supporting the model.

Forward Security: Survey 17

oracles, their construction allows a finer grain of forward-security. Namely, the signatures can be
numbered within each period; then even the signatures issued during the exposure period but prior
to the exposure remain secure. The other schemes in this section are proven secure in the random
oracle model.

The forward-secure signature schemes based on factoring include those by Bellare and Miner
[15] based on the Fiat-Shamir scheme [52]; and by Abdalla and Reyzin [5] based the 2t-th root
scheme [105, 106, 101]. The schemes by Itkis and Reyzin [71] based on the GQ signatures [64], and
Kozlov and Reyzin [82] also require factoring to be hard, but it is not sufficient — Strong-RSA
assumption is used (see [71, 82, 11, 54]). We are not aware of any forward-secure signature schemes
based on discrete logarithm or DH assumptions.

The above concrete schemes are sufficiently sophisticated, that the in-depth coverage of these
schemes is impractical in this survey. The reader is referred to the original articles for the details of
the constructions and proofs. Here we restrict ourselves to the high-level discussion and comparison
of the schemes.

Both [15] and [5] require signing and verification times that are linear in T .
The scheme of [71] reduces the signing and verifying times, signature sizes and storage costs

to be essentially the same as for the ordinary GQ signatures, However, the update time of the
Itkis-Reyzin scheme is proportional to T if the storage is kept minimum (one extra key). Increasing
the storage to be logarithmic in T , the update costs can be reduced to logarithmic as well.

The Kozlov-Reyzin signature scheme improves the update time to just a single modular squar-
ing, but at a high price: the verifier must now perform 2(T − t) multiplication per period (in
addition to verifying each individual signature — the cost of that operation is compatible with the
Itkis-Reyzin scheme, though is slightly greater). Thus this scheme can be efficient for the signer,
esp. for the case of frequent updates (see [82] for the detailed performance comparison), but not
for verifier (in fact, the verifier’s cost exceed the signer’s cost of [71], making it more compatible to
(but better than) the costs of the Bellare-Miner and Abdalla-Reyzin.
Time Period Bound. All these schemes require at least some computation (at least in the setup
stage) to be linear in T . Therefore none of the current non-generic constructions have the advantage
of the dynamic generic schemes which allow unbounded number of time periods.
Time-Space trade-off: Pebbling. Both the Itkis-Reyzin and Kozlov-Reyzin scheme use an
interesting technique of pebbling (suggested in [71]) to optimize certain computation costs at a
modest (logarithmic) increase in storage cost. This technique is of independent interest, and in
particular inspired (and is essentially equivalent to) the research into hash-chains computation [76,
37, 115].

8 Forward-Secure Public Key Encryption

In the section.6.4 above, we have outlined a trivial way of constructing various public key schemes
(including encryption). That approach, however, is largely impractical, since it incurs linear in T
costs even in the most fundamental parameters, most importantly, the public key.

The only scheme to date that overcomes such high costs is provided by Canetti, Halevi and
Katz [34]. This scheme builds on the hierarchical identity-based encryption (HIBE) of Gentry and
Silverberg [56], which in turn is based on Boneh and Franklin’s identity-based encryption [24, 25].
All of these schemes are based on the Bilinear Diffie-Hellman assumption (BDH). As was the case
for the concrete signature schemes, it is impractical to describe the construction and the proofs for
the schemes, so we restrict ourselves to only the high level discussion and the reader is referred to
the original articles for details.

18 Gene Itkis

Obtaining non-trivial public key encryption schemes based on more standard assumptions such
as factoring, RSA, discrete log or Diffie-Hellman (DDH or CDH) are still an open problem.

Intuitively, HIBE schemes define a tree (possibly non-binary) such that the tree has a single
“master” public key associated with the whole tree, and a secret key associated with each node.
The encryption algorithm using the “master” public key and the id of any tree node v can encrypt a
message so that it can be decrypted using the secret key for any of the ancestors of v. Moreover, the
secret key for a node can be derived from the secret key of its parent. This derivation is one-way:
the parent’s secret key cannot be derived from a child’s key.

The IBE and HIBE constructions of [24, 25, 56] needed to be extended slightly (which was
achieved by some relaxation of security, which did not affect the forward-security scheme), resulting
in a slightly different version of HIBE. The new HIBE scheme proposed in [34] had an additional
advantage of being secure in the standard model (without the random oracles required in the
previous constructions). Furthermore, the previous constructions were extended in [34] to (binary)
trees of arbitrary depth.

With the above tools, the forward-secure encryption can use any of the prefixless encodings
techniques much as in Sec. 7.1 above to obtain the costs proportional to lg t for any operation
at time t (encryption, decryption or key update). The ciphertext and secret keys similarly grow
linearly in lg t.

9 Conclusion

9.1 Forward-Security: Open Problems

Forward-secure cryptography is a fairly well studied field, as might be seen even from this survey.
However a number of interesting open questions remain.

Forward-Secure Public Key Encryption Based on RSA or DH. The forward-secure
public key encryption schemes discussed in Sec. 8 is based on the Bilinear Diffie-Hellman (BDH)
assumption, which is somewhat less “standard” than some of the other assumptions such as RSA,
Strong-RSA, Decisional or Computation DH assumptions, etc. While groups where the BDH as-
sumption appears to hold are known, these groups are not as simple as the Z∗n. Therefore, it would
be very interesting to find forward-secure encryption schemes that work in such groups and are
based on the more common assumptions mentioned above.

Forward-Secure Signatures: Efficiency and Removing Random Oracles. Section 7.2
described some forward-secure signature schemes, whose signing and verifying is as efficient as for
ordinary (GQ) signatures. However, some of the other operations costs for these schemes depended
on T : while the memory and update costs were only logarithmic in T , the key generation was Θ(T).
Can these overheads be reduced or even removed? Some generic schemes do achieve independence
from T at the cost of introducing logarithmic (in current time period t) overhead in the signature
size and the verification cost (there is no the overhead for signing, and the update overhead can be
amortized to be just an additive constant). This may be acceptable in practice, but avoiding such
overhead altogether would be much more appealing.

Most of the signature schemes deployed in real systems do not have a full security proof: their
security proofs rely on using random oracles in the constructions. In real life, these oracles do not
exist and are replaced with “cryptographic hash functions” or pseudo-random functions, such as
MD5 or SHA1. This renders the security proofs inapplicable (see, e.g., [62], and the bibliography
there). Signature schemes whose security proofs do not rely on random oracles have been proposed

Forward Security: Survey 19

(e.g., the classic [63], or more recent and more efficient [38, 102]). Are there forward-secure variants
of these schemes which have similar performance characteristics?

Static Generic Schemes: Traversing Slanted Merkle Trees. The recent algorithms
for the efficient traversal of the Merkle trees [121] can improve performance of the static generic
constructions for the forward-secure signatures. However, these still have the Θ(lg T) overhead.
The verification overhead of such static schemes can be improved to lg t for the current time period
t by using the prefixless encodings constructions. Can the above Merkle tree traversal algorithms
be adjusted for these prefixless trees? What is the best performance that can be obtained for such
“slanted” trees traversals?

9.2 Evolving Cryptography: Beyond Forward-Security

As discussed in Section 3 forward-security provides an important tool for protecting the key and
in a way represents a new fundamental development of cryptography: making it more resilient.

A number of papers (including those mentioned in sec. 4.2) have addressed adding forward-
security to other schemes. For more examples of such combinations — solved and open — the
reader is referred to [14]. While many of such combinations are very important, below we focus on
what we see as building on a more fundamental aspect of forward-security.

We also discussed the time-evolution aspect of the forward-security. This trend had a number
of subsequent developments.

Cryptographic Tamper-Evidence. No matter what security tools are utilized, a prudent
security architect will always consider the case that the security is broken. In such cases, it is
often desired to revoke the key, or undertake other similarly dramatic recovery steps (this might be
required even for forward-secure systems, as discussed in sec. 3.1). Thus, it is important to detect
when the security is broken.

Until recently, this tamper-detection was mainly achieved by heuristic methods, such as intrusion-
detection systems. Indeed, it might seem that cryptography is powerless against an adversary who
steals all the secrets. However, evolving cryptography opens some possibilities.

Any cryptographic system undergoes in important change after the adversary steals the secret
keys of a user: the system would now have two players, where there is supposed to be one —
the legitimate user, and the adversary with the stolen secrets, both playing the same role. These
two players would actually “diverge” if at least one of them evolves in a randomized fashion.
Furthermore, in some scenarios — such as signatures — both of these players might produce some
output — e.g., legitimate and forged signatures). This makes it possible to detect the divergence.

More specifically, [69] defines tamper-evident signature schemes offering an additional procedure
Div, which detects tampering: given two signatures, Div can determine whether one of them was
generated by the forger (essentially, Div detects divergence of the legitimate user and the forger).
Surprisingly, this is possible even after the adversary has inconspicuously learned some — or even
all — of the secrets in the system. In this case, it might be impossible to tell which signature is
generated by the legitimate signer and which by the forger, but at least the fact of the tampering
will be made evident.

[69] defines several variants of tamper-evidence, differing in the power to detect tampering. In
all of these, an equally powerful adversary is assumed: she adaptively controls all the inputs to the
legitimate signer (i.e., all messages to be signed and their timing), and observes all his outputs (i.e.,
all signatures); she can also adaptively expose all the secrets at arbitrary times.

[69] provides tamper-evident schemes for all the variants and proves their optimality by showing
tight lower-bounds. These lower bounds are perhaps more surprising than the constructions. The

20 Gene Itkis

lower-bounds proofs are information-theoretic and thus cannot be broken by any methods (including
by introducing any number-theoretic or algebraic complexity assumptions).

General Key-Evolution: Recovery. As we mentioned above, a seasoned security architect
will always address the case of security compromise. The first issue to address — detecting the com-
promise — is discussed above. But then recovery mechanisms from such compromises are required.
For digital signatures such a recovery should ideally —and when possible— include invalidation of
the signatures issued with the compromised keys.

Recovery from one special case of compromises — extortion – were considered in [103]. There,
so called monotone signatures were defined. In monotone signatures, a user can be forced (e.g.,
at a gun point) to release the secret key. In this case, the user releases a “fake” secret key. This
key generates signatures which look perfectly valid under the current public key. However, at a
later time (once out of the danger) the user updates his public key. Under the new public key, all
the signatures generated by the user before or after the extortion remain valid. But the signatures
generated by the adversary using the extorted key become invalid under the new public key.

[74] generalizes this work. It considers two models for key exposures: full and partial reveal.
In the first, a key exposure reveals all the secrets currently existing in the system. This model
is suitable for the pessimistic inconspicuous exposures scenario. The partial reveal model permits
the signer to conceal some information under exposure: e.g., under coercive exposures the signer is
able to reveal a “fake” secret key. The monotone signatures assume the partial reveal model in this
terminology.

[74] propose a definition of generalized key-evolving signature scheme, which unifies forward-
security and security against the coercive and inconspicuous key exposures (previously considered
separately [15, 103, 69]). We based our definitions in this review in part on the definitions of [74].

The new models helped to address certain repudiation problems inherent in the monotone
signatures [103], and achieve performance improvements.

Intrusion-Resilience: Space-Time Combination. Forward-secure cryptography protects the
past time periods even when the current secret key is exposed. But what about protecting the
future? Key-insulated cryptography [46, 47] attempted to provide some security to the future. In
that model the user is partitioned into two modules: actor and base. This is somewhat akin to
the threshold cryptography model. However, unlike the threshold model, all the transactions are
performed by the actor alone. Only the updates require the base to communicate with the actor,
sending it an update message. Without such a message, the actor cannot update itself to the next
period — thus an adversary who steals actor’s secret key but does not receive the update message
loses her advantage at the end of the time period, as the stolen secret key expires. Exposures of
the base alone do not provide any useful information to the adversary.

However if the adversary exposes both base and actor at arbitrary times (and in some variants,
even with sufficiently many exposures of only the actor), all the security is lost, including the past.

Intrusion-resilient model [72] eliminated these security limitations. This model also uses the two
modules: actor and base. However it really combines all the benefits of the forward-security and
pro-active crypto (see sec. 4.1). Thus, the intrusion-resilient model can truly be considered as a
time-space combination.

In particular, intrusion-resilient model tolerates arbitrarily many break-ins into both actor and
base in arbitrary order. As long as these break-ins are not simultaneous, the only time periods
that are compromised are those for which the actor was exposed9. Moreover, if a simultaneous
9 The concept of exposure must be extended to include the trivial indirect exposure: When the actor is exposed at

time period t and adversary intercepts all the messages from the base, including the next update message, then
clearly, the actor should be considered exposed at time t+ 1 as well.

Forward Security: Survey 21

exposure does occur, then the past periods remain secure (the future in this case obviously cannot
be protected, since the adversary now knows the full state of the system).

The granularity of the exposures is determined by the frequency of refresh messages, similar
to those used in the pro-active security. Namely, if there is at least one refresh message not seen
by adversary between two exposures, then these exposures are not considered to be simultaneous.
If the update message must be sent to from the base to the actor exactly once in a time period,
the refresh messages can be sent as frequently as desired — more when the user feels his system is
under the attack.

Intrusion-resilient schemes for signatures [72, 68], and for public-key encryption [44, 45] have
been proposed. [72] builds on the concrete construction of [71], while [68] proposes a generic scheme
based on an arbitrary ordinary signature scheme. Similarly, for the public key encryption, [44]
proposes a scheme based on specific algebraic assumptions, while [45] presents a generic construction
based on any forward-secure encryption scheme with certain homomorphic properties.

Interrelations between intrusion-resilient, key-insulated, forward-secure and so called proxy sig-
natures were recently studied in [97].

9.3 From Theory to Practice

Key-evolving cryptographic schemes offer potential benefits in a number of practical areas. Ap-
plications to Public Key Infrastructures (PKI) for intrusion-resilient and key-insulated signatures
were suggested in [73, 86], respectively. Other applications could be timed commitments, bidding,
time-stamped delegation, and many others.

Many of these applications can have a significant practical impact. This is especially true for
the case of PKI related applications, since PKI is already widely deployed and used.

This transfer from theory to practice could be facilitated in particular by extending various
cryptographic standards to accommodate key-evolving cryptography. Additionally, integrating the
key-evolving cryptographic tools into the popular protocols (e.g., such as SSL/TLS) would also
increase security and potentially even offer infrastructure savings.

In fact, most of the cryptographic tools deployed today already include (implicitly and/or
“out-of-band”) some form of key evolution in the form of key revocation, periodic changes of the
secret keys (e.g., as in pay-TV data streams) or even password changes. Explicit integration of key
evolution promises to leverage existing key-evolving crypto tools, as well as enable and stimulate
future productive research and progress in this direction.

Glossary

Authentication: Typically, assurance that a message was sent (authorized) by the purported author (and was
not modified in transmission). Authentication mechanisms include public key (digital signatures) and symmetric
(MACs) cryptography tools.

CA: See Certification authority.
Certificate: a document associating a particular public key with a particular entity (user, corporation, privilege,

etc.). Certificate is typically a record containing a public key and the entity it is associated with, signed by a
Certification Authority. The entity (or its representative) typically holds the secret private key corresponding to
the certified public key.

Certification authority (CA): An authority, trusted within the appropriate PKI to issue and manage certificates.
Certificate revocation: A mechanism to revoke certificates: identify those certificates which should not be trusted

(e.g., if the corresponding private key has been exposed).
Cryptographic hash: An efficiently computable function h, for which it is infeasible to find x 6= y such that

h(x) = h(y). Cryptographic hash must be a one-way function, but a one-way function is not necessarily a
cryptographic hash.

22 Gene Itkis

Hash tree: A tree where the leaves are associated with some input values, and for each internal node, its value is
the cryptographic hash of its children.

Key exposure: An event of an adversary learning the secret (private) key.
MAC: See Message Authentication Code.
Message Authentication Code (MAC): A symmetric cryptography mechanism for message authentication. Typ-

ically implemented as a keyed one-way function or cryptographic hash.
Non-repudiation: A cryptographic service that (legally) prevents the originator of a message from denying author-

ship/authorization at a later date. This service can be generalized to other transactions.
Merkle tree: See hash tree.
One-way function: An efficiently computable function, but whose inverse is not efficiently computable.
PKI: See public key infrastructure.
Private key: A value kept secret by its owner and used to perform operations that are intended to be available only

to him/her: e.g., digitally sign his/her messages and/or documents, or read (decrypt) secret messages intended
only for this private key owner. A private key is typically associated with a public key.

PRG or PRNG : See pseudo-random number generator.
Pseudo-random: Indistinguishable from random.
Pseudo-random number generator (PRNG): An algorithm computing a pseudo-random string from a random

(but shorter) seed.
Pseudo-random function: A function of a seed and an index, such that for a random seed the string of the function

outputs for all the indices is pseudo-random.
Public key: A publicly available value associated with a particular secret private key, and used to perform operations

that are intended for general public: e.g., verifying a digital signature, or encrypting a message for a particular user
(the holder of the corresponding private key). A public key is often associated with the owner of the corresponding
private key, e.g., by means of a certificate within a particular PKI.

Public key cryptography: a collection of algorithms and protocols utilizing related pairs of public and private
keys, used for complementary operations: e.g., signing with the private key, while verifying the signature using
the corresponding public key; or encrypting using public key and decrypting using the corresponding private key.
Computing outputs of private key operations should be infeasible without the proper private key.

Public key infrastructure (PKI): A mechanism for associating public keys with entities such as users, corpo-
rations, privileges, authorizations, etc. PKI typically includes servers, logistical mechanisms and policies, and
implies particular trust relations. PKI typically consists of a set of certification authorities (CAs) administering
certificates: their issuing, maintaining, and revoking.

Random function: A function whose outputs are random: unpredictable for any input value, even when given the
outputs for all the other input values.

Random oracle: A random function given as a “black box”. Random oracle is an abstract construct, in practice
often emulated using a cryptographic hash. Proofs of security of some cryptographic mechanisms assume access
to a random oracle; such proofs of security may not apply when the random oracle is implemented as an actual
algorithm. Security of such mechanisms is a subject of much debate and research.

Repudiation: An attempt to disavow a prior commitment, authorization, or transaction: e.g., an attempt to deny
signing a particular document.

Signature: A value used to authenticate a message as authorized by the signer. The signer computes the signature
as a function of the message being signed and the signer’s secret (private) key. The signature can be verified
using the public key associated with the signer’s private key. Computing a valid signature (the one which verifies
as valid with a proper public key) should be infeasible without the private key.

Symmetric cryptography: A collection of algorithms and protocols utilizing a single secret key, such that com-
plementary operations, such as encrypting and decrypting, use the same key. This is in contrast to public key
cryptography where analogous complementary operations require different keys.

References

1. Fourth ACM Conference on Computer and Communication Security. ACM, Apr. 1–4 1997.
2. Progress in Cryptology — CT-RSA 2003, volume 2612 of Lecture Notes in Computer Science. Springer-Verlag,

2003.
3. M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification to signatures via the Fiat-Shamir

transform: Minimizing assumptions for security and forward-security. In L. Knudsen, editor, Advances in Cryp-
tology – EUROCRYPT ’ 2002, volume 2332 of Lecture Notes in Computer Science, pages 418–433, Amsterdam,
The Netherlands, 2002. Springer-Verlag, Berlin Germany.

Forward Security: Survey 23

4. M. Abdalla, S. Miner, and C. Namprempre. Forward-secure threshold signature schemes. In D. Naccache, editor,
Progress in Cryptology — CT-RSA 2001, volume 2020 of Lecture Notes in Computer Science, pages 143–158.
Springer-Verlag, Apr. 8-12 2001.

5. M. Abdalla and L. Reyzin. A new forward-secure digital signature scheme. In T. Okamoto, editor, Advances
in Cryptology—ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages 116–129, Kyoto,
Japan, 3–7 Dec. 2000. Springer-Verlag. Full version available from the Cryptology ePrint Archive, record
2000/002, http://eprint.iacr.org/.

6. Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, Chicago, Illinois, 2–4 May
1988.

7. R. Anderson. Invited lecture. In Fourth ACM Conference on Computer and Communication Security [1]. (see
also [8]).

8. R. Anderson. Two remarks on public key cryptology. Technical Report UCAM-CL-TR-549, University of
Cambridge, Computer Laboratory, Dec. 2002. http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-549.pdf.

9. A. Back. Non-interactive forward secrecy, 1996. Posting to cypherpunks mailing list (6/9/1996), archived at
http://cypherpunks.venona.com/date/1996/09/msg00561.html.

10. B. Barak, A. Herzberg, D. Naor, and E. Shai. The proactive security toolkit and applications. In G. Tsudik,
editor, Proceedings of the 5th ACM Conference on Computer and Communications Security, pages 18–27, Sin-
gapore, Nov. 1999. ACM Press.

11. N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes without trees. In
W. Fumy, editor, Advances in Cryptology—EUROCRYPT 97, volume 1233 of Lecture Notes in Computer Sci-
ence, pages 480–494. Springer-Verlag, 11–15 May 1997.

12. D. Beaver. Server-assisted cryptography. In New Security Paradigms Workshop (NSPW ’98), pages 92–106,
New York, Sept. 1999. Association for Computing Machinery.

13. P. Beguin and J.-J. Quisquater. Fast server-aided RSA signatures secure against active attacks. Lecture Notes
in Computer Science, 963, 1995.

14. M. Bellare. An automatic crypto research topic or paper title generator.
http://www.cs.ucsd.edu/users/mihir/crypto-topic-generator.html.

15. M. Bellare and S. Miner. A forward-secure digital signature scheme. In M. Wiener, editor, Advances in
Cryptology—CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages 431–448. Springer-Verlag,
15–19 Aug. 1999. Revised version is available from http://www.cs.ucsd.edu/~mihir/.

16. M. Bellare and B. Yee. Forward security in private key cryptography. Report 2001/035, Cryptology ePrint
Archive, 2001. http://eprint.iacr.org/2001/035.ps.gz.

17. M. Bellare and B. Yee. Forward security in private key cryptography. In CTRSA: CT-RSA, The Cryptographers’
Track at RSA Conference, LNCS, 2003. Originally appeared as [16].

18. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant
distributed computation (extended abstract). In ACM [6], pages 1–10.

19. M. Blaze. High-bandwidth encryption with low-bandwidth smartcards. Technical report, AT&T Bell Labora-
tories, Oct. 1995. ftp://research.att.com/dist/mab/card cipher.ps. Draft.

20. M. Blaze. High-bandwidth encryption with low-bandwidth smartcards. In D. Grollman, editor, Fast Software
Encryption: Third International Workshop, volume 1039 of Lecture Notes in Computer Science, pages 33–40,
Cambridge, UK, 21–23 Feb. 1996. Springer-Verlag.

21. M. Blaze, J. Feigenbaum, and M. Naor. A formal treatment of remotely keyed encryption. In Advances in
Cryptology – EUROCRYPT ’98, pages 251–265, 1998.

22. M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random bits. SIAM
Journal on Computing, 13(4):850–863, Nov. 1984.

23. D. Boneh and M. Franklin. Efficient generation of shared RSA keys. In Proc. 17th International Advances in
Cryptology Conference – CRYPTO ’97, pages 425–439, 1997.

24. D. Boneh and M. Franklin. Identity-based encryption from the Weil Pairing. In J. Kilian, editor, Advances in
Cryptology – CRYPTO ’ 2001, volume 2139 of Lecture Notes in Computer Science, pages 213–229. International
Association for Cryptologic Research, Springer-Verlag, Berlin Germany, 2001.

25. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM Journal on Computing,
32(3):586–615, June 2003.

26. V. Boyko. On the security properties of OAEP as an all-or-nothing transform. In Proc. 19th International
Advances in Cryptology Conference – CRYPTO ’99, pages 503–518, 1999.

27. V. Boyko. On All-or-Nothing Transforms and Password-Authenticated Key Exchange Proto-
cols. PhD thesis, Department of Electrical Engineering and Computer Science, MIT, May 2000.
http://theory.lcs.mit.edu/ cis/theses/victor-phd.ps.gz.

28. G. Brassard, editor. Advances in Cryptology—CRYPTO ’89, volume 435 of Lecture Notes in Computer Science.
Springer-Verlag, 1990, 20–24 Aug. 1989.

24 Gene Itkis

29. C. Cachin and J. Camenisch, editors. Advances in Cryptology - EUROCRYPT 2004, International Conference
on the Theory and Applications of Cryptographic Techniques Interlaken, Switzerland, May 2-6, 2004 Proceedings,
volume 3027 of Lecture Notes in Computer Science. Springer, 2004.

30. J. Camenisch and M. Koprowski. Fine-grained forward-secure signature schemes without random oracles. In
International Workshop on Coding and Cryptography. INRIA and ENSTA, 2003.

31. R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-resilient functions and all-or-nothing
transforms. In Preneel [110], pages 453–469.

32. R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Adaptive security for threshold cryptosystems.
In Proc. 19th International Advances in Cryptology Conference – CRYPTO ’99, pages 98–115, 1999.

33. R. Canetti, S. Halevi, and A. Herzberg. Maintaining authenticated communication in the presence of break-ins.
Journal of Cryptology, 13(1):61–105, Jan. 2000.

34. R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In E. Biham, editor,
Advances in Cryptology—Eurocrypt 2003, volume 2656 of Lecture Notes in Computer Science. Springer, 2003.
Also available at Cryptology ePrint Archive, Report 2003/083, http://eprint.iacr.org/2003/083.

35. G. Caronni, M. Waldvogel, D. Sun, N. Weiler, and B. Plattner. The VersaKey framework: Versatile group key
management. IEEE Journal on Selected Areas in Communications, 17(9):1614–1631, Sept. 1999.

36. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure protocols (extended abstract). In
ACM [6], pages 11–19.

37. D. Coppersmith and M. Jakobsson. Almost optimal hash sequence traversal. In Proceedings of the Fourth
Conference on Financial Cryptography (FC ’02), volume 2357 of Lecture Notes in Computer Science, Hamilton,
Bermuda, 2002. International Financial Cryptography Association (IFCA), Springer-Verlag, Berlin Germany.

38. R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption. ACM Transactions on
Information and System Security, 3(3):161–185, 2000.

39. I. B. Damg̊ard, editor. Advances in Cryptology—EUROCRYPT 90, volume 473 of Lecture Notes in Computer
Science. Springer-Verlag, 1991, 21–24 May 1990.

40. Y. Desmedt. Some recent research aspects of threshold cryptography. In Proc. 1st International Information
Security Workshop, pages 158–173, 1997.

41. Y. Desmedt and Y. Frankel. Threshold cryptosystems. In Brassard [28], pages 307–315.
42. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information Theory,

IT-22(6):644–654, 1976.
43. Y. Dodis. Exposure-Resilient Cryptography. PhD thesis, Department of Electrical Engineering and Computer

Science, MIT, Aug. 2000. http://www.toc.lcs.mit.edu/ yevgen/ps/phd-thesis.ps.
44. Y. Dodis, M. Franklin, J. Katz, A. Miyaji, and M. Yung. Intrusion-resilient public-key encryption. In Progress

in Cryptology — CT-RSA 2003 [2], pages 19–32.
45. Y. Dodis, M. Franklin, J. Katz, A. Miyaji, and M. Yung. A generic construction for intrusion-resilient public-key

encryption. In Progress in Cryptology — CT-RSA 2004, volume 2964 of Lecture Notes in Computer Science,
pages 81–98. Springer-Verlag, 2004.

46. Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-insulated public key cryptosystems. In Knudsen [80].
47. Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong key-insulated signature schemes. In International Workshop on

Practice and Theory in Public Key Cryptography (PKC’03), 2003.
48. Y. Dodis, A. Sahai, and A. Smith. On perfect and adaptive security in exposure-resilient cryptography. In

B. Pfitzmann, editor, Advances in Cryptology—EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer
Science, pages 301–324. Springer-Verlag, 6–10 May 2001.

49. Duc, Cheon, and Kim. A forward-secure blind signature scheme based on the strong RSA assumption. In ICIS:
International Conference on Information and Communications Security (ICIS), LNCS, 2003.

50. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In G. R. Blakley
and D. Chaum, editors, Advances in Cryptology: Proceedings of CRYPTO 84, volume 196 of Lecture Notes in
Computer Science, pages 10–18. Springer-Verlag, 1985, 19–22 Aug. 1984.

51. U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. Journal of Cryptology, 1(2):77–94, 1988.
52. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems.

In A. M. Odlyzko, editor, Advances in Cryptology—CRYPTO ’86, volume 263 of Lecture Notes in Computer
Science, pages 186–194. Springer-Verlag, 1987, 11–15 Aug. 1986.

53. Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Proactive RSA. In Proc. 17th International Advances
in Cryptology Conference – CRYPTO ’97, pages 440–454, 1997.

54. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular polynomial relations. In
B. S. Kaliski Jr., editor, Advances in Cryptology—CRYPTO ’97, volume 1294 of Lecture Notes in Computer
Science, pages 16–30. Springer-Verlag, 17–21 Aug. 1997.

55. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS signatures. In U. Maurer, editor,
Advances in Cryptology—EUROCRYPT 96, volume 1070 of Lecture Notes in Computer Science, pages 354–371.
Springer-Verlag, 12–16 May 1996.

Forward Security: Survey 25

56. Gentry and Silverberg. Hierarchical ID-based cryptography. In ASIACRYPT: Advances in Cryptology – ASI-
ACRYPT: International Conference on the Theory and Application of Cryptology. LNCS, Springer-Verlag, 2002.

57. M. Girault. An identity-based identification scheme based on discrete logarithms modulo a composite number.
In Damg̊ard [39], pages 481–486.

58. O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. In Proceedings of the Twenty First
Annual ACM Symposium on Theory of Computing, pages 25–32, Seattle, Washington, 15–17 May 1989.

59. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity and a methodology of
cryptographic protocol design (extended abstract). In 27th Annual Symposium on Foundations of Computer
Science, pages 174–187, Toronto, Ontario, Canada, 27–29 Oct. 1986. IEEE.

60. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem for protocols
with honest majority. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pages
218–229, New York City, 25–27 May 1987.

61. S. Goldwasser, editor. Advances in Cryptology—CRYPTO ’88, volume 403 of Lecture Notes in Computer Science.
Springer-Verlag, 1990, 21–25 Aug. 1988.

62. S. Goldwasser and Y. T. Kalai. On the (in)security of the Fiat-Shamir paradigm. In Proceedings of the 44th
Symposium on Foundations of Computer Science (FOCS). IEEE Computer Society Press, 2003.

63. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-message
attacks. SIAM Journal on Computing, 17(2):281–308, April 1988.

64. L. C. Guillou and J.-J. Quisquater. A “paradoxical” indentity-based signature scheme resulting from zero-
knowledge. In Goldwasser [61], pages 216–231.

65. C. Günther. An identity-based key-exchange protocol. In Brassard [28].
66. J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. Construction of pseudorandom generator from any one-way

function. SIAM Journal on Computing, 28(4):1364–1396, 1999.
67. A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive public key and signature systems.

In Fourth ACM Conference on Computer and Communication Security [1], pages 100–110.
68. G. Itkis. Intrusion-resilient signatures: Generic constructions, or defeating strong adversary with minimal as-

sumptions. In SCN02 [114].
69. G. Itkis. Cryptographic tamper evidence. In 10th ACM Conference on Computer and Communication Security.

ACM, Oct. 27–30 2003. Also avaliable from http://www.cs.bu.edu/~itkis/papers/.
70. G. Itkis and L. A. Levin. Power of fast VLSI models is insensitive to wires’ thinness. In 30th Annual Symposium

on Foundations of Computer Science, pages 402–407, Research Triangle Park, North Carolina, 30 Oct.–1 Nov.
1989. IEEE.

71. G. Itkis and L. Reyzin. Forward-secure signatures with optimal signing and verifying. In J. Kilian, editor,
Advances in Cryptology—CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 332–354.
Springer-Verlag, 19–23 Aug. 2001.

72. G. Itkis and L. Reyzin. SiBIR: Intrusion-resilient signatures, or towards obsoletion of certificate revocation. In
Yung [129]. Available from http://eprint.iacr.org/2002/054/.

73. G. Itkis and L. Reyzin. SiBIR: Intrusion-resilient signatures, or towards obsoletion of certificate revocation. In
Yung [129]. Available from http://eprint.iacr.org/2002/054/.

74. G. Itkis and P. Xie. Generalized key-evolving signatures, or how to foil an armed adversary. In 1st MiAn
International Conference on Applied Cryptography and Network Security. Springer-Verlag, 2003.

75. Jakobsson and Wetzel. Secure server-aided signature generation. In PKC: International Workshop on Practice
and Theory in Public Key Cryptography. LNCS, 2001.

76. M. Jakobsson. Fractal hash sequence representation and traversal. In Proceedings of the 2002 IEEE International
Symposium on Information Theory (ISIT ’02), pages 437–444, July 2002.

77. M. Jakobsson, T. Leighton, S. Micali, and M. Szydlo. Fractal Merkle tree representation and traversal. In
Progress in Cryptology — CT-RSA 2003 [2].

78. C. kang Chu, L. shan Liu, and W. guey Tzeng. A threshold GQ signature scheme. Jan. 28 2003. See http:

//eprint.iacr.org/2003/016.
79. A. Kerckhoffs (von Nieuwenhof). La cryptographie militaire. (French) [Military cryptography]. Journal des

Sciences Militaires, Jan. 1883. Available at http://www.petitcolas.net/fabien/kerckhoffs/.
80. L. Knudsen, editor. Advances in Cryptology—EUROCRYPT 2002, Lecture Notes in Computer Science. Springer-

Verlag, 28 April–2 May 2002.
81. N. Koblitz and A. Menezes. Another look at “provable security”. Cryptology ePrint Archive, Report 2004/152,

2004. http://eprint.iacr.org/.
82. A. Kozlov and L. Reyzin. Forward-secure signatures with fast key update. In SCN02 [114].
83. H. Krawczyk. Simple forward-secure signatures from any signature scheme. In Seventh ACM Conference on

Computer and Communication Security. ACM, Nov. 1–4 2000.

26 Gene Itkis

84. C.-S. Laih, S.-M. Yen, and L. Harn. Two efficient server-aided secret computation protocols based on additional
sequence. In Proc. Advances in Cryptology Conference – AISACRYPT ’91, pages 450–459, 1991.

85. L. Lamport. Constructing digital signatures from a one way function. Technical Report CSL-98, SRI Interna-
tional, October 1979.

86. Z. Le, Y. Ouyang, J. Ford, and F. Makedon. A hierarchical key-insulated signature scheme in the ca trust
model. In Information Security (ISC 2004), volume 3225 of Lecture Notes in Computer Science, page 280.

87. L. A. Levin. On the concept of a random sequence, in Russian). Doklady Akademii Nauk SSSR (Proceedings of
National Academy of Science of USSR), 5(14):1413–1416, 1973.

88. L. A. Levin. Laws of information conservation (non-growth) and aspects of the foundations of probability theory,
in Russian). Problemy Peredachi Informatsii, 3(10):206–210, 1974.

89. M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications. Springer-Verlag, 1993.
90. Liu, Chu, and Tzeng. A threshold GQ signature scheme. In International Conference on Applied Cryptography

and Network Security (ACNS), LNCS, volume 1, 2003. See also [78].
91. S. Lucks. On the security of remotely keyed encryption. In E. Biham, editor, Fast Software Encryption: 4th

International Workshop, volume 1267 of Lecture Notes in Computer Science, pages 219–229, Haifa, Israel, 20–
22 Jan. 1997. Springer-Verlag.

92. S. Lucks. Accelerated remotely keyed encryption. In L. Knudsen, editor, Fast software encryption: 6th In-
ternational Workshop, FSE’99, Rome, Italy, March 24–26, 1999: proceedings, volume 1636 of Lecture Notes
in Computer Science, pages 112–123, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 1999.
Springer-Verlag.

93. P. MacKenzie and M. Reiter. Networked cryptographic devices resilient to capture. In Proceedings of the IEEE
Symposium on Research in Security and Privacy, pages 12–25, Oakland, CA, May 2001. IEEE Computer Society,
Technical Committee on Security and Privacy, IEEE Computer Society Press.

94. P. MacKenzie and M. K. Reiter. Delegation of cryptographic servers for
capture-resilient devices. Technical Report 2001-37, DIMACS, Nov. 1 2001.
ftp://dimacs.rutgers.edu/pub/dimacs/TechnicalReports/TechReports/2001/2001-37.ps.gz.

95. M. Malkin, T. Wu, and D. Boneh. Experimenting with shared generation of RSA keys. In Proceedings of
the Symposium on Network and Distributed Systems Security (NDSS ’99), San Diego, CA, Feb. 1999. Internet
Society.

96. T. Malkin, D. Micciancio, and S. Miner. Efficient generic forward-secure signatures with an unbounded number
of time periods. In Knudsen [80].

97. T. Malkin, S. Obana, and M. Yung. The hierarchy of key evolving signatures and a characterization of proxy
signatures. In Cachin and Camenisch [29], pages 306–322.

98. J. Merkle. Multi-round passive attacks on server-aided RSA protocols. In S. Jajodia and P. Samarati, editors,
Proceedings of the 7th ACM Conference on Computer and Communications Security (CCS-00), pages 102–107,
N.Y., Nov. 1–4 2000. ACM Press.

99. R. C. Merkle. A digital signature based on a conventional encryption function. In C. Pomerance, editor,
Advances in Cryptology—CRYPTO ’87, volume 293 of Lecture Notes in Computer Science, pages 369–378.
Springer-Verlag, 1988, 16–20 Aug. 1987.

100. R. C. Merkle. A certified digital signature. In Brassard [28], pages 218–238.
101. S. Micali. A secure and efficient digital signature algorithm. Technical Report MIT/LCS/TM-501, Massachusetts

Institute of Technology, Cambridge, MA, March 1994.
102. D. Naccache, D. Pointcheval, and J. Stern. Twin signatures: an alternative to the hash-and-sign paradigm. In

P. Samarati, editor, Proceedings of the 8th ACM Conference on Computer and Communications Security, pages
20–27, Philadelphia, PA, USA, Nov. 2001. ACM Press.

103. D. Naccache, D. Pointcheval, and C. Tymen. Monotone signatures. In P. Syverson, editor, Financial Cryptog-
raphy, volume 2339 of Lecture Notes in Computer Science, pages 305–318. Springer-Verlag, 2001.

104. P. Nguyen and J. Stern. The Beguin-Quisquater server-aided RSA protocol from Crypto’95 is not secure. Lecture
Notes in Computer Science, 1514, 1998.

105. K. Ohta and T. Okamoto. A modification of the Fiat-Shamir scheme. In Goldwasser [61], pages 232–243.
106. H. Ong and C. P. Schnorr. Fast signature generation with a Fiat Shamir-like scheme. In Damg̊ard [39], pages

432–440.
107. R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In 10-th Annual ACM Symp. on Principles

of Distributed Computing, pages 51–59, 1991.
108. T. P. Pedersen. A threshold cryptosystem without a trusted party (extended abstract). In D. W. Davies, editor,

Advances in Cryptology—EUROCRYPT 91, volume 547 of Lecture Notes in Computer Science, pages 522–526.
Springer-Verlag, 8–11 Apr. 1991.

109. B. Pfitzmann and M. Waidner. Attacks on protocols for server-aided RSA computation. Lecture Notes in
Computer Science, 658, 1993.

Forward Security: Survey 27

110. B. Preneel, editor. Advances in Cryptology—EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer
Science. Springer-Verlag, 14–18 May 2000.

111. L. Reyzin and N. Reyzin. Better than BiBa: Short one-time signatures with optimal signing and verifying. In
ACISP ’02: 7th Australasian Conference on Information Security and Privacy, July 2002.

112. R. Rivest. All-or-nothing encryption and the package transform. In E. Biham, editor, Fast software encryption:
4th International Workshop, FSE ’97, Haifa, Israel, January 20–22, 1997: proceedings, volume 1267 of Lecture
Notes in Computer Science, page ??, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 1997.
Springer-Verlag. Also on http://theory.lcs.mit.edu/ rivest/fusion.ps.

113. B. Schneier and J. Kelsey. Secure audit logs to support computer forensics. ACM Trans. Inf. Syst. Secur.,
2(2):159–176, 1999.

114. Third Conference on Security in Communication Networks (SCN’02), volume 2576 of Lecture Notes in Computer
Science. Springer-Verlag, Sept. 12–13 2002.

115. Y. Sella. On the computation-storage trade-offs of hash chain traversal. In Proceedings of the Fourth Con-
ference on Financial Cryptography (FC ’03), Lecture Notes in Computer Science, Hamilton, Bermuda, 2003.
International Financial Cryptography Association (IFCA), Springer-Verlag, Berlin Germany.

116. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
117. A. Shamir. Identity-based cryptosystem and signature scheme. In G. R. Blakley and D. Chaum, editors,

Advances in Cryptology – CRYPTO ’ 84, volume 196 of Lecture Notes in Computer Science, pages 120–126.
International Association for Cryptologic Research, Springer-Verlag, Berlin Germany, 1985.

118. V. Shoup. Practical threshold signatures. In Preneel [110], pages 207–220.
119. D. X. Song. Practical forward secure group signature schemes. In Eighth ACM Conference on Computer and

Communication Security, pages 225–234. ACM, Nov. 5–8 2001.
120. D. R. Stinson. Something about all or nothing (transforms). Designs, Codes, and Cryptography, 22(2):133–138,

Mar. 2001.
121. M. Szydlo. Merkle tree traversal in log space and time. In Cachin and Camenisch [29], pages 541 – 554.
122. Tzeng and Tzeng. Robust forward-secure signature schemes with proactive security. In PKC: International

Workshop on Practice and Theory in Public Key Cryptography. LNCS, 2001.
123. W.-G. Tzeng and Z.-J. Tzeng. Robust key-evolving public key encryption schemes. Report 2001/009, Cryptology

ePrint Archive, 2001. http://eprint.iacr.org/2001/009.ps.gz.
124. D. M. Wallner, E. J. Harder, and R. C. Agee. Key management for multicast: Issues and architectures. Internet

Request for Comment RFC 2627, Internet Engineering Task Force, June 1999.
125. R. Weis, B. Bakker, and S. Lucks. Security on your hand: Secure filesystems with a “non-cryptographic”

JAVA-ring. Lecture Notes in Computer Science, 2041, 2001.
126. C. K. Wong, M. G. Gouda, and S. S. Lam. Secure group communications using key graphs. In Proceedings

of the ACM SIGCOMM ’98 conference on Applications, technologies, architectures, and protocols for computer
communication, pages 68–79, 1998. Appeared in ACM SIGCOMM Computer Communication Review, Vol. 28,
No. 4 (Oct. 1998).

127. T. Wu, M. Malkin, and D. Boneh. Building intrusion-tolerant applications. In Proceedings of the 8th USENIX
Security Symposium (SECURITY-99), pages 79–92, Berkely, CA, Aug. 23–26 1999. Usenix Association.

128. A. C. Yao. Theory and application of trapdoor functions. In 23rd Annual Symposium on Foundations of
Computer Science, pages 80–91, Chicago, Illinois, 3–5 Nov. 1982. IEEE.

129. M. Yung, editor. Advances in Cryptology—CRYPTO 2002, Lecture Notes in Computer Science. Springer-Verlag,
18–22 Aug. 2002.

