
Some Theorems on the Algorithmic Approach

to Probability Theory and Information Theory.

Leonid A. Levin

Dissertation directed by A.N. Kolmogorov, January 1971, translated by APAL in 2010.

Contents

Some de�nitions and notation . 1

1 Introduction 3

1.1 The general construction of complexity . 3

1.2 Examples of majorants . 4

1.3 Invariant functions and complexity . 5

1.4 Computable complexity majorants . 6

1.5 Decision complexity . 6

2 Measures and Processes 7

2.1 De�nitions. Equivalence of measures. 7

2.2 Semi-computable measures . 8

2.3 Universal semi-computable measure . 9

2.4 Probabilistic machines . 10

3 Information Theory 12

3.1 De�nition and basic properties . 12

3.2 Commutativity of information . 12

3.3 Entropy of arbitrary dynamic systems . 13

References 14

The dissertation uses the terms and notation in paper [6] that is attached to [Russian original of] this
text. The paper also contains �gures referred to in the text of the dissertation as well as the index.

The author is deeply grateful to his advisor A.N.Kolmogorov, to A.K. Zvonkin who helped a lot
in presenting the results, to V.N.Agafonov, Ya.M. Barzdin', R. L.Dobrushin, A.G.Dragalin,

M. I. Kanovich, A.N. Kolodiy, P.Martin-L�of, L. B.Medvedovsky, N.V. Petri, A.B. Sosinsky,

V.A.Uspensky, J. T. Schwartz, and to all participants of A.A.Markov's seminar for discussion.

Some de�nitions and notation

We consider strings in the alphabet {0, 1}, i.e., �nite sequences of zeroes and ones in a 1-1 correspondence
with natural numbers:

1

Λ ↔ 0
0 ↔ 1
1 ↔ 2

00 ↔ 3
01 ↔ 4
10 ↔ 5
11 ↔ 6

000 ↔ 7
001 ↔ 8

...
...

...

(Λ is the empty string). We do not distinguish strings and numbers and use the terms interchangeably. They
are usually denoted by lower case Latin letters. The set of all strings-numbers is denoted by S. The result
of adding (concatenating) the string y to the string x is denoted by xy. We need also to encode the ordered
pair (x, y) of strings by one string. To avoid introducing a special separator (such as a comma) let us agree
that for x = x1x2 . . . xn (xi ∈ {0, 1})

x = x1x1x2x2 . . . xnxn01. (0.1)

Then one can recover both x and y from the string xy. Denote by π1(z) and π2(z) functions such that
π1(xy) = x, π2(xy) = y. If the string z is not representable as xy then π1(z) = Λ, π2(z) = Λ.1

The length l(x) of a string x is the number of its digits; l(Λ) = 0. Obviously

l(xy) = l(x) + l(y), (0.2)

l(x) = 2l(x) + 2. (0.3)

Let d(A) be the number of elements in a set A. Obviously

d{x : l(x) = n} = 2n, (0.4)

d{x : l(x) < n} = 2n − 1. (0.5)

We also consider the space Ω of in�nite binary sequences, denoting them with lower-case Greek letters.
Ω∗ = Ω

⋃
S is the set of all �nite and in�nite sequences. The n-pre�x of ω ∈ Ω∗, denoted (ω)n, is the string

of its �rst n digits. If ω ∈ S with l(ω) ≤ n then (ω)n = ω by de�nition. An ω ∈ Ω is a characteristic sequence
for the set Sω = {n1, n2, . . . } of positive integers if ω has 1 at the places n1, n2, . . . and zeroes everywhere
else. Denote Γx the set of all sequences (from Ω or Ω∗, as follows from the context) that have pre�x x:

Γx = {ω : (ω)l(x) = x}. (0.6)

Notation x ⊂ y means Γx ⊃ Γy, that is the string x is a pre�x of y. The relation ⊂ is a partial order on
S (Figure 1).

Functions de�ned on the Cartesian product Sn = S × . . . × S (n times) are denoted by capital Latin
letters (except some standard functions). Sometimes a superscript n denoting the number of variables is
added: Fn = Fn(x1, . . . , xn). The sentence for all admissible values of variables y1, . . . , yn there exists a
constant C such that for all admissible values x1, . . . , xn

Fn+m(x1, . . . , xn; y1, . . . , ym) ≤ Gn+m(x1, . . . , xn; y1, . . . , ym) + C (0.7)

is abbreviated as follows: with parameters (y1, . . . , yn),

Fn+m(x1, . . . , xn; y1, . . . , ym) 4 Gn+m(x1, . . . , xn; y1, . . . , ym). (0.8)

1More common enumerations of pairs may violate the property (0.11) important below.

2

Figure 1: The tree of strings/integers.

Λ

0 1

00 01 10 11

000 001 010 011 100 101 110 111

0000 1111

00000 00110 11111

The relation < is de�ned similarly. F � G means both F 4 G and G 4 F hold. Obviously, the relations
4, <, � are transitive and

l(x) � log2(x) for x > 0, (0.9)

l(x) � 2l(x), (0.10)

l(xy) � l(y) (with x as a parameter). (0.11)

1 Introduction

1.1 The general construction of complexity

The topics studied here were introduced in 1964 when A.N.Kolmogorov de�ned the complexity of constructive
objects. (Similar concepts were independently considered by A.A.Markov and R.J.Solomono�.)

A.N. Kolmogorov de�nes the complexity of a string x for an algorithm A as the least length of binary
strings p encoding x, i.e., such that A(p) = x. The value so de�ned depends strongly on the choice of A.
The central result that prompted all further investigations was a theorem established by A.N. Kolmogorov
and independently (in slightly di�erent terms) by R.J. Solomono�. It states the existence of an optimal
algorithm A providing the smallest (compared to any other algorithm B) value of complexity up to an
additive constant CB (independent of x). Complexity for an arbitrary optimal A is thus su�ciently invariant
to be a fundamental characteristics of x. It found many applications, and quickly generated a rich theory
(cf. for example, a survey [6]).

In the development of this theory, several other quantities similar to complexity (though di�erent from
it) turned out to be useful. For example, A.A.Markov and D.Loveland considered the decision complexity
of binary strings, P.Martin-L�of de�ned their de�ciency of �randomness,� the present author introduced
�universal probability,� etc. At present, about ten such functions are known. The need exists for some
organization of this diversity of quantities from a uni�ed standpoint.

De�nition 1. A �nitary function is a table de�ning a function from a �nite set A ⊂ S to S. (We assume
it has value ∞ on A\S.)

De�nition 2. A volume restriction is an enumerable family V of �nitary functions such that

1. If f ≥ g and g ∈ V then f ∈ V ;

2. ∃C∀f, g∈V (C + min{f, g}) ∈ V .

We assume for simplicity that C = 1.

De�nition 3. Let V be a volume restriction. By V -majorant, we call any function F (x) such that

1. the set of points over its graph is enumerable and

2. for every �nitary function g, if g ≥ F then g ∈ V .

3

Theorem 1. For any volume restriction V , there exists a V -majorant KV (x), that is smallest (up to an
additive constant), i.e., such that KV (x) 4 L(x) for every V -majorant L(x).

Proof. For a �nite set M of pairs of numbers, we get a graph of a �nitary function by taking the lowest
point of M on each vertical line intersecting M. Let us call this function a lower boundary of M.

Let the partial recursive function U(i, t) enumerate the i-th enumerable set Ui of pairs (x, a) for every
i. Let us de�ne U ′(i, t) enumerating U ′

i ⊂ Ui for each i, but slower than U . Namely, U ′ generates the next
element only after verifying that the lower bound of the set enumerated so far belongs to V .

Obviously U ′
i is a V -majorant for each i, and no majorant is �forgotten.� Now let M be the set of

pairs situated above pairs (x, a + Ci) where C is the constant in the de�nition of volume restriction, and
(x, a) ∈ U ′

i .
Let us prove that M de�nes an (obviously optimal) V -majorant. In other words, every �nitary function

f whose graph is contained in M, belongs to the family V . By de�nition of M, f ≥ min(gi + Ci) for some
family of functions gi ∈ V , i ≤ n. This implies that f ∈ V . Indeed let hk = mini>k(gi + C(i − k)). Then
f ≥ h0, hk−1 = C + min{hk, gk} and induction on k from n down completes proving the theorem.

For any decidable volume restriction V , one can compute a common lower bound mV (x) = minf∈V f(x)
for all V -majorants. It is simpler to study di�erences KV (x) − mV (x) instead of the majorants KV (x).
These di�erences will be V ′-majorants where f ∈ V ′ ⇔ (f + mV) ∈ V . Obviously mV ′(x) = 0. We call such
V ′ �reduced.� There is no need to study non-reduced decidable V .

Theorem 2. Among reduced volume restrictions, there is the one that is most �narrow.� The universal
majorant p(x) corresponding to it will be the largest.2 This restriction is given by the condition f ∈ V ⇔∑

x 2−f(x) ≤ 1.

Proof. Clearly, V is a reduced volume restriction. If V ′ is any volume restriction and f ∈ V , then
�nitely many applications of item 2 of the de�nition of volume restrictions yield f ∈ V ′. This �extreme�
majorant p(x) turns out to be not far from the complexity K(x) of [9] (which hence is close to the limit).

Theorem 3. K(x) 4 p(x) 4 K(x) + 2 log2 K(x).

Proof. K(x) 4 p(x) by Theorem 2 (see also Theorem 4a). To prove the second inequality, we show that
any �nitary function f(x) ≥ K(x) + 2 log2 K(x) belongs to volume restriction V (from Theorem 2). Indeed,∑

x

2−f(x) =
∑

a

∑
x:K(x)=a

2−f(x) ≤
∑

a

∑
x:K(x)=a

2−K(x)−2 log2 K(x) =

=
∑

a

d{x : K(x) = a} · 1
2a · a2

.

Since d{x : K(x) = a} ≤ 2a, this ≤
∑

a
2a

2a·a2 4 1, which completes the proof.

1.2 Examples of majorants

De�nition 4. (A.N.Kolmogorov) The complexity of x with respect to a p.r. function F 1 is

KF 1(x) def=
{

minF 1(p)=x l(p)
∞, if there is no such p.

We call a word p with F 1(p) = x a code or program for F 1 to restore x.

De�nition 5. (A.N.Kolmogorov) The conditional complexity of x for known y with respect to a p.r.
function F 2(p, y) is

KF 2(x
∣∣y) def=

{
min l(p) : F 2(p, y) = x
∞, if ∀p F 2(p, y) 6= x.

2This majorant is a logarithm of the largest (up to a constant) semicomputable probability distribution on natural numbers.

4

De�nition 6. (D. Loveland, A.A.Markov)
The decision complexity of a word x with respect to a p.r. function F 2 is

KF 2(x) def=
{

min l(p) : ∀i < l(x) F 2(p, i) = xi

∞, if there is no such a p,

here xi is the i-th letter of word x.

We de�ned three quantities important in complexity theory. Let us show that all three are special cases
of the general concept of V -majorant. Then, in particular, Theorem 1 will imply the famous optimality
theorems discovery of which by A.N.
Kolmogorov and R.J.Solomono� started complexity theory.

Let V1 be the set of �nitary functions with ≤ 2a of x having f(x) < a.

Let V2 be the set of �nitary functions f(x, y) on pairs (x, y) (more precisely, on codes of such pairs) with
every a, y having ≤ 2a of x with f(x, y) < a.

Let V3 be the set of �nitary functions with ≤ 2a branches in the tree of words x with f(x) < a. It is easy
to verify that V1, V2, V3 are volume restrictions.

We call classes A and B equivalent if for every function f from one of them there is a function g 4 f
from the other.

Theorem 4. a) The class of V1-majorants is equivalent to the complexity class with respect to any algorithms.

b) The class of V2-majorants is equivalent to the conditional complexity class with respect to any algo-
rithms.

c) The class of V3-majorants is equivalent to the class of decision complexities.

Proof. We prove Theorem 4a. Theorems 4b and 4c can be proven similarly. It is easy to see that for any
A, KA(x) is a V1-majorant. Conversely, for any V1 majorant F one can enumerate all points (x, n) above its
graph and map them to di�erent p ∈ {0, 1}n, with pairs (p, x) forming the graph of an algorithm A. F ∈ V1

assures enough codes p for that. KA(x) may exceed F (x) by ≤ 1, QED.

1.3 Invariant functions and complexity

Complexity has an important property of invariance, namely

Remark 1. Under any p.r. isomorphism between two recursively enumerable sets, the complexities of their
elements di�er at most by a constant.

Besides, complexity has �informational correctness,� namely

Remark 2. There exists a computable enumeration of pairs f(x, y)=i, π(i)=x, π2(i)=y such that the com-
plexity of f(x, y) is at least the complexity of x and y up to an additive constant (true even for every
computable enumeration).

Complexity is bounded by a logarithm of its argument, i.e. contains only a very limited amount of
information about the words. But it turns out that even among functions of arbitrary nature, no �richer�
invariants exist.

Theorem 5. Every invariant informationally correct (in the above sense) function F (x) is at most K(x)
up to a multiplicative constant. The constant cannot be made additive because even changing the alphabet
changes a constant factor.

Proof. The algorithm A in KA(x) can be represented as the composition of function π1(x) and an
invertible function. Then the theorem's assumptions imply F (x) 4 F (p) when A(p) = x. It remains to show
F (p) ≤ C · l(p). This follows from constructing four isomorphisms of natural numbers, combining which we
can, in n steps, obtain every n-bit word from 0. QED.

5

1.4 Computable complexity majorants

Clearly, knowing a word x and its complexity, we can �nd e�ciently (at least, by exhaustive search) a
shortest program coding x. Moreover, knowing x and any bound S > K(x), we can �nd an S-bit program,
possibly not a shortest one. Since complexity is not computable, in practice one has to be content with its
computable majorants giving the length of an e�ectively computable code, not necessary the shortest one.
Barzdin', Petri, Kanovich showed all such majorants to be very coarse in some cases. However, we have

Theorem 6. Every �informationally correct� (in the sense of Sec. 1.3) function which is less (up to an
additive constant) than every computable complexity majorant is also less (up to an additive constant) than
the complexity itself.

Proof. Every algorithm can be represented as a composition of an invertible algorithm assuming all
values in a recursive set and function π1(x). Complexity with respect to an invertible function is just the
logarithm of its inverse and hence it is computable. The theorem follows.

1.5 Decision complexity

By many reasons, K(x) or K(x|l(x)) are not quite natural to use for studying the complexity of sequences
(rather than terminated words). Thus A.A.Markov and D. Loveland introduced KR(x), which proved to be
very fruitful. E.g.,

Remark 3. A sequence ω is computable if and only if KR((ω)n) is bounded.

Evident for KR(x), this is not true for K(x), and for K(x
∣∣l(x)) is not evident and remained an open prob-

lem for some time. An a�rmative answer was given by the author independently of Kolodiy, Loveland
(USA) and Mishin. This is implied by the following theorem relating KR(x) with K(x|l(x)).

Theorem 7. For every ω, KR((ω)n) is bounded if and only if K((ω)n|n) is.3

Proof. One direction is obvious: a computable ω has a general recursive function F 1(n) = (ω)n.
Let F 2(p, n) = F 1(n), then KF2((ω)n

∣∣n) = l(Λ) = 0 because F 2(Λ, n) = (ω)n, hence K((ω)n

∣∣n) 4 0,
K((ω)n

∣∣n) ≤ C.

Let us prove the other direction. Suppose K((ω)n

∣∣n) ≤ C. We want to establish the existence of a
procedure which, for given n, produces ωn, the n-th digit of ω. Consider all words p with length at most
C and construct a table as shown on Figure in Sec. 2.2 of [6]: at the p-th row of the n-th column we place
F 2

0 (p, n) (see (1.6) from [6]) provided it halts. The set of all words F 2
0 (p, n) in the n-th column we denote

An. Each An has at most 2C+1 words, and (ω)n ∈ An.
Let l = limn→∞ d(An). Clearly, the set U = {n : d(An) ≥ l} is recursively enumerable and in�nite.

Moreover, there are only �nitely many n with d(An) > l; the largest of such n we denote m1. Let k < 2C+1

be the number of sequences ω with K((ω)n

∣∣n) ≤ C. Let m2 be the smallest length of pre�xes distinct for
all these sequences (by the way, all columns starting from m2-th should contain at least k pre�xes of these
sequences, hence k ≤ l). Let m = max(m1,m2).4

Let U ′ be an in�nite decidable subset of U and V = U ′ ∩ {n : n > m}.
The algorithm deciding the i-th (in lexicographical order) of our sequences proceeds as follows. To �nd

its j-th digit, we select the smallest nr > j in V and start �lling in the nr-th column (with words F2(p, nr),
l(p) ≤ C). When l words are found, we stop: there are no more. Denote Bnr the set of all nr-bit words from
Anr . Then we similarly construct the set Bnr+1 and take from it all words with pre�xes from Bnr ; this set
is denoted Cnr+1 . Then, words from Bnr+2 with pre�xes from Cnr+1 form the set Cnr+2 ; Cnr+3 is the set of
words from Bnr+3 with pre�xes from Cnr+2 , and so on. We stop when the current set Cns contains exactly k
words: they all are ns-pre�xes of sequences with K((ω)n

∣∣n) ≤ C. Selecting the i-th lowest of them we take
its j-th digit; it is what is required.

3However, it was shown by Petri that there is no e�ective way to calculate a bound on KR((ω)n) from a bound on
K((ω)n|n), that is, the former can be very large.

4Our construction uses numbers l, k, m but is not e�ective, giving no procedure to �nd them. We only prove that the required
algorithm exists (an intuitionist would say: �cannot but exist�), so only need the mere existence of l, k, m.

6

2 Measures and Processes

This chapter considers deterministic and non-deterministic processes generating sequences. The central
result is introducing a universal semi-computable measure and establishing its relation with complexity. At
the end of the chapter, these results are applied to the study of capacities of probabilistic machines.

2.1 De�nitions. Equivalence of measures.

De�nition 7. Algorithmic process or simply process is a partial recursive function F mapping words into
words, and such that if F (x) is de�ned for a word x and y ⊂ x then F (y) is also de�ned and F (y) ⊂ F (x).

Let us apply a process F to all pre�xes of ω ∈ Ω while F is de�ned. It outputs pre�xes of a sequence
ρ ∈ Ω∗. 5 This ρ is the result F (ω) of applying F to ω (i.e., F maps Ω into Ω∗).

Remark 4. There exists a universal process, i.e., a partial recursive function H, such that H(i, x) is a
process for all i, and for any process F an i exists such that H(i, x) ≡ F (x). Such H is easily constructed
from a universal p.r. function. Without loss of generality we assume (and use later) H(Λ,Λ) = Λ.

Processes F and H are said to be equivalent if F (ω) = G(ω) for any ω ∈ Ω.

Remark 5. Any process has an equivalent one that is primitive recursive.

De�nition 8. We say a process F is applicable to ω if F (ω) is in�nite.

Remark 6. Any process is a continuous function on the set of sequences to which it is applicable (with the
natural topology on Ω).6

De�nition 9. A process is fast growing (fast applicable to ω) if a monotone unbounded total recursive
function Φ(n) exists such that for all x (respectively, for all pre�xes x of ω) for which F is de�ned, `(F (x)) ≥
Φ(`(x)). In this case we say the speed of growth (of the application to ω) of process F is ≥ Φ(n).

Remark 7. One can easily show that a process applicable to all ω is total recursive and fast growing.
Clearly, the reverse is also true.

De�nition 10. Let P be a probability measure over Ω. We say that process is P -regular if the set of
sequences to which it is applicable has P -measure 1.

In order to de�ne an arbitrary measure on a Borel σ-algebra of subsets of Ω, it su�ces to de�ne it on
sets Γx.

De�nition 11. A measure P on Ω is computable if there exist total recursive functions F (x, n) and G(x, n)
such that the rational number αP (x, n) = F (x,n)

G(x,n) is a 2−n-approximation of P (Γx).

Remark 8. Obviously then, αP (x, n + 1) + 2−n+1 is a 2−n-approximation of P (Γx) from above. Hence,
without loss of generality, we always assume αP (x, n) to be an upper bound, and take αP (x, n)− 2−n as a
lower bound.

Denote by L the measure L(Γx) = 2−l(x), and call it the uniform measure. It corresponds to Bernoulli
trials with probability 1/2; it is also a Lebesgue measure on the interval [0, 1]. Obviously, L is computable.

Theorem 8. 7 a) For any computable measure P and any P -regular process F the measure Q(Γy) =
P (

⋃
Γx : (F (x) ⊃ y)) (i.e., the measure with which the outputs of F are distributed) is computable.

b) For any computable measure Q there exists an L-regular process F , generating Q-distributed outputs
from L-distributed inputs. Moreover, F has an inverse G (i.e. F (G(ω)) = ω when G is applicable) applicable
to all non-recursive sequences except maybe some in intervals of Q-measure 0.

5If F ((ω)n) is de�ned, and for all m > n, F ((ω)m) coincides with F ((ω)n) or is unde�ned, then F (ω) = F ((ω)n). F (ω) = Λ
if F ((ω)n) is unde�ned or empty for all n.

6In this topology, Ω is equivalent to Cantor perfect set.
7A somehow weaker result was independently proven by Mann, [26].

7

Proof. a) We compute a 2−n-approximation (from above or below; making it an upper bound is easy)
αQ(y, n) to Q(Γx). Choose m such that P ({ω : l(F ((ω)m)) > l(y)}) > 1 − 2−(n+1) (Such an m exists as
process F is P -regular, moreover one can e�ectively �nd such an m). Take all words x∈{0, 1}m such that
y ⊂ F (x), and compute αQ(y, n) as the sum of 2−(m+n+1)-approximations to measures P (Γx) of all these x.
Then the error is αQ(y, n)−Q(Γy) ≤ 2−(n+1) + 2m · 2−(m+n+1) = 2−n (as there are < 2m of x).

b) We consider sequences ω∈Ω as reals in [0, 1] (with binary expansions ω; the cases of binary rationals,
where such expansions have ambiguity, will be specially noted). Figure 3 in [6] shows a distribution function
g that corresponds to measure Q. As is well known, the random variable g−1(ξ) is Q-distributed with ξ
uniformly distributed over [0, 1]. Our construction is based on this idea.

I. A process F ((α)n) generates Q-distributed g−1(α) from L-distributed inputs. It takes upper 2−2n-
approximations αQ(y, 2n) of Q(Γy) for each y∈{0, 1}n and outputs the longest common pre�x of those
z∈{0, 1}n for which ∑

y≤z

αQ(y, 2n) ≥ (α)n ≥ 1−2−n −
∑
y≥z

αQ(y, 2n). (2.1)

II. Due to (2.1), the intervals ∪Γz contain (for each n) g-image of α. Hence, F (α), if applicable, generates
g−1(α) (treating γ in Figure 3 of [6] as a pre-image of α ∈ [σ′, σ′′]). To prove F is L-regular su�ces to show
it being what we need.

1) Let [σ′, σ′′] correspond to a single γ with Q(γ)>0. If σ′ < α < σ′′ then once σ′ ≤ (α)n−2−n ≤
(α)n+21−n ≤ σ′′, only a single z satis�es (2.1) and so is output. Thus, F is applicable to such α, though
not always to the ends σ′, σ′′.

2) Now let α not be of such types. Then Q(∪Γz) → 0 as n →∞. Hence, if α is not of type ρ corresponding
to a measure 0 interval, then ∪Γz shrink to a point β = g−1(α); their longest common pre�x grows in�nitely.

3) A notable case of type ρ is α = g(β) with a binary rational β: its two binary expansions may form a
measure 0 interval mentioned above.

In sum, F is applicable to all sequences except some of types ρ, σ′, σ′′ of Figure 3 in [6]. This set is
clearly countable, so F is L-regular.

III. The inverse process G just computes g. It may be non-applicable only to (computable by Corollary
to Theorem 11) γ with Q(γ)>0, and β, with binary rational α = g(β). If F (α) is applicable, it computes β.
If not, and β is not of mentioned type γ, it lies on an interval [τ ′, τ ′′] of zero Q-measure. Q.E.D.

2.2 Semi-computable measures

De�nition 12. A semi-computable (Theorem 9 justi�es the term) measure is the distribution of the outputs
of an arbitrary (not necessarily regular) process on inputs distributed with a computable measure.

Remark 9. Semi-computable measures are concentrated on Ω∗ since a non-regular process can have positive
probability of �nite outputs. In this section Γx is a set of all �nite and in�nite sequences with pre�x x.

Remark 10. The distribution of outputs of any process on inputs with an arbitrary semi-computable distri-
bution is also semi-computable (as a composition of two processes is again a process). Any semi-computable
measure can be obtained from a uniform measure by some process (see Theorem 8b).

Theorem 9. A measure P is semi-computable i� total recursive functions F,G exist such that βP (x, t) =
F (x,t)
G(x,t) is a monotone non-decreasing in t function, and

lim
t→∞

βP (x, t) = P (Γx). (2.2)

This Theorem implies that the class of semi-computable measures (more accurately, of their logarithms)
is equivalent to the class of V -majorants, where V is a set of �nitary functions f for which

∑
x∈M 2−f(x) ≤ 1

for all sets M whose words are not pre�xes of each other.
Proof. Let P be a semi-computable measure. Then there exists a process F generating this measure

from L. Let it make t steps on all words y with `(y) ≤ t and, denoting the result by Ft(y) (if no results are
achieved yet then Ft(y) = Λ), set βP (x, t) = L(∪Γy : x ⊂ Ft(y)).

Inversely, suppose a measure P has a function βP (x, t) satisfying the terms of the Theorem. We wish to
construct a process F generating P from L.

8

The idea is simple: we need to partition the interval [0, 1] into disjoint subsets of measure P (Γx), and
to output x when our uniformly distributed input falls into a corresponding set. Now we describe the
construction precisely. Clearly, P (Γx) ≥ P (Γx0) + P (Γx1). Moreover, without loss of generality, we assume
βP (x, t) ≥ βP (x0, t) + βP (x1, t) for all t: each time this fails, we delay the growth of βP (x0, t) and βP (x1, t)
proportionally to restore the inequality. It is easy to construct subsets of interval [0, 1] with the following
conditions: to each pair (x, t) there corresponds a union Ix,t of a �nite number of intervals with binary
rational ends and combined length βP (x, t). Within this procedure for any words x 6= y of equal length, Ix,t1

and Iy,t2 are disjoint for all t1 and t2; for any words x ⊂ y and any t, Iy,t ⊂ Ix,t; for any t1 < t2 and any x,
Ix,t1 ⊂ Ix,t2 .

Our F (z) constructs Ix,t for all x, t such that l(x) ≤ l(z) and t ≤ l(z), and outputs a longest x such that
z ∈ Ix,t for some t. Obviously, such x is unique as the sets corresponding to divergent x are disjoint, and
x′ ⊂ x′′ for z′ ⊂ z′′.

2.3 Universal semi-computable measure

Theorem 10. There exists a semi-computable measure R that is universal, i.e., such that for any semi-
computable measure Q, there is a constant C such that C ·R(Γx) ≥ Q(Γx) for all x.8

Proof. By a remark in Section 2.1, a universal process H(i, x) exists. Obviously, F (z) def= H(π1(z), π2(z))
is a process. Applied to uniformly distributed sequences, it generates the desired measure. Indeed, let a
process G(x) (= H(i, x) for some i and all x) transform some set of sequences into Γx. Then F (x) transforms
into Γx these same sequences with the added pre�x i � (maybe some others as well). Thus, the measure of

Γx cannot decrease by a factor > C2`(i) (≈ i2).

Remark 11. This result does not extend to computable measures: no measure is universal among all com-
putable measures. This is one of the reasons for introducing the notion of a semi-computable measure.

The measure R, being (within a constant factor) �larger� than any other measure, is concentrated on the
widest subset of Ω∗.

The following issue is considered in mathematical statistics: �nd out what distribution P can randomly
generate a given sequence ω. If we know nothing a priori about ω, then the only (= the weakest) statement
we can make about it is that it can be generated under distribution R. In this sense, R re�ects our intuition
about �prior probability� [discussed, on a somewhat di�erent technical basis, by R.Solomono� in [30]]. The
following is of interest:

a) For a constant C, the probability (under measure R) of having a 1 after n zeros is > 1
n ·

1
C log2 n

.

b) For every constant C, at most 1
C fraction of n on any interval [0, N], has the probability (under R) of

a 1 falling after n zeros to exceed 1
n · C log2 n.

Thus, R(0n1) is typically around 1
n .

9

The proof easily follows from Theorem 11, taking into account that the complexity KR(0n1) does not
exceed log2 n + c, and for the majority of these words this complexity is almost equal to log2 n.

One can see an analogy between constructing the complexity KR and the universal semi-computable
measure. It turns out these two quantities also have a quantitative connection:

Theorem 11. |KR(x)− (− log2 R(Γx))| 4 2 log2 KR(x).

Proof. Let KR(x) = i, thus, for some p∈{0, 1}i and all n ≤ `(x), we have G2
0(p, n) = xn (here G2

0 is
from Theorem 2.1 of [6]). Then, one can easily construct a process transforming each sequence with pre�x
`(p) p into a sequence with pre�x x: this process �rst separates the pre�x `(p), recovers `(p), �reads� p, and

8I.e., Q is absolutely continuous with respect to R with the Radon-Nikodym derivative bounded by C from above.
9Note that this statement is true only for the universal (prior) probability. For example, if we know that the Sun has risen

for 10,000 years, this does not mean that the probability of the Sun not rising tomorrow is approximately equal to 1/3,650,000.
This statement would be true if the above fact was the only information that we have about the Sun.

9

sequentially generates G2
0(p, n) for n = 1, 2, From a uniformly distributed input, this generates sequences

in Γx with probability ≥ 2−`(`(p) p). Thus, by Theorem 10, R(Γx) ≥ c · 2−`(`(p) p), hence

− log2 R(Γx) 4 `
(
`(p) p

)
= `(p) + 2`(`(p)) = i + 2`(i) = KR(x) + 2`(KR(x)).

Now, assume R(Γx) = q. Let us denote `(q) = b− log2 qc. To estimate the complexity KR(x), we
reconstruct every symbol of x from the triple `(q), k, i (i.e., from `(q) k i), where k∈{0, 1} and i ≤ 2`(q)+1.
Our algorithm works as follows: based on `(q), it builds the tree (see Fig. 4 in [6]) of all words y with
R(Γy) > 2−`(q)−1. For this, we compute βR(y, t) for more and more values t and y, and add y to the tree
when we get βR(y, t) > 2−`(q)−1, for some t.

The word x belongs to this tree. We keep only �maximal� words, i.e., words that are not pre�xes of other
words in the current tree. Clearly, the number of such �maximal� words will neither decrease nor exceed
2`(q)+1. Let A (see Fig. 4 from [6]) be the word from which the last branching from the word x occurs; after
this, x continues without branching. To �nd x, it su�ces to have the �rst digit k of x extending A, and the
number i of maximal words at the moment when the tree being constructed branches at A (incrementing
the number of maximal words to i). As i ≤ 2`(q)+1, hence `(i) ≤ `(q) + 1. Thus,

KR(x) 4 `
(
`(q) k i

)
� 2`(`(q)) + `(i) 4 2`(`(q)) + `(q) �

− log2 R(Γx) + 2 log2(− log2 R(Γx)).

But, as proven earlier, 2 log2(− log2 R(Γx)) 4 2 log2[KR(x) + 2`(KR(x))] 4 2 log2 KR(x), so KR(x) 4
− log2 R(Γx) + 2 log2 KR(x). The theorem is proved.

Remark 12. It is worth mentioning that the usual measure-theoretic arguments assure that each measure P
(not necessarily semi-computable) is almost fully concentrated on the set of all sequences ω for which ∃c∀n
P ((ω)n) ≥ c ·R((ω)n).

Similarly, for R-almost all sequences, the inverse inequality also holds. If P is absolutely continuous with
respect to R, then the inverse inequality also holds for P -almost all sequences. This implies a statement
similar to Theorem 11 for an arbitrary semi-computable measure P and pre�xes of P -almost any sequence
(of course, the constants may vary with sequences).

As a corollary, we get the well-known de Leeuw-Moore-Shapiro-Shannon theorem about probabilistic
machines:

Corollary. A sequence is computable if and only if some semi-computable measure (hence, also the universal
measure) is positive on it.

Proof. By Theorem 11, the measure of all pre�xes is larger than a positive number if and only if their
�complexity of solution� KR is uniformly bounded.

2.4 Probabilistic machines

The above Shannon et al. result is sometimes interpreted as the impossibility for probabilistic machines
to solve problems that are unsolvable deterministically. However, not all problems require constructing a
speci�c unique object; some allow many solutions, being satis�ed by producing any of them10. This class
clearly has problems that are unsolvable by deterministic machines but solvable if a machine can use a
random number generator. An example of such problems is: to generate an uncomputable sequence.

We say a problem of constructing a sequence with a property Π is solvable on a probabilistic machine if
the universal measure R of the set of all such sequences is positive. The following theorem shows that such
problems can indeed be solved on machines with an access to random number generators; moreover, they
can be solved with an arbitrary given reliability, and quite e�ciently, i.e., with small number of calls to the
random number generator. We call functions f(n) and g(n) asymptotically equal, denoted f(n) ∼ g(n), if

f(n)
log2 f(n) �

g(n)
log2 g(n) ; in this section, inequalities 4, < are understood in a similar �asymptotic� way.

10The corresponding concept of a mass problem was formulated in [31].

10

Theorem 12. Let A ⊂ Ω with R(A) > 0. Then, for every ε > 0, there exists a fast-growing process F (i.e.,
one with `(F (x)) < `(x)) transforming L-distributed sequences into sequences in A with probability > 1− ε
.11

Clearly, one cannot solve, e.g., the problem of obtaining a very complex sequence by using a process
which grows faster, since the process cannot increase the complexity of words. If sequences from the desired
set A have small complexity, then short programs can generate pre�xes of these sequences. However, one
can imagine that some A could make such programs so special that short random inputs cannot be used
instead, forcing the slow growth of processes solving A. Interestingly, �fast� processes are also possible in all
such cases.

Theorem 13. Let g be a monotonic total recursive function. Then the problem of generating a sequence
from a set A is solvable by a random process that grows as g(n′) or faster (n′ ∼ n), if and only if there exists
a set12 B ⊂ A such that R(B) > 0 and all ω ∈ B, have KR((ω)g(n)) 4 n.

Proof. The previous paragraph makes one direction obvious; we prove the other. Let B⊂A, R(B)>0
and KR((ω)g(n)) < n + c log n for all ω∈B,n.

We �rst construct a semi-computable measure P with P (B)>0 and integer P ((ω)g(n))2tn , for tn =
n+ dO(1)+(c+4) log ne. For that, we round down R((ω)g(n)) (cut proportionally to satisfy P (x0)+P (x1) ≤
P (x)). Each rounding cuts the measure by < 2−tn . But KR(x) < n+ c log n for g(n)-pre�xes of ω∈B, hence
by Theorem 11, R(x) = 2−n/O(nc+2). Thus, each rounding cuts O(1)/n2 fraction of their measure, leaving
R((ω)g(n))/O(1) for ω∈B, and P (B) > 0.

We then construct a process generating P as in the proof of Theorem 9, but select sets corresponding to
pairs (x, t) (where `(x) = g(n)) to consist of intervals of length multiple of 2−tn . Clearly this process is the
desired one.

Let us describe another result about solvability of standard algorithmic problems on probabilistic ma-
chines. The �rst interesting result of this type was proven by Janis Barzdin'. An in�nite set of natural
numbers is called immune if it does not contain any in�nite recursively enumerable subset.

Proposition. (Barzdin') There exists an immune set for which the problem of constructing a characteristic
sequence of its in�nite subset is solvable by a probabilistic machine.

The class of all immune sets contains an interesting subclass of hyper-immune sets. For these sets, the
following result holds.

Theorem 14. 13 For any hyper-immune set M , the problem of constructing a characteristic sequence of its
in�nite subset cannot be solved by a probabilistic machine.

Proof. Assume a machine can solve this problem with a positive probability. Then, by Theorem 12,
a machine can solve it with probability p > 2/3. Construct a function f(i) computed by the following
algorithm: run this machine on the tree of sequences until it generates, on measure ≥ 2

3 , some sequences
that have at least i ones; return the maximum of the positions of these ones. Clearly, this function dominates
the direct enumeration of M . Q.E.D.

Petri subsequently showed that if M is not �xed, the problem of generating the sequence characteristic
for a hyper-immune set is solvable on probabilistic machines. However, the following holds:

Theorem 15. Let us call a set strongly hyper-immune if its direct enumeration dominates, from some place
on, each computable function. The problem of generating sequences characteristic for strongly hyper-immune
sets is not solvable on probabilistic machines.

The proof is similar to the one above.

11Note that �rst, the construction of this process is not always e�cient and second, as shown by N. Petri, this process
sometimes cannot be replaced by a table-based one (i.e., by a total recursive fast-growing process).

12This set B can always be selected to be closed.
13Also proven by V.N. Agafonov independently of the author.

11

3 Information Theory

3.1 De�nition and basic properties

The complexity K(x) denotes, intuitively, the amount of information required for restoring a text x. The
conditional complexity K(x|y) is the amount of information needed in addition to the information in text
y, for restoring text x. The di�erence between these two can be naturally called the amount of information
in y about x.

De�nition 13. (A.N.Kolmogorov)

The amount of information in y about x is I(y : x) def= K(x)−K(x|y).

Remark 13. (a) I(x : y) < 0; (b) I(x : x) � K(x).

Proof. (a) Let F 2(p, x) = F 1
0 (p). Then, if F 1

0 (p0) = y and K(y) = `(p0), from F 2(p0, x) = y, we
conclude: K(y|x) 4 KF2(y|x) = K(y).

(b) Let F 2(p, x) = x. Then F 2(Λ, x) = x, and consequently K(x|x) 4 KF 2(x|x) = `(Λ) = 0. It remains
to observe that I(x : x) = K(x)−K(x|x).

3.2 Commutativity of information

Shannon's classical de�nition of the amount of mutual information in two random variables is commutative,
that is, J(ξ : η) = J(η : ξ). For Kolmogorov's concept of the amount of information in one text about another,
such a precise equality, in general, will not hold.

Example. Clearly, some words x of each length have K(x|`(x)) ≥ `(x)−1.
By Theorem 4(b), there exist arbitrarily large values of l with K(l) ≥ `(l)− 1. For so chosen pairs x, l=`(x),

I(x : l) = K(l)−K(l|x) < `(l),
I(l : x) = K(x)−K(x|l) 4 l − l = 0.

Thus, in some cases, I(x : y) and I(y : x) di�er by order of the logarithm of the complexities of x, y.
But A.N. Kolmogorov and L. Levin showed independently in 1967 that this is the largest possible
order of magnitude for this di�erence. So, disregarding the smaller order quantities, I(x, y) is commutative.
Speci�cally, A.N. Kolmogorov and L. Levin proved the following:

Theorem 16. 14

(a) |I(x : y)− I(y : x)| ≤ 12`(K(xy));

(b) |I(x : y)− [K(x) + K(y)−K(xy)]| ≤ 12`(K(xy)).

Proof. (a) We prove the inequality in one direction:

I(x : y) < I(y : x)− 12`(K(xy)). (3.1)

The other follows by swapping x and y.
We construct two auxiliary functions. Let the partial recursive function F 4(n, b, c, x) enumerate without

repetitions the words y such that K(y) ≤ b, K(x|y) ≤ c. The existence of such a function follows from [6,
Theorem 0.4] (taking into account the remark). Let j (an uncomputable function of x, b, c) be the number of
such words y. Function F 4 halts for all n ≤ j and only for them. Hence the predicate Π(b, c, d, x), asserting
that j de�ned above is ≥ 2d, is equivalent to halting of F 4(2d, b, c, x) and so is partial recursive. Similarly,
there exists a function G4(m, b, c, d) enumerating without repetitions all words x with Π(b, c, d, x). Denote
by i (an uncomputable function of b, c, d) the number of such x. Obviously G4(m, b, c, d) halts for all m ≤ i
and only for them.

14With more careful estimates, the bound can be tightened. For instance, 12 can be replaced by 5+ε. It is not known whether
it can be brought down to 1.

12

We now start the proof. Let a = K(x), b = K(y), c = K(x|y). Then

I(y : x) = a− c.

With j, d=`(j) and i so de�ned, clearly i · 2d does not exceed the number of pairs (x′, y′) with K(y′) ≤ b,
K(x′|y′) ≤ c. That number is ≤ 2b+c+2, so

`(i) + `(j) 4 b + c. (3.2)

Since F 4(n, b, c, x) returns y for some n ≤ j,

K(y|x) 4 `(bcn) 4 2`(b) + 2`(c) + `(j). (3.3)

Furthermore, since G4(m, b, c, d) returns x for d = `(j) and some m ≤ i,

a = K(x) 4 `(bcdm) 4 2`(b) + 2`(c) + 2`(d) + `(i). (3.4)

Inequalities (3.2)�(3.4) and the `(K(xy)) bound on each of `(b), `(c), `(d) imply K(y|x) 4 b + c − a +
12`(K(xy)). Claim (a) follows.

(b) Clearly, K(xxy) 4 K(xy). So, by claim (a), |I(xy : x)− I(x : xy)| 4 12`(K(xy)), that is, |K(xy)−
K(xy|x)−K(x) + K(x|xy)| 4 12`(K(xy)), or

|[K(xy)−K(x)−K(y)] + K(y)−K(xy|x) + K(x|xy)| 4 12`(K(xy)).

Now claim (b) follows by noting that K(x|xy) � 0, K(xy|x) � K(y|x).

3.3 Entropy of arbitrary dynamic systems (stationary stochastic processes) and
algorithmic amount of information

A.N.Kolmogorov showed that for processes of independent trials the algorithmic amount of information
is asymptotically equal to the classical (probabilistic) one (see [6, Theorem 5.3]). In view of Theorem 16(b),
this follows from the connection between algorithmic complexity and probabilistic entropy.

J.T.Schwartz posed the question of whether a similar fact holds for an arbitrary ergodic stationary
process (that is, a process for which entropy is de�ned). We give a positive answer to this question in the
following theorem.

Theorem 17. Let {ξi}, i = 1, 2, . . . , be an arbitrary ergodic stationary stochastic process with values ξi ∈ Ω,
let P be the measure on its trajectories u ∈ ΩN that de�nes this process, and let H be its entropy. Denote
by αi

n(ω) the word (ξ1)n(ξ2)n · · · (ξi)n. Then for P -almost all u

lim
n→∞

lim
i→∞

K(αi
n(ω))
i

= H.

Clearly, the ergodicity requirement here is not essential. For non-ergodic processes, instead of their
average entropy H, one would take �entropy at a point�: a function measurable with respect to the σ-algebra
of invariant sets, averaging on any such set to its average entropy on the set. This easily follows from
�decomposition� of arbitrary stationary stochastic processes into ergodic ones.

Returning to the ergodic case, it su�ces to prove the theorem for processes with discrete values (ξ)n.
The general case will follow by taking the limit on n.

Consider the set of 2n-ary sequences u � trajectories of our stochastic process. De�ned on this set is a
transformation T shifting the time by 1 and a T -invariant ergodic measure describing the process. Within k
time steps, 2n·k di�erent sequences Xk

i of length k can appear. Clearly, for every ε, a k exists such that

−
∑

i<2n·k

P (Xk
i) log2 P (Xk

i) ≤ k · (H + ε).

Since T k, as well as T , preserves the measure P , it follows from the Central Ergodic Theorem (C.E.T.) that
for P -almost every sequence there exists, for every l, a limit of the frequency of the values of m for which
the sequence Tmk+l(ω) begins with Xk

i .

13

Take any such ω and denote these limits for it by Pi,l. From C.E.T. for T and the ergodicity of T , it

follows that almost always
∑

l≤k
Pi,l

k = P (Xk
i). Hence we have here k probability distributions on the �nite

set Xk
i and their average with an entropy ≤ k(H + ε).

By convexity of entropy, at least one of the summand distributions has entropy ≤ K(H +ε). So for our u,
an l exists such that the entropy of the frequencies Pi,l with which the number m satis�es the condition
�Tmk+l(ω) begins with Xk

i � is ≤ K(H + ε). By a theorem of Kolmogorov (see [6, Theorem 5.1]), it follows
that the �unit complexity� of almost all u is ≤ H, which gives a �half� of our theorem.

To prove the unit complexity to be ≥ H, we use some results from Section 2. Consider the collection Xk
i

of values of some realization ω of the process over the �rst k time steps and compare four quantities: the

entropy H; the logarithm of the probability of that collection divided by k, that is,
log P (Xk

i)
k ; the logarithm of

its a priori probability (see the de�nition of R) divided by k also, that is,
log R(Xk

i)
k ; and the unit complexity

K(Xk
i)

k . Their limits as k → ∞ are equal. For the �rst two quantities, this follows from the Shannon-
McMillan-Breiman theorem; for the last two, from Theorem 11 of this dissertation; and for the two in the
middle, from the last remark of Section 2.3. The theorem is proved.

References

[1] Agafonov V.N., Ob algoritmakh, chastote i sluchajnosti, Ph.D. thesis, Novosibirsk, 1970.

[2] Barzdin', Ja. M., Slozhnost' i chastotnoe reshenie nekotorykh
algoritmicheski nerazreshimykh massovykh problem, preprint, 1970.

[3] Barzdin', Ja. M. Slozhnost' programm, raspoznayushchikh prinadlezhnost' natural'nykh chisel, ne pre-
vyshayushchikh n, rekursivno perechislimomu mnozhestvu (Complexity of programs which recognize
whether natural numbers not exceeding n belong to a recursively enumerable set). Dokl. Akad. Nauk
SSSR 182, 1968, 1249�1252.

[4] Barzdin', Ja. M. O chastotnom reshenii algoritmicheski nerazreshimykh massovykh problem (Frequency
solution of algorithmically unsolvable queueing problems). Dokl. Akad. Nauk SSSR 191, 1970, 967�970.

[5] Barzdin', Ja. M. O vychislimosti na veroyatnostnykh mashinakh (Computability on probabilistic ma-
chines). Dokl. Akad. Nauk SSSR 189, 1969, 699�702.

[6] Zvonkin, A. K.; Levin, L. A. Slozhnost' konechnykh ob'ektov i obosnovanie ponyatij informatsii i slucha-
jnosti s pomoshch'yu teorii algoritmov (The complexity of �nite objects and the development of the
concepts of information and randomness by means of the theory of algorithms). Uspehi Mat. Nauk 25
(1970), no. 6(156), 85�127; translated in Russ. Math. Surv. 25:6, 83-124 (1970).

[7] Kanovich, M. I. O slozhnosti perechisleniya i razresheniya predikatov (The complexity of the enumera-
tion and solvability of predicates). Dokl. Akad. Nauk SSSR 190, 1970, 23�26.

[8] Kanovich, M. I., Petri N.V. Nekotorye teoremy o slozhnosti normal'nykh algorifmov i vychislenij (Certain
theorems on the complexity of normal algorithms and computations) Dokl. Akad. Nauk SSSR 184, 1969,
1275�1276.

[9] Kolmogorov, A. N. Tri podkhoda k opredeleniyu ponyatiya �kolichestvo informatsii� (Three approaches
to the de�nition of the concept �quantity of information�). Problemy Peredachi Informacii 1, 1965 vyp.
1, 3�11.

[10] Kolmogorov, A. N. K logicheskim osnovam teopii informatsii i teorii veroyatnostej (On the logical
foundations of information theory and probability theory). Problemy peredachi informatsii 5:3 (1969),
3-7; translated in Problems of Information Transmission 5 (1969), no. 3, 1�4.

[11] Kanovich, M. I. O slozhnosti razresheniya algoritmov (The complexity of the reduction of algorithms)
Dokl. Akad. Nauk SSSR 186, 1969, 1008�1009.

14

[12] Kolmogorov, A. N. Neskol'ko teorem ob algoritmicheskoj entropii i algoritmicheskom kolichestve infor-
matsii (A few theorems on algorithmic entropy and algorithmic precision of information). Uspekhi Mat.
Nauk 23:(2), 1968, 201.

[13] de Leeuw, K.; Moore, E. F.; Shannon, C. E.; Shapiro, N. Computability by probabilistic machines.
Automata studies, pp. 183�212. Annals of mathematics studies, no. 34. Princeton University Press,
Princeton, N. J., 1956.

[14] G.B.Marandzhan, O nekotorykh svojstvakh asimptoticheski optimal'nykh rekursivnykh funktsij, Izv.
Arm. AN SSR 4:1 (1969), 3-22.

[15] Markov, A. A. O normal'nykh algorifmakh, svyazannykh s vychisleniem bulevskikh funktsij i predikatov
(Normal algorithms connected with computation of Boolean functions) Izv. Akad. Nauk SSSR Ser. Mat.
31, 1967, 161�208.

[16] Markov, A. A. O normal'nykh algorifmakh, vychislyayushchikh bulevy funktsii (Normal algorithms
which compute Boolean functions) Dokl. Akad. Nauk SSSR 157, 1964, 262�264.

[17] Martin-L�of P., O kolebanii slozhnosti beskonechnykh dvoichnykh posledovatel'nostej, preprint, 1970

[18] Martin-L�of P., O ponyatii sluchajnoj posledovatel'nosti, Teoriya veroyatn. i ee primen. 11 (1966), 198�
200.

[19] Petri, N. V. Slozhnost' algorifmov i vremya ikh raboty (Complexity of algorithms and their operation
time) Dokl. Akad. Nauk SSSR 186, 1969, 30�31.

[20] Petri, N. V. Ob algorifmakh, svyazannykh s predikatami i Bulevymi funktsiyami (The algorithms which
are connected with predicates and with Boolean functions) Dokl. Akad. Nauk SSSR 185, 1969, 37�39.

[21] Trakhtenbrot B.A., Slozhnost' algoritmov i vychislenij, Novosibirsk, 1967.

[22] Yablonskij S.V., Ob algoritmicheskikh trudnostyakh sinteza minimal'nykh skhem, Problemy kibernetiki,
2, 1959, 75�121.

[23] Chaitin G.J., On the length of programs for computing �nite binary sequences, I, II, Journ. Assoc.
Comp. Math. 13 (1966), 547-570; 15 (1968).

[24] Kolmogoro� A., Logical basis for information theory and probability theory, IEEE Trans., IT-14 (1968),
662-664.

[25] Loveland D.W., A variant of the Kolmogorov notion of complexity, preprint, 1970.

[26] Mann I. Probabilistic recursive functions, J. Symbolic Logic 31 (1966), No. 4, 698.

[27] Martin-L�of P., The de�nition of random sequences, Information and Control 9 (1966), 602-619.

[28] Martin-L�of P., Algorithms and random sequences, University of Erlangen, Germany, 1966.

[29] Schnorr R.K., Eine neue Charakterisierung der Zuf�alligkeit von Folgen, Preprint, 1970.

[30] Solomono� R.J., A formal theory of inductive inference, Information and Control 7:1 (1964), 1-22.

[31] Medvedev Yu. T., Degrees of di�culty of mass problems, Doklady Akademii Nauk SSSR, N.S., 1955,
104, 501�504.

[32] Levin, Leonid A., Several Theorems on an Algorithmic Approach to Probability Theory and Information
Theory, Extended abstract of PhD dissertation, in Russian, 9/12/1971. Publ.: Math. Inst. of the USSR
Academy of Science, Siberian Division.

15

	Some definitions and notation
	Introduction
	The general construction of complexity
	Examples of majorants
	Invariant functions and complexity
	Computable complexity majorants
	Decision complexity

	Measures and Processes
	Definitions. Equivalence of measures.
	Semi-computable measures
	Universal semi-computable measure
	Probabilistic machines

	Information Theory
	Definition and basic properties
	Commutativity of information
	Entropy of arbitrary dynamic systems

	References

