
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, APRIL 2015 1

VINEA: An Architecture for Virtual Network
Embedding Policy Programmability

Flavio Esposito, Member, IEEE, Ibrahim Matta, Senior Member, IEEE, and Yuefeng Wang, Member, IEEE,

Abstract—Network virtualization has enabled new business models by allowing infrastructure providers to lease or share their physical
network. A fundamental management problem that cloud providers face to support customized virtual network (VN) services is the
virtual network embedding. This requires solving the (NP-hard) problem of matching constrained virtual networks onto the physical
network.
In this paper we present VINEA, a policy-based virtual network embedding architecture, and its system implementation. VINEA
leverages our previous results on VN embedding optimality and convergence guarantees, and it is based on a network utility
maximization approach that separates policies (i.e., high-level goals) from underlying embedding mechanisms: resource discovery,
virtual network mapping, and allocation on the physical infrastructure. We show how VINEA can subsume existing embedding
approaches, and how it can be used to design novel solutions that adapt to different scenarios, by merely instantiating different
policies. We describe the VINEA architecture, as well as our object model: our VINO protocol and the API to program the embedding
policies; we then analyze key representative tradeoffs among novel and existing VN embedding policy configurations, via event-driven
simulations, and with our prototype implementation. Among our findings, our evaluation shows how, in contrast to existing solutions,
simultaneously embedding nodes and links may lead to lower providers’ revenue. We release our implementation on a testbed that
uses a Linux system architecture to reserve virtual node and link capacities. Our prototype can be also used to augment existing
open-source “Networking as a Service” architectures such as OpenStack Neutron, that currently lacks a VN embedding protocol, and
as a policy-programmable solution to the “slice stitching” problem within wide-area virtual network testbeds.

Index Terms—Network Virtualization, Virtual Network Embedding, Network Management, Cloud Computing.

F

1 INTRODUCTION

NETWORK virtualization enables multiple virtual instances
to co-exist on a common physical network infrastructure.

This paradigm has opened up new business models, enabling
infrastructure providers to lease or share their physical resources,
or to virtualize in-network hardware or middleboxes to build a
so called Virtual Network Function (NFV). Each virtual network
(VN) is customizable in support of a wide range of customers
and applications. One of the fundamental management proto-
cols, not yet standardized, that cloud providers need to run to
support such services is the VN embedding protocol. 1 Running
such protocol requires solving the NP-hard problem of matching
constrained VNs on the physical network (overlay), owned by
a single provider, or by multiple federated providers. The VN
embedding problem, defined in § 3, consists of three interacting
(and customizable, or policy-programmable) mechanisms: (i) re-
source discovery, where the space of available, potentially hosting
or physical (or overlay) resources2, is sampled or exhaustively
searched; (ii) virtual network mapping, where a subset of the

• F. Esposito is a member of the Advanced Technology Group at Exegy, Inc.
St.Louis, MO. E-mail: fesposito@exegy.com

• I. Matta and Y. Wang are with the Computer Science Dept. at Boston
University, Boston, MA E-mail: {matta,wyf}@cs.bu.edu.

Manuscript received April 3, 2015; revised XXXXXX.
1. We call Service Providers (SPs) the players that do not own the infras-

tructure but provide a cloud-based service. Infrastructure Providers (InPs) own
instead the physical network resources. A cloud provider can be a lessor
or a lessee of the network infrastructure, and can act as both service and
infrastructure provider.

2. hosting nodes is a broader and more general term than physical node. A
hosting node can be itself a virtual node in a recursive embedding. A service
provider may itself virtualize the rented physical resources.

available physical resources is chosen as a candidate to potentially
host the requested VN, and (iii) allocation, where each virtual
node is bound to at least a physical node, and each virtual link to
at least one loop-free physical path.

Existing embedding solutions focus on specific policies under
various settings. Policies (i.e., high-level goals) parametrize any
of the three embedding mechanisms. For example, some central-
ized heuristics, devised for small enterprise physical networks,
embed virtual nodes and virtual links separately, to adapt the load
on the physical network resources with minimal virtual machine
or path migrations [1]. Other solutions show how the physical
network utilization may increase by simultaneously embedding
virtual nodes and links [2]. Distributed solutions for embedding
wider-area virtual networks also exist [3], [4], [5], [6]. Some of
them outsource the embedding to a centralized Service Provider
(SP) that coordinates the process by either splitting the VN request
and sending it to a subset of Infrastructure Providers (InPs) [3],
or by collecting resource availability from InPs and later offering
an embedding [6]. Outsourcing the embedding has the advantage
of relieving InPs from the entire management complexity, but
a single centralized authority is non-geographically distributed,
and could be untrusted, or a single point of failure. On the other
hand, centralized solutions are more suitable for smaller enterprise
physical networks, where controllability is more important than
scalability.

Both centralized and distributed existing solutions are also
limited to a single distribution model — the type and amount
of information propagated for the embedding — and are often
restricted to a subset of the three embedding mechanisms. For
example, some do not consider the discovery phase [1], [7],
assuming full knowledge of the physical resource availability,

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, APRIL 2015 2

while others leave the final allocation decision to the virtual
network requester, that chooses the hosting physical resources
among a set of candidates [8]. Other solutions attempt to adapt
the embedding with policy instantiations, but their policy set is
limited to the notion of provider utility [4], or merely consider
node embedding policies, forcing infrastructure providers to relay
embedding virtual paths, and only consider synchronous (unreal-
istic) scenarios [5].
Our Contributions. In summary, due to the wide range of VN
applications, providers’ goals and allocation models (e.g., best
effort or SLA), a system that provides theoretical guarantees on
the embedding optimality [5], tackles the complete VN embed-
ding with its three phases (of resource discovery, VN mapping,
and allocation), and is able to adapt via policy programmability
to different service and infrastructure provider’s goals, to our
knowledge, does not yet exist. 3 To this aim, we present VIrtual
Network Embedding Architecture (VINEA), an architecture that
via our object model and API allows VN embedding policy-
programmability, and we make the following contributions:

We discuss some related work (§ 2) and define the VN
embedding problem using optimization theory as a network utility
maximization problem, as well as identify its system’s design
challenges (§ 3.) Then we introduce our VINEA architecture, built
as a distributed application facility on top of the first prototype of
our RINA architecture [9], [10], [11]. In particular, we overview
the main mechanisms required to embed a VN (§ 4), and we
describe its components, as well as the object model —a baseline
for a VN embedding protocol specification— that together with
our novel VINO embedding protocol messages is used to maintain
the states across the service and infrastructure provider processes.
The VINO protocol is agnostic to the differences between inter
and intra provider embeddings (§ 5).

Using our object model, as well as classical decomposition
theory, we demonstrate with some examples how the VINEA
embedding policies can be instantiated to accommodate novel
embedding policies, as well as to subsume existing embedding
approaches (§ 6 and § 7.) Such novel and existing embedding
policies are compared analytically (§ 7.1), with an event-driven
simulation campaign, and with our single-host VN embedding
testbed containing our prototype (described in § 8.) Our prototype
includes support for all three VN embedding mechanisms, for both
service and infrastructure providers. To foster research on VN em-
bedding policy programmability, we release our implementation
within a testbed [12]. Our base system is a host running an Ubuntu
distribution of Linux (version 12.04.) Each InP process includes
the modules of our prototype, and an implementation of the virtual
network allocation mechanism. Each emulated virtual node is a
user-level process that has its own virtual Ethernet interface(s),
created and installed with ip link add/set, and it is attached
to an Open vSwitch [13] running in kernel mode to switch packets
across virtual interfaces (§ 8.1).

To obtain our simulation results, we used a dataset of 8 years
of real VN embedding requests to the Emulab testbed. In our eval-
uation, both with simulation and with the prototype, we compare
a representative set of the possible tradeoffs when attempting to
embed multiple VNs of different size and topologies on physical

3. Choosing the “right” policies when instantiating the VN embedding
mechanisms is a challenge; a set of policies that fits every scenario probably
does not exist. Our architecture helps provide insights into what VN embedding
policy is best to use for each scenario, by permitting policy programmability
and hence VN embedding tradeoff analysis.

networks that follow different connectivity models (Barabasi-
Albert and Waxman), and use primal or dual decomposition
techniques [14]. Among our findings, we show how, in contrast
to existing VN embedding solutions: (i) partitioning a VN request
not only increases the signaling overhead, but may decrease the
embedding efficiency, implying a lower cloud providers’ revenue,
and (ii) simultaneous virtual node and link embedding may limit
the number of allocated VNs (§ 9).

Our VINEA testbed, to our knowledge the first VN embedding
testbed, can be used to experiment with novel embedding policies,
or to run network applications within an emulated environment
such as mininet [15]. VINEA can also be used as a flexible solu-
tion to the “stitching problem”, i.e., the problem of providing a
virtual network testbed service using resources from federated and
geographically distributed resource aggregates [16]. 4 Moreover,
our prototype can augment existing open-source “Networking as a
Service” solutions such as OpenStack Neutron [18], that currently
lacks a VN embedding protocol.

2 RELATED WORK
Network Policy Programmability. The rapid growth of cloud
service markets has fostered significant efforts toward a standard-
ization of protocols to manage networks of virtual machines. The
flexibility that network virtualization introduced has enabled net-
work managers to program policies for a wide set of mechanisms.
Two examples are the CloudStack [19] and the OpenStack [20]
initiatives. Those architectures involve storage, and computation,
not only a network virtualization components. By using such
architectures, users can customize their VNs, but providers cannot
express VN embedding policy programmability as in our VINO
object model. As in OpenStack Neutron [18], we also have an
API to create and manage virtual networks (objects): we can
create (embed), update, and delete VNs, but our prototype does
not yet support subnet listing or filtering operations. However,
in Neutron, a VN cannot be easily embedded on top of other
VNs (recursive embedding.) A popular approach that allows the
instantiation of the forwarding mechanisms by customized policies
is OpenFlow [21], where a protocol regulates the injection of
(high-level) rules into switches, thanks to a centralized controller.
Other recent approaches have demonstrated the importance of
policy instantiation for other mechanisms, e.g., introducing a
middleware to reprogram routing and forwarding policies in
software-defined networks [22], [23], or even when the network
is not virtualized, for transport [24] and routing protocols [25],
[26], in both wireless [25] and wired [26] networks. Similar to
all these approaches, VINEA’s design focus is on the separation
between mechanisms and policies. Our prototype also supports
OpenFlow, but VINEA enables SPs and InPs to specify policies
for the VN embedding mechanism, while OpenFlow and all other
network management approaches operate after a (virtual) network
has been mapped. Other virtualization-based network architectures
have been prototyped, for a single [27], [28] or for multiple co-
operating InPs, with [28] or without [27] virtual link performance
guarantees. VINEA focuses on the architecture of virtual network
embedding, and also provides guarantees, but on convergence
time, i.e., embedding response time, and embedding optimality.

4. We use the terms virtual network (VN) and slice to mean two different
things: a slice is the implementation object which represents the VN but also
other states: user credential, the VN’s owner, etc [17]. In the literature, these
two terms are often confused. For example, a slice is also used to indicate a
virtual network isomorphic to the underlying physical network.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, APRIL 2015 3

Although our system is built in support of such guarantees, the
theoretical results are not a contribution of this paper, and are
detailed in [5], [29].
Virtual Network Embedding Solutions. Despite the lack of a
supporting implementation, approaches that allow InPs to collec-
tively embed a VN already exist [3], [4], [6], [8], [30]; some of
them focus on the desirable property of letting InPs use their own
utility [4], while others rely on a virtual resource auction [5], [8].
Prototypes for the VN embedding problem have been proposed
as well, but without support for policy programmability, both in
cloud computing [31], and for wide-area testbed applications [32],
for entire VNs [32], or limited to virtual switches [31]. With our
VINEA prototype, we demonstrate in a real setting not only how
InPs can choose their own embedding utility as in [4], but we study
the tradeoff of a wider range of virtual node and link embedding
solutions, e.g., the impact of the VN request partitioning, which
is hardwired in existing approaches. Moreover, to the best of our
knowledge, we release the first VN embedding testbed.

3 THE VIRTUAL NETWORK EMBEDDING PROBLEM
3.1 Network Utility Maximization
Given a virtual network H = (VH , EH , CH) and a physical
network G = (VG, EG, CG), where V is a set of nodes, E is
a set of links, and each node or link e 2 V [E is associated
with a capacity constraint C(e) 5, a virtual network embedding
is the problem of: (i) discovering at least VH virtual instances
of some physical node(s), and EH loop-free physical hosting
paths, (ii) finding at least one mapping of H onto a subset
of G, such that each virtual node is mapped onto at least one
physical node, and each virtual link is mapped onto at least a loop-
free physical path p, and (iii) assigning (or binding) one of the
mappings to the physical resources, while maximizing some utility
or minimizing a cost function. 6 The mapping function M can
be decomposed into two functions: virtual node mapping (MN)
and virtual link mapping (ML) where MN : VH ! VG is
the virtual node mapping and ML : EH ! P is the virtual
link mapping, and P denotes the set of all loop-free physical
paths in G. M is called a valid mapping if all constraints of
the request H are satisfied, and for each lH = (sH , rH) 2 EH ,
we have ML(l

H
) = (MN (sH), . . . ,MN (rH)). Note how the

definition is valid for VN embedding over a single provider, or
across multiple federated providers, i.e., it abstracts away the
difference between intra- and inter-domain VN embeddings. Such
differences may be captured by VINEA enforcing different VN
embedding policies.

Multiple valid mappings of H over G may exist; each physical
node i has a utility function U i. We are interested in finding in
a distributed or centralized fashion the embedding solution that
maximizes the sum of the utilities of all providers

P
i2VG

Ui, e.g.,
by letting InPs instantiate policies according to their goals and run
our protocol. A natural objective for an embedding algorithm is to
maximize some notion of revenue. The revenue can be defined in
various ways according to economic models. We use the notion of
a higher economic benefit (reward) from accepting a VN or virtual

5. Each C(e) could be a vector (C1(e), . . . , C�(e)) containing different
types of constraints, e.g. physical geo-location, delay, or jitter.

6. Even though it is feasible to assign a virtual node onto multiple physical
nodes, and a virtual link onto multiple loop-free physical paths, the man-
agement complexity increases: packets flowing on different physical paths
may arrive out of order, and virtual threads and memory would need to be
pre-configured to be assigned onto specific physical CPUs, increasing context
switching time.

request that requires more resources (e.g., bandwidth, CPU) from
the physical network.

The utility function is a policy, and it can be chosen inde-
pendently by each physical node. Different physical nodes may
assign different weights to the components forming the utility,
such as bandwidth and CPU. In [5] we show how, regardless of the
choice of the utility Ui 8i, our embedding mechanisms guarantee
the distributed embedding convergence, as well as performance,
assuming a submodular and monotonic utility.

3.2 Design Challenges

In this section we describe the VN embedding problem as a
general network utility maximization problem. Previous models
have used optimization theory to capture different objectives and
constraints of the VN embedding problem (see e.g. [2], [3].) Our
model captures all three mechanisms of the VN embedding prob-
lem: resource discovery, virtual network mapping, and allocation.
We begin the section by defining such mechanisms and describing
some of the challenges associated with designing a distributed VN
embedding solution.

Resource discovery is the process of monitoring the state of the
substrate (physical or overlay) resources using sensors and other
measurement processes. The monitored states include processor
loads, memory usage, network performance data, etc. The major
challenge in designing a resource discovery system is presented
by the different VN’s arrival rates and durations that the cloud
provider might need to support: the lifetime of a VN can range
from a few seconds (in the case of cluster-on-demand services)
to several months (in the case of a VN hosting a GENI [16]
experiment looking for new adopters to opt-in.) In wide-area
testbed applications, VNs are provided in a best-effort manner,
and the inter-arrival time between VN requests and the lifetime
of a VN are typically much longer than the embedding time,
so designers may assume complete knowledge of the network
state, and ignore the overhead of resource discovery and the
VN embedding time. On the other hand, in applications with
higher churns, e.g., cluster-on-demand such as financial modeling,
anomaly analysis, or heavy image processing, where Service Level
Agreements (SLAs) require short response time, it is desirable
to reduce the VN embedding time, and employ limited resource
discovery to reduce overhead.

Virtual network mapping is the step that matches VN requests
with the available resources, and selects some subset of the
resources that can potentially host the virtual network. Due to
the combination of node and link constraints, this is the most
complex of the virtual network embedding tasks. The problem
is NP-hard [33]. These constraints include intra-node constraints
(e.g., desired physical location, processor speed, storage capacity,
type of network connectivity), as well as inter-node constraints
(e.g., VN topology).

Designing a VN mapping algorithm is challenging. Within a
small enterprise physical network for example, embedding virtual
nodes and virtual links separately may be preferable to adapt to
the physical network load with minimal virtual machine or path
migrations [1]. If the goal is instead to increase physical network
utilization, virtual network mapping solutions that simultaneously
embed virtual nodes and links may be preferable [2], [34]. The
heuristic used to partition the VN, that is the input of the VN
mapping algorithm, changes the space of solutions, the embedding
time, or both [29].

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, APRIL 2015 4

Allocation involves assigning (binding) one set of all physical
(or overlay) resources among all those that match the VN query,
to the VN. If the resource allocation step fails, the matching step
should be reinvoked. The allocation step can be a single shot
process, or it can be repeated periodically to either assign or
reassign different VN partitions, acquiring additional resources
for a partial VN that has already been embedded (allocated).

The design challenges of VN embedding are both architec-
tural, i.e., who should make the binding decisions, and algo-
rithmic, i.e., how should the binding occur. A centralized third
party provider can be in charge of orchestrating the binding
process collecting information by (a subset of) multiple infras-
tructure providers [1], [3], [4], [6], or the decision can be fully
distributed [5], [8], [30], using a broker [35], an auction mech-
anism [8], First Come First Serve [36], or maximizing some
notion of utility, of a single service provider [1] or of a set of
infrastructure providers [5].

In summary, the design space of a VN embedding solution is
large and unexplored, and many interesting solutions and tradeoff
decisions are involved in this critical cloud resource allocation
problem.

The design challenges are exacerbated by the interaction
among the three mechanisms (phases.) The VN embedding prob-
lem is a closed feedback system, where the three tasks are solved
repeatedly; the solution at any given iteration affects the space of
feasible solutions in the next iteration: the resource discoverer(s)
return(s) a subset of the available resources to the VN mapper(s.)
Subsequently, a list of candidate mappings are passed to the
allocator(s), that decide(s) which physical (or overlay) resources
are going to be assigned to each VN. After a successful binding,
the allocator processes communicate with the resource discovery
processes, so that future discovery operations are aware of the
unavailable resources. This feedback-loop is necessary but not
sufficient to guarantee optimal solutions: resources that were dis-
covered and mapped may become outdated during the allocation
due to network failures or state changes.

3.3 Modeling Virtual Network Embedding
We model the VN embedding problem with a network utility max-
imization problem. In particular, we assume that Pareto optimality
is sought among physical nodes, possibly belonging to different
infrastructure or cloud providers. We maximize

P
i Ui, where Ui

is a general utility function, measured on each hosting node i.
Such function could depend on one, or all the VN embedding
phases. In this paper we assume that Ui does not depend on the
availability (and mapping) of other hosting nodes.

In our model we assume that a VN request j contains �j virtual
nodes, and j virtual links. We model the result of the discovery
mechanism with nP

ij and pkj , equal to one if the hosting node
i, and physical loop-free path k, respectively, are available, and
zero otherwise. We limit the overhead of the discovery of physical
nodes and paths by AN (constraint 1a) and AP (constraint 1b),
respectively. An element is available if a discovery operation is
able to find it, given a set of protocol parameters, e.g., find
all loop-free paths within a given deadline, or find as many
available physical nodes as possible within a given number of
hops. Similarly, we model the VN mapping mechanism with other
two binary variables, nV

ij and lkj , equal to one if a virtual instance
of physical node i and physical loop-free path k, respectively, are
assigned to the VN request j, and zero otherwise. Constraints (1i)
and (1j) ensure that each VN request cannot be considered for

allocation unless all virtual nodes and all virtual links requested
have been mapped (nV

ij = 1 and lkj = 1).
Constraints (1a) and (1b) refer to the discovery, constraints

(1c) and (1d) refer to the VN mapping, while (1g) and (1h)
are the standard set packing problem constraints, and refer to the
allocation, given a physical node capacity Cn

i , and the capacity of
each loop-free physical path Cl

k. The VN embedding can be hence
modeled as in Problem 1. Constraints (1e� 1f) and (1i� 1j) are
called complicating constraints, as they complicate the problem
binding the three mechanisms together; without those constraints,
each of the VN embedding mechanism could be solved separately
from the others, e.g., by a different architecture component. The
existential constraints (1k) could be relaxed in the interval [0, 1];
in this case, the discovery variables could represent the fraction
of available resources, while the mapping and allocation variables
could model partial assignments; it is feasible to virtualize a node
on multiple servers, and a link on multiple loop-free physical
paths [1].

maximize

NpX

i=1

Ui(n
P
ij , pkj , n

V
ij , lkj , yj)

subject to

X

i2Np

X

j2J

nP
ij AN (1a)

X

k2P

X

j2J

pkj AP (1b)

X

i2Np

nV
ij = �j 8j (1c)

X

k2P
lkj = j 8j (1d)

nV
ij nP

ij 8i 8j (1e)
lkj pkj 8k 8j (1f)
X

j2J

nV
ijyj Cn

i 8i (1g)

X

j2J

lkjyj Cl
k 8k (1h)

yj
1
�j

X

i2Np

nV
ij 8j (1i)

yj
1
 j

X

k2P
lkj 8j (1j)

yj , n
P
ij , pkj , n

V
ij , lkj ,2 {0, 1} 8 i, j, k (1k)

AN , AP , �j , j > 0 (1l)

4 VINEA SYSTEM OVERVIEW

In this section we describe the main operations performed by
VINEA to embed a VN, i.e., to solve Problem (1): we first
bootstrap an overlay of InP processes that are responsible for
allocating resources over the underlying physical network. Such
processes participate in a (centralized or) distributed, consensus-
based, VN mapping protocol, and then run a final phase of
resource reservation (allocation).
InP Overlay Support. Each VINEA node can be instantiated as
SP or InP. Each InP process is authenticated into an overlay with
a private addressing scheme to later host VN requests. These InP
processes will manage the physical network infrastructure. The
VINEA overlay does not have to be overlaid over TCP/IP but

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, APRIL 2015 5

its implementation has a shim layer that adapts to any underlay
addresses including IP.

In particular, a Network Management System (NMS) process
enrolls the new VINEA nodes into the private overlay. The
enrollment procedure consists of an authentication (with username
and password) and a policy exchange. Examples of such policies,
whose scope is limited to the InP overlay, include routing update
frequency, or addresses of neighbor InP processes, including a
set of SPs that may publish VN requests. Once the enrollment
procedure is complete, the NMS starts monitoring the availability
of each enrolled VINEA node. If the VINEA node is instantiated
as an InP, it may also subscribe to at least one SP using a
publish/subscribe mechanism.
Asynchronous VN Embedding Protocol. Once the InP overlay
is bootstrapped, an SP encodes a VN request into a Slice
object, and publishes it so that the set of subscriber InP processes
can run our embedding protocol. Then the VN mapping service
starts. The VINEA embedding mechanism is asynchronous, and
can be instantiated to run the virtual node embedding phase
and the virtual link embedding phases sequentially, as in [1],
or simultaneously (in one shot) as in [2], in a centralized or
distributed fashion. Each InP process independently assigns utility
values on a single, or on multiple virtual resources (virtual nodes,
virtual paths, or both), depending on the policies (see § 6), trying to
maximize its private utility function (a policy of each InP process.)
After assigning values on the virtual resources, InP processes
exchange such values to run a max-consensus [37] protocol for
a winner determination: assuming sequential mapping of virtual
nodes followed by virtual links, the InP process i with the highest
(maximum) utility Uij hosts virtual node j. Virtual links are then
set up on loop-free physical paths obtained using a k-shortest
path algorithm [38]. InP processes also exchange their utility
creation times to resolve conflicts when messages arrive out of
order (Figure 1c.) Appendix A contains the conflict resolution
rules for the asynchronous agreement phase. 7

Policies and Allocation. Our object model allows policy pro-
grammability for both virtual node and link embedding policies.
Together with the VN constraints, an SP publishes a set of embed-
ding policies, that are piggybacked by InP processes with the first
utility message. SPs also have their own policies, e.g., they may
partition the VN request before releasing it, to distribute the load
across the InPs, or to obtain different embedding solutions from
competing InPs as in [3], [8]. When the SP receives a positive
embedding response from one InP, the allocator service interface is
used to start the allocation phase. VINEA also supports multiple
simultaneous embeddings, by assigning to each VN request an
identifier, unique within the scope of the physical network overlay.

5 ARCHITECTURE AND OBJECT MODEL
The core idea behind VINEA is to support a VIrtual Network
Object-based (VINO) embedding protocol to let physical nodes
independently assign utility values on virtual nodes and links,
using a private utility function, and then run a max-consensus
protocol for a (centralized or distributed) assignment of the virtual
resources. In this section, we first describe the main VINEA

7. Even though VINEA relies on the underlying transport protocol for
reliable communications, the max-consensus distributed auction is resilient
to non-Byzantine failures [37]. Physical node or link failures are equivalent to
bids that were never made, hence they do not affect the protocol convergence
to the highest bid. The design and implementation of alternative more robust
protocols that would also guarantee distributed consensus of a VN embedding
in the presence of Byzantine failures are left for future research.

architecture components and the object model, and later we give
examples of embedding policies that can possibly be instantiated
using our API.

5.1 Architecture Components and Object Model

The VINEA’s architecture is designed to support the three mech-
anisms of the VN embedding problem via an object model. The
object model is composed by (i) a set of VN Objects, (ii) an
interface to access such object’s attributes locally, and (iii) a set
of VINO protocol messages, to remotely operate on the states
(set of attributes) necessary to embed a VN. Such states are
stored into a data structure called Slice Information Base (SIB.)
Similarly to the Management Information Base [39], or to a
Routing Information Base (RIB) defined in every router, our SIB
is a partially replicated distributed object database that contains
the union of all managed objects within a Slice (VN) to embed.
Via a broker (or SIB Daemon), VINEA processes handle the
inter-process communication generated by publish and subscribe
requests from both SP and InP processes participating in a VN
embedding (see § 7 for some API usage examples).

Each VINEA process can be instantiated as an SP (generating
and partitioning VN requests), or as an InP, to handle the three
VN embedding mechanisms: (i) resource discovery, (ii) virtual
network mapping, i.e., a utility generation component, as well as
an algorithm to reach (distributed) consensus on the VN mapping,
and (iii) allocation, handling the final binding between virtual and
physical resources. Every VINEA process also has an interface to
a Network Management System component for monitoring, e.g.,
to ping the neighbor physical nodes, and control operations, e.g. to
terminate an existing VN, and for authenticating VINEA processes
into the private physical network overlay (Figure 2a).

5.2 The VINO Embedding Protocol

Each physical node i, where i 2 VG, uses its private utility
function Ui 2 R|VH |

+ to assign a value on a set of virtual nodes,
knowing that it could be the winner of a subset of the VN request,
and stores such values in a vector bi 2 R|VH |

+ . Each entry bij 2 bi

is a non-negative number representing the highest value of utility
known so far on virtual node j 2 VH . 8 Also, physical nodes store
the identifiers of the virtual nodes on which they attempt their
hosting in a list (bundle vector) mi 2 V Ti

H , where Ti is a policy
— the target number of virtual nodes mappable on i. Each physical
node exchanges then the utility values with its neighbors, updates
an assignment vector ai 2 V

|VH |
G with the latest information on

the current assignment of all virtual nodes, and applies a max-
consensus algorithm [37] to determine the hosting physical nodes.

The winner hosting nodes communicate the mapping to the SP
which, if possible, releases the next VN(s) or the next slice (or VN)
partition, if any (see Figure 2b for the structure of the main VINO
protocol message.) The way the VN is partitioned is a policy of
our embedding mechanism. The mechanism iterates over multiple
bidding and consensus phases simultanously and asynchronously
(the bidding phase of a virtual resource can start without having

8. Note that a sequence of virtual nodes represent a virtual path, and
so the protocol permits utility assignments also on virtual nodes and links
simultaneously, not merely on virtual nodes.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, APRIL 2015 6

PN A

PN B

PN C

PN D

PN E

PN A

PN B

vSwA

vSwB

vSwE

vH1

vH2

vH3 vH4 vH5

PN D

vSwD

vH9 vH8
vH7

PN E

vH11

vH10

PN C

vSwA vH6

OVS Controller

(b)(a) (c)

Node Bidding

Node Embedding

Path
Exists

Complete
Assignment

Reject VN

No
Yes

No

Yes

Yes
Node

Agreement

Release Next VN Partition

No

Link Embedding

VN1
VN2
VN3

Fig. 1. VINEA System Overview: (a) Each dashed line type represents an embedded VN. Resulting VINEA configuration: for each physical node
(PN) process hosting a virtual node there is a virtual switch (vSw) and at least a virtual host (vH) attached to it. We also attach an Open Virtual
Switch (OVS) Openflow controller to each virtual switch, to manage the forwarding mechanism after the VN has been embedded. (b) InP overlay
with three embedded virtual networks. (c) VN Embedding workflow: physical nodes use a distributed consensus-based auction to agree on who is
hosting each virtual resource: the consensus is reached on the maximum bid on each virtual node.

VINEA Node

VN Mapping
Service
Utility

Agreement

VN Allocator
Service

Node Allocator

Flow Allocator

Resource Discovery
Service

SIB

VN Generator

VN Partitioning

VINO
Message
 Parser

Pub/Sub

Registration Discovery

Network
Management

 System
Monitoring

Identity
Manager

Infrastructure Provider Mechanisms

Service Provider
Mechanisms

SIB
Daemon

(a)

32 bits

Slice ID

Slice Request

AllocationPolicy Assigment a
Utility b TimeStamps t

Bundle m

Header

...

...

(b)

Fig. 2. (a) VINEA main architecture components: each node can be
instantiated as a service provider or an infrastructure provider. (b) A
VINO protocol packet: physical nodes piggyback a VN partition object
(Slice request) together with the embedding policies, and information
useful to attempt the (distributed) max-consensus embedding (§ 5.2).

to wait for the consensus reached on previous resources under
bidding). 9

6 VINEA POLICIES PROGRAMMABILITY

VINEA’s design is centered on flexibility, i.e., the ability to create
customizable VN embedding algorithms so as to meet desired
goals by merely programming a few policies. We summarize a
representative set of the policies and we show examples of how the
VINEA management objects can be instantiated to satisfy novel
and existing embedding approaches. In particular, we start with
a set of decomposition policies in § 6.1, and then move to other,
more specific set in § 6.2. Finally, we discuss how such language
can be used to come up with novel (§ 7), or subsume existing
(§ 7.1), VN embedding solutions.

Note that the VINO protocol still converges if InP processes
use different policies, but it is not guaranteed that the Pareto
optimal VN embedding will be reached.

9. In this paper our focus is on the VINEA system design, implementation,
object model and policy programmability tradeoff analysis capabilities. The
details of the asynchronous VN embedding algorithm that VINEA supports
are in [29], while its algorithmic guarantees, both on performance and
convergence, are described in [5], where an earlier synchronous version of the
algorithm is described. To achieve distributed asynchronous state consistency,
the deconfliction rules were about tripled.

6.1 Decomposition Policies

Due to the rich structure of problem (1), many different de-
compositions are possible. By supporting decomposition policy
programmability, the VINEA object model can be used as a
design and software engineering tradeoff mechanism to evaluate
different virtual network embedding solutions. Each alternative
decomposition leads to a different virtual network embedding dis-
tributed algorithm, with potentially different desirable properties.
The choice of the adequate decomposition method and distributed
algorithm for a particular problem depends on the infrastructure
providers’ goals, and on the offered service or application. The
idea of decomposing problem (1) is to convert it into equivalent
formulations, where a master problem interacts with a set of sub-
problems. Decomposition techniques can be classified into primal
and dual. Primal decompositions are based on decomposing the
original primal problem (1), while dual decomposition methods
are based on decomposing its dual. In a primal decomposition,
the master problem allocates the existing resources by directly
assigning to each subproblem the amount of resources that it can
use. Dual decomposition methods instead correspond to a resource
allocation via pricing, i.e., the master problem sets the resource
price for all the subproblems, that independently decide if they
should host the virtual resources or not, based on such prices.

Primal decompositions are applicable to problem (1) by an it-
erative partitioning of the decision variables into multiple subsets.
Each partition set is optimized separately, while the remaining
variables are fixed. For example, we could first optimize the set
of virtual node variables nV

ij in a node embedding phase, fixing
the virtual link variables lkj , and then optimize the virtual links in
a path embedding phase, given the optimal value of the variables
nV
ij , obtained from the node embedding phase, as done in [1], [5].

Alternatively, a distributed VN embedding algorithm could simul-
taneously optimize both virtual node and virtual link embedding
for subsequent VN partitions, e.g., sorting first the partitions by
the highest requested virtual node and virtual link capacity, as
in [30]. Primal decompositions can also be applied with respect
to the three VN embedding mechanisms. For example, by fixing
the allocation variables, the embedding problem can be solved
by optimizing the discovery and VN mapping first as in [4],
or by optimizing the discovery variables nP

ij and pkj first, and

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, APRIL 2015 7

Master Problem
(Service Provider)

Release next VN Partition

Infrastructure Provider 1
Embedding VN Partition

Infrastructure Provider n Lagrangian
and

Subgradient
Exchange

Possible further
(e.g. Dual)

 Decomposition

(1) Master Policies
(2) Variables to Optimize (6) Optimized

 Variables

Decomposed Subproblem
Infrastructure Provider(s)

Solve Decomposition

(3) Decomposition Policies
(4) Variables to Optimize

(5) Optimized
 Variables

Embedding VN Partition

VN Request

Fig. 3. Different instantiations of virtual network embedding decomposi-
tion policies result in different embedding solutions. The service provider
instantiates a problem formulation according to its policies (1), and picks
an objective function U (2). The infrastructure provider processes solve
the decomposed subproblems, possibly further decomposing them (3-
4). Finally, the optimal embedding variables are returned to the service
provider (5-6), that eventually releases the next VN.

then simultaneously the mapping and allocation variables later as
in [36].

Dual decomposition approaches are based on decomposing the
Lagrangian function formed by augmenting the master problem
with the relaxed constraints. Also in this case, it is possible
to obtain different decompositions by relaxing different sets of
constraints, hence obtaining different distributed VN embedding
algorithms. For example, by relaxing constraints (1i) and (1j), we
can model solutions that separate the VN mapping and allocation
phases, such as [35], [40]. Regardless of the number of constraints
that are relaxed, dual decompositions are different than primal in
the amount of required parallel computation (all the subproblems
could be solved in parallel), and the amount of message passing
between one phase and the other of the iterative method. The dual
master problem communicates to each subproblem the shadow
prices, i.e., the Lagrangian multipliers, then each of the subprob-
lems (sequentially or in parallel) is solved, and the optimal value
is returned, together with the subgradients. It is also possible to
devise VN embedding solutions in which both primal and dual
decompositions are used.

In general, a service provider can instantiate a set of policies
at the master problem, after receiving a VN embedding request,
dictating the order in which the variables need to be optimized
and on which VN partition. The subproblems resulting from the
decomposition can also instantiate other sets of decomposition
policies, to decide which variables are to be optimized next,
in which order, or even further decomposing the subproblems
(Figure 3).

6.2 Other VINEA Embedding Policies
Aside from the decomposition policies, infrastructure providers
may use our object model to instantiate other policies supported
by the VINEA architecture. In this section we overview the other
policies, supported by our system implementation.

A straightforward example of policy is (i) the (normalized)
utility function U that provider processes use to attempt a virtual
resource mapping. We have seen from related work, e.g., [6] [3],
how embedding protocols may require SPs to split the VN re-
quest. 10 VINEA can express this requirement by instantiating

10. The VN partitioning problem has been shown to be NP-hard, e.g, in [3]
and it is outside the scope of this paper.

(ii) the VN partitioning policy, enforcing a limit on the length of
the utility vector bi, so that physical nodes may host only a given
partition of the VN request.

Each InP process (for either an inter- or an intra-provider
embedding) can also instantiate a (iii) load profiling policy, to
enforce a load target on its physical nodes (and links) by config-
uring a limit on its target allocatable capacity. In our evaluation
section we show how, by merely instantiating different thresholds
on different physical hosting nodes, an InP can impose a target
profile load vector T, for the purpose of balancing the load on the
physical resources.
Another policy is the (iv) privacy mode of the vector ai, that
is, a vector that keeps track of the identities of the current hosts
of the VN during an embedding process; ai may assume two
forms: least and most informative. Setting the privacy policy
to its least informative form requires the SP to orchestrate the
virtual link embedding, since SP would be the only entity with
knowledge of the InP nodes that won the virtual nodes, similar to
the embedding approaches envisioned in [3], [6], while a privacy
policy set to its most informative form enables a fully distributed
embedding as in [5], [30]. Some of the VINEA policies are also
extracted from the link embedding mechanism. We observe that
all virtual link embedding schemes have two commonalities: (1)
the physical path information known at each physical node, and
(2) the algorithm for determining the best physical paths that host
a virtual link. Two examples of such policy instantiations are the
number of available paths for any source-destination, e.g., k in a
k-shortest path algorithm [38] for virtual path splitting, as shown
in [1], and the selection of physical path(s) over which a virtual
link is mapped, e.g., the shortest, the least loaded, or the least used
over the past n VN requests.

7 VINEA POLICY PROGRAMMABILITY
The usability of a (VN embedding) protocol should be driven by
its efficiency (ability to embed as many VN requests as possible),
as well as by its flexibility, namely, its applicability to a wide range
of scenarios accommodating both VN users and providers’ goals.
To prevent ossification and to foster agile deployment [41], a
protocol should also adapt to evolving requirements, with minimal
implementation efforts. To demonstrate VINEA’s flexibility, in
this subsection we show examples of a few object instantiations
(policies) that either adapt to different requirements, or subsume
existing VN embedding solutions.11

In VINEA, physical nodes asynchronously exchange with
their logical neighbors their utility values on virtual nodes, and
optionally piggyback the VN (slice) partition to be embedded.
These information are collected in a VINO object, which using
the Google Protocol Buffers [42] abstract syntax notation, is
represented as follows:
message VINO {

required int32 version
required int32 sliceID
optional Slice sliceRequest
optional char allocationPolicy
repeated assignment a
repeated utility b
repeated int32 m
repeated ForgingTime timeStamp
}

11. The current VINEA prototype only supports static policy configurations.
An interesting open question is to use learning algorithms to adapt (re-embed
with a different policy configuration) the virtual network based on network
measurements, e.g., current CPU usage or load on a given virtual path.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, APRIL 2015 8

The first three attributes of the VINO object are used to identify
the version of the VINO protocol, the VN (or slice) identifier,
and its requested constraints, such as requested CPU capacity or
geolocation. The definition of a Slice object contains all the VN
identifiers and constraints —it is straightforward and we omit it for
lack of space. Note that a Slice object can also accommodate
physical network location constraints. This means that VINEA
can be used to embed partial VNs as well where the rest of the
VN has already been embedded. The interested reader can find
a full version of the object model and a definition of all objects
in our technical report [29]. The allocationPolicy is used
to invoke preset embedding behaviors on physical nodes, and it
can be used to extend the protocol in support of customized VN
embedding policy configurations (see below for examples). The
last four VINO object attributes, repeated for each virtual node
whose embedding needs to be found, are used by the agreement
mechanism of the mapping protocol. The assignment attribute
contains information on the current assignment of virtual nodes to
physical nodes (see below.) The utility attribute (whose syntax
is defined later in this section) contains a vector of numeric values
bi that specifies the utility that physical node i has on the virtual
nodes. The bundle vector mi contains the identities of the virtual
nodes currently hosted by physical node i. The timeStamp
contains the generation times of the latest known utility values, and
is used together with the utility values to asynchronously resolve
conflicts in the max-consensus agreement phase.
SAD policy configuration. Let us consider an inter-provider em-
bedding scenario in which (1) InPs wish to reveal the least possible
information to other InPs, (2) they are interested in the quickest
possible response time for a VN request, and (3) they are interested
in balancing the load on their physical nodes. To accommodate
these goals, we set in the configuration file the privacy policy to
its least informative form, Privacy = least, the VN partition
policy to 2, partitionSize = 2 so that a VN is rejected
as soon as the smallest VN partition (one of the two virtual
nodes or their adjacent virtual link) is not allocatable, and the
load profiling policy to one, bVectorLength = 1, so that the
embedding decision is on a single item (virtual node) per released
VN partition. Finally, we set the utility policy to be the physical
node residual capacity nodeUtility = res_cap.12 As we
are forcing physical nodes to embed a single virtual node per
round, we refer in the rest of the paper to this policy configuration
as Single Allocation for Distributed embedding (SAD).
Remark. In this policy configuration, each virtual node will be
embedded on the physical node with the highest residual capacity,
hence greedily balancing the load on the physical network (over-
lay).

Setting the privacy policy to the least informative form
practically means that InPs use only the assigned optional
attribute of the assignment VINO object, without revealing
the InP identity, i.e. leaving (the identity of the hosting physical
node) hostingPnodeName attribute unused. Setting the VN
partitioning policy practically means that as many utility objects
will be exchanged to embed virtual nodes as specified by the
partitioning policy. For example, in the case of the SAD con-
figuration, the SP would piggyback together with its VN request
a partitioningPolicy attribute value set to 2, so that each
physical node sets (and sends) at most two utility objects, one for

12. All these object attributes are intuitive and their detailed definition is in
our technical report [29].

each virtual node:
message utility {

required int32 vNodeId
optional double utilityValue

}

Together with the partitoningPolicy attribute, the SP
also piggybacks with its VN request a loadProfiling object,
whose attributes include the identity of each physical node, and
an integer value representing the limit on the number of admis-
sible hosting virtual nodes and outgoing virtual links. 13 The
assignment object is hence:

message assignment {
required int32 vNodeId
optional char hostingPnodeName
optional bool assigned

}

MAD policy configuration. Let us now consider an (intra or inter-
provider) scenario in which: (1) embedding VNs with the smallest
embedding time is more desirable than hiding information from
other physical nodes, and (2) infrastructure (or service) providers
prefer collocating, i.e., packing virtual nodes on physical nodes
to save energy (or renting costs as in a collocation game [44].)
To this end, an SP does not partition the VN request so that each
physical node has an offline knowledge of the entire VN request
(as opposed to the SAD policy configuration, which requires
releasing the VN partitions in an online fashion.) Moreover, SP
sets the privacy policy to its most informative form, so that the
max-consensus is run simultaneously on both the utility vector
and on the assignment vector, that stores the identities of the
physical nodes currently winning the virtual nodes. As we are
enabling physical nodes to host multiple virtual nodes per em-
bedding round 14, we refer in the rest of the paper to this policy
configuration as Multiple Allocation for Distributed embedding
(MAD).
PAD policy configuration. In the previous two policy configu-
rations, the embedding is solely on virtual nodes. Virtual links
are later embedded (using a k-shortest path [38] algorithm) once
InPs agree on the identities of the hosting physical nodes. This
approach has the advantage of a faster embedding response when
an embedding is not possible, but the resulting embedding may
have adjacent virtual nodes hosted on non-adjacent physical nodes.
This may be a problem as in a distributed VN embedding scenario,
similar to the case of Border Gateway Protocol (BGP), interme-
diate providers may or may not agree to relay traffic flowing on
virtual links. The VINEA policies can be instantiated to require
InPs to attempt embeddings only on virtual nodes such that they
do not act as relays for virtual links for which they are not
hosting any of its ends. In the rest of the paper we refer to this
policy configuration as Path Allocation for Distributed embedding
(PAD).
Remark. Under PAD InPs embed simultaneously nodes and links.
The policies are set as in the MAD configuration, plus one
additional constraint: a physical node i merely sets its utility for

13. Second price auctions on a single good are known to have the strong
property of being truthful in dominant strategies [43], i.e., the auction
maximizes the revenue of the bidders who do not have incentives to lie about
their true (utility) valuation of each virtual node. In our settings however,
truthful strategies may not work as there is uncertainty on whether more VNs,
or even more virtual nodes in the same VN, are to be assigned in the future;
bidders may have incentives to preserve resources for stronger future bids. We
leave the investigation of pricing mechanisms for a VN embedding protocol as
an interesting open question.

14. A round is an asynchronous bidding and agreement phase on at least one
virtual resource.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, APRIL 2015 9

virtual node j, bij = 0 if the current winner of virtual nodes
adjacent to j is not i itself, or it is not a physical node adjacent to
i, namely, at most one physical hop away.

7.1 VINEA Policies Can Subsume Existing Solutions
In this subsection we show with two representative examples
how VINEA can subsume existing VN embedding approaches.
To our knowledge, the first distributed VN embedding algorithm
was presented in [30]. We call it hub-and-spoke, as the solution
attempts to iteratively embed the residual hub-and-spoke virtual
topologies of a VN: first the SP releases a VN partition composed
of the hub virtual node (the virtual node with the highest requested
CPU capacity) and all its first-hop neighbors —spokes— together
with the adjacent virtual links; if an embedding for the first hub-
and-spoke VN partition is found, the SP releases the next hub-
and-spoke VN partition. The hub virtual node is mapped onto
the physical node whose residual capacity is largest. VINEA can
subsume the VN embedding algorithm described in [30] by in-
stantiating the partitioning policy so that the VN requests are split
into multiple hub-and-spoke virtual topologies, and by requiring
all physical nodes to bid using their CPU residual capacity as
utility.

To our knowledge, PolyVINE [4] is the first distributed VN
embedding approach that lets InPs specify their embedding poli-
cies (our utility bi vector.) The algorithm requires an SP to send
the entire VN request to at least one InP, that embeds what it can,
given its available capacity, and then forwards the residual VN
partition to some neighbor InPs. We can subsume PolyVINE by
letting each InP i use its own utility bi, and by setting the VN
partitioning policy according to the residual VN partition.

In both the PolyVINE and the hub-and-spoke policy configu-
rations, the VINEA privacy policy is set to its most informative
form (the identities of the physical nodes are known), and the load
profiling policy does not impose any bound, i.e., each physical
node is free to use all its physical available capacity to host the
requested VNs.

7.2 API Usage Example
The VINEA API, together with the configuration file settings, al-
lows VN embedding policy programmability. The expressiveness
of the policy language is a result of different object attributes,
instantiated via our object model. Let us assume that an SP wants
to receive updates every 3 seconds on the embedding request of a
VN, identified by a sliceID. First, the SP creates a subscription
event object, and then uses the SIB Daemon API to create and send
the publish request to all its subscribers. The writePub call is
then converted into a sequence of VINO messages that write into
the SIB of the subscriber processes:
SubEvent = new SubEvent(EventType.PUB_VN, 3, sliceID);
int pubID = SIBDaemon.createEvent(VNRequest, SubEvent);
SIBDaemon.writePub(pubID, sliceID);

Similarly, if an InP wants to be updated on the VN embedding
requests generated by one of the available SPs, it subscribes to the
slice objects published from such SP as follows:
SubEvent = new SubEvent(EventType.SUB, null, VN);
int subID = SIBDaemon.createEvent(SP_Address, SubEvent);
SIBDaemon.writePub(subID, sliceID);

InP processes also subscribe to the utility object attributes of
other InP processes participating to the embedding. After these
subscriptions, an enrollment phase begins, overlooked by a slice
manager, and the InP processes join the overlay of nodes par-
ticipating to the current embedding. Other examples of API usage

and applications that the same underlying publish/subscribe engine
supports are illustrated in our technical reports [11], [29], [45]. In
the next subsection we show analytically with a case study how
by instantiating VINEA with different policies we may obtain VN
embedding algorithms with different behavior, and that may suit
different InP and SP goals.

7.3 Primal vs Dual Decomposition Policy
In this section we analyze the tradeoffs between primal and dual
decompositions, for a simple VN embedding subproblem. We later
use this case study to show the results of a tradeoff analysis
between optimality and speed of convergence of the iterative
method used by a CPLEX solver. This section also clarifies the
connection between the VINEA object model interface and the
analytic interpretation of such interfaces (Lagrangian multipliers)
used to obtain different distributed virtual network embedding
algorithms.

We consider a subproblem of problem (1): the virtual node em-
bedding problem, where the VN request is split in two partitions.
The problem can be formulated as follows:15

max

u,v
cTu+ c̃T v

subject to Au b (2a)
˜Av

˜b (2b)
Fu+

˜Fv h (2c)

where u and v are the sets of decision variables referring to
the first and to the second VN partition, respectively; F and ˜F
are the matrices of capacity values for the virtual nodes in the
two partitions, and h is the vector of all physical node capacity
limits. The constraints (2a) and (2b) capture the separable nature
of the problem into the two partitions. Constraint (2c) captures the
complicating constraint.
Embedding by Primal Decomposition Policy. By applying
primal decomposition to problem (2), we can separately solve
two subproblems, one for each VN partition, by introducing an
auxiliary variable z, that represents the percentage of physical
capacity allocated to each subproblem. The original problem (2)
is equivalent to the following master problem:

max

z
�(z) + ˜�(z) (3)

where:
�(z) = supu c

Tu (4a)
subject to Au b (4b)

Fu z (4c)

and
˜�(z) = supv c̃

T v (5a)
subject to

˜Av

˜b (5b)
˜Fv h� z. (5c)

The primal master problem (3) maximizes the sum of the optimal
values of the two subproblems, over the auxiliary variable z. After
z is fixed, the subproblems (4) and (5) are solved separately,
sequentially or in parallel, depending on the cloud provider’s
policy. The master algorithm updates z, and collects the two

15. In Section 3 we model the VN embedding problem as a whole. Here
instead we use the matrix notation to highlight the complicating variables and
complicating constraints. Our aim is to communicate that the problem modeled
in Section 3 can be remodeled using different groups of variables which may
lead to different distributed algorithms (as shown in Figure 3).

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, APRIL 2015 10

Algorithm 1: Distributed Embedding by Primal Decomp. Policy

1: Given zt at iteration t, solve subproblems to obtain � and ˜�
for each VN partition, and dual variables �?(zt) and ˜�?(zt)

2: Send/Receive �, ˜�, �? and ˜�?

3: Master computes subgradient g(zt) = ��?(zt) + ˜�?(zt)
4: Master updates resource vector zt+1 = zt � ↵tg

subgradients, independently computed by the two subproblems.
To find the optimal z, we use a subgradient method. In particular,
to evaluate a subgradient of �(z) and ˜�(z), we first find the
optimal dual variables �? for the first subproblem subject to
the constraint Fu z. Simultaneously (or sequentially), we
find the optimal dual variables ˜�? for the second subproblem,
subject to the constraint ˜Fv h � z. The subgradient of the
original master problem is therefore g = ��?(z) + ˜�?(z); that
is, g 2 @(�(z) + ˜�(z)).16 The primal decomposition algorithm,
combined with the subgradient method for the master problem is
repeated, using a diminishing step size, until a stopping criteria is
reached (Algorithm 1).

The optimal Lagrangian multiplier associated with the capacity
of physical node i, ��?i , tells us how much worse the objective
of the first subproblem would be, for a small (marginal) decrease
in the capacity of physical node i. ˜�?i tells us how much better
the objective of the second subproblem would be, for a small
(marginal) increase in the capacity of physical node i. Therefore,
the primal subgradient g(z) = ��(z) + ˜�(z) tells us how much
better the total objective would be if we transfer some physical
capacity of physical node i from one subsystem to the other.
At each step of the subgradient method, more capacity of each
physical node is allocated to the subproblem with the larger
Lagrange multiplier. This is done with an update of the auxiliary
variable z. The resource update zt+1 = zt�↵tg can be interpreted
as shifts of some of the capacity to the subsystem that can better
use it for the global utility maximization.

Embedding by Dual Decomposition Policy. An alternative
method to solve problem (2) is to use dual decomposition, relaxing
the coupling capacity constraint (2c.) From problem (2) we form
the partial Lagrangian function:

L(u, v,�) = cTu+ c̃T v + �T (Fu+

˜Fv � h) (6a)

Hence, the dual function is:
q(�) = inf

u,v
{L(u, v,�)|Au b, ˜Av

˜b} (7a)

= ��Th+ inf

Aub
(FT�+ c)Tu+ inf

Ãvb̃
(

˜FT�+ c̃)T v,

and the dual problem is:
max

�
q(�) (8a)

subject to � � 0,

We solve problem (8) using the projected subgradient
method [46]. To find a subgradient of q at �, we let u? and v?

be the optimal solutions of the subproblems:

u? = max

u
(FT�+ c)Tu (9a)

subject to Au b (9b)

and

16. For the proof please refer to §5.6 of [46].

Algorithm 2: Distributed Embedding by Dual Decomp. Policy

1: Given �t at iteration t, solve the subproblems to obtain the
optimal values u? and v? for each VN partition

2: Send/Receive optimal node embedding u? and v?

3: Master computes the subgradient g = Fu? + ˜Fv? � h
4: Master updates the prices �t+1 = (�t � ↵tg)+

v? = max

v
(

˜FT�+ c̃)T v (10a)

subject to

˜Av

˜b (10b)

respectively. Then, the infrastructure provider processes in charge
of solving the subproblems send their optimal values to the master
problem, so that the subgradient of the dual function can be
computed as:

g = Fu? + ˜Fv? � h. (11)

The subgradient method is run until a termination condition is
satisfied (Algorithm 2); the operator (·)+ denotes the non-negative
part of a vector, i.e., the projection onto the non-negative orthant.
At each step, the master problem sets the prices for the virtual
nodes to embed. The subgradient g in this case represents the
margin of the original shared coupling constraint. If the subgra-
dient associated with the capacity of physical node i is positive
(gi > 0), then it is possible for the two subsystems to use more
physical capacity of physical node i. The master algorithm adjusts
the price vector so that the price of each overused physical node
is increased, and the price of each underutilized physical node is
decreased, but never negative.

8 PROTOTYPE IMPLEMENTATION AND TESTBED
To establish the practicality of our architecture, we tested it on a
system implementation. The prototype enables users to write real
applications on top of the embedded VNs.

Each process joins a private overlay before running the VN
embedding protocol. A VN request is released by a VINEA node
instantiated as SP. Then InP processes run a physical resource
discovery protocol, the asynchronous virtual network mapping
protocol, and finally, the virtual network is allocated by reserving
CPU and bandwidth. Our prototype is implemented in a single-
host Linux-based testbed (§ 8.1), and its InP overlay resources are
simulated, i.e., physical CPU and link available capacity are not
measured but set from a configuration file, and updated as virtual
networks are being embedded. Also, the InP overlay connectivity
is emulated by TCP connections on the Linux loopback interface.
We emulate the allocation phase of the embedding problem by re-
serving CPU for virtual hosts, attached to virtual switches running
in kernel mode, and we use the Linux Traffic Control application
to reserve link capacity. Once the virtual network allocation phase
is complete, we run basic applications such as ping, iperf or
more complex SDN scenarios using OpenFlow [21].

Our VINEA prototype (whose software architecture is shown
in Figure 2a) resulted in about 50K lines of Java code, without
considering test classes, Python scripts and Linux C code that
VINEA leverages for the final allocation phase of embedded VNs.

Logically, the prototype is divided into nine main architecture
components: a Network Management System, the three embed-
ding services of an infrastructure provider —resource discovery,
virtual network mapping and allocation, a set of service provider
functionalities, a database containing all the objects, a VINO
message handler, a message parser to serialize and deserialize

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, APRIL 2015 11

Ubuntu Host OS

VINEA
Physical
Node 1

VINEA
Physical
Node 2

VINEA
Service
Provider

Global Service
Directory

DNSNMS

TCP

tcOpenFlow

TCP TCP
TCP TCP

TCP

traceroute

vSwitch 1
10.0.0.2

vHost 1
10.0.0.1

vSwitch N
10.0.0.N

vHost N
10.0.0.N+1

Iperf

...

VINEA Interface

ping Applications

Virtual
Networks

Physical
Network

Fig. 4. VINEA testbed architecture: physical wires are emulated with
loopback TCP connections on well-known ports. After the virtual net-
works are embedded, we can run Linux applications between virtual
nodes, e.g., ping, traceroute, or we can send data traffic, and
measure the reserved bandwidth performance with iperf.

objects with the Google Protocol Buffer libraries [42], and a
publish/subscribe system to release/acquire VN (partition) objects,
and to subscribe to other InP processes for VN embedding updates.
Our technical report [29] contains the implementation details of
each of these components, while the code is available at [12].

8.1 Linux Testbed
In order to evaluate our prototype, we implemented a testbed
whose architecture is shown in Figure 4. Our base system is a host
running an Ubuntu distribution of Linux (version 12.04.) Each
InP process includes the VINEA modules. Each virtual node is
a user-level process that has its own virtual Ethernet interface(s),
created and installed with ip link add/set, and attached to
an Open vSwitch [13] running in kernel mode to switch packets
across virtual interfaces. A virtual link is a virtual Ethernet (or
veth) pair, that acts like a wire connecting two virtual interfaces,
or virtual switch ports. Packets sent through one interface are
delivered to the other, and each interface appears as a fully
functional Ethernet port to all system and application software.
The data rate of each virtual link is enforced by Linux Traffic
Control (tc), which has a number of packet schedulers to shape
traffic to a configured rate. Within the generated virtual hosts,
we run real Linux applications, e.g., ping, and we measure the
reserved bandwidth with iperf between virtual hosts.

8.2 Testbed Resiliency and Traffic Shaping
By running the asynchronous VINO protocol, VINEA applies a set
of local deconfliction rules that do not require access to a global
embedding state, consistently handle out-of-order messages and
ignore redundant information. This means that a set of VINEA
processes is guaranteed to converge to the Pareto optimal embed-
ding, while being resilient to all failures that do not result into a
persistent physical network partition over the embedding lifetime,
i.e., losses, delays, or disconnections. Our VINEA testbed sup-
ports queuing delay or physical network congestions with simple
Linux commands such as tc and netem.

9 VINEA EVALUATION
In this section we focus on evaluating, with simulations and via
our prototype, the impact and the tradeoffs that different VINEA
policies have on the physical network load, on the VN allocation
ratio (ratio between VN allocated and requested), on the VINO
protocol overhead, and on the length of the hosting physical paths.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Physical Node Utilization

C
D

F

SAD
Poly
H&S
MAD

(a)

5 10 15 200
0.2
0.4
0.6
0.8

1

VN size [# nodes]

 A
llo

ca
tio

n
R

at
io

5 10 15 200

2

4

VN Size [# of nodes]

Ph
ys

ic
al

 P
at

h
Le

ng
th

SAD MAD PAD H&S Poly

5 10 15 200

1

2

3

4

VN Size [# nodes]Ph
ys

ic
al

 P
at

h
Le

ng
th

SAD MAD PAD H&S Poly

(b)

Fig. 5. Simulation results (a-b): Comparison between two related
distributed VN embedding solutions and two VINEA policies: (a) The
CDF shows how VINEA policies may be instantiated to balance the
load on physical nodes, or to collocate multiple virtual nodes allowing
more physical nodes to remain idle. (b)-top. The physical loop-free path
lengths hosting at least a virtual link show how, as designed, the PAD
policy enforces the embedding of virtual links on single-hop physical
paths. (b)-bottom. Different policy instantiations result in different VN
allocation ratios (and so different provider’s revenue).

We were able to replicate our results across several physical
network sizes and (Barabasi-Albert and Waxman) connectivity
models. We only show a representative set of results, obtained
with 95% confidence intervals. We leave as an interesting open
question a sensitivity analysis of how the structure of the physical
or virtual network network topology affects the convergence
speed, or even the efficiency of the embedding, generalizing our
results beyond random graphs generated with synthetic methods
and/or parameters.
Results Summary. We implemented an event-driven simulator to
test VINEA’s scalability, and a local testbed (that can be run on a
single host) to establish its practicality. Our results on the physical
node utilization show how different VINEA policies may lead to
a physical network with balanced load, or with multiple virtual
nodes collocated on a small set of physical nodes (Figure 5a.) The
latter virtual node packing effect allows InPs to keep idle a higher
number of physical nodes, therefore reducing the InP energy costs.
Independently from the physical network size and connectivity
model, embedding policies that partition the VN request, e.g.,
SAD or PolyVINE, distribute better the load across the physical
network compared to other node packing policies, e.g., MAD
and hub-and-spoke, but not always result in higher VN allocation
ratios (Figure 5b-bottom).

In our prototype evaluation we focus on confirming how, in
an emulated environment, different embedding policies lead to
different VN allocation ratios across representative virtual network
topologies: linear, star, tree, and fully connected (Figure 7.)
We also dissect the architecture components responsible for the
embedding protocol overhead, and compare two representative
embedding policy configurations (Figure 8.) Finally, our results
show how, in contrast with other embedding approaches [2], [34],
policies that require coordinated node and link embedding (e.g.,
PAD) may lower the embedding performance (Figure 5b-top).
Simulation Scenario. Our goal is to compare different VINEA
policies with previous distributed VN embedding solutions and
among each other. We also choose a scenario that attempts to re-
produce real VN embedding requests on popular physical network
connectivity models. To this end, we compute the physical node
utilization after embedding 100 VNs with three different VINEA
policy configurations —MAD, SAD and PAD— as well as with

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, APRIL 2015 12

our implementation of the PolyViNE [4] and Hub&Spoke [30]
embedding heuristics. The sizes of our VNs were sampled from a
distribution generated by a trace dataset of 8 years of VN requests
to the Emulab testbed [47], where each VN has on average about
50 virtual nodes. The virtual links (not in the dataset) are generated
at random with 0.5 probability of having an edge between any two
virtual nodes. The physical network, synthetically generated with
BRITE [48] has 500 nodes (typical size of a medium ISP) and
follows one of the two popular connectivity models: Barabasi-
Albert or Waxman.
Single vs. Multiple Node Embedding Policy Tradeoff. When
applying the SAD configuration, all physical nodes have utiliza-
tion lower than 35%, with over half of the physical nodes less than
20% utilized. When instead we instantiate VINEA with the MAD
policy configuration, we obtained a higher physical node utiliza-
tion: some physical nodes reached a 75% utilization (Figure 5a.)
In this experiment, the available physical node and link capacities
are enough to embed all the requested VNs (typical realistic
scenario.) This means that a higher physical node utilization is a
consequence of a higher number of idle physical nodes, since the
(node and link) physical capacity necessary to embed the requests
is the same across all embedding algorithms.

Expecting InPs to relay VN traffic may be undesirable. The
PAD policy configuration avoids InP relays for virtual links,
which leads to an average physical path length in the range [0, 1]
hops for embedding a virtual link (Figure 5b � top); a loop-free
physical path has length 0 when the two end virtual nodes of
a virtual link are both hosted by the same physical node, and
length 1 when the two end virtual nodes of a virtual link are
hosted by two neighboring physical nodes. Although PAD avoids
relays, and simultaneously embed both nodes and links, our results
show how the physical link capacity provided by relay physical
nodes helps improve the VN allocation ratio (Figure 5b-bottom).
From the same experiment, we note how, in this setting, our load
balancing policy configuration (SAD) resulted in a higher number
of allocated VN requests, outperforming the other approaches,
including our implementation of PolyVINE and Hub&Spoke.
Decomposition Policy Tradeoff: We evaluate a few representative
decomposition policies of our architecture. Our simulations use a
CPLEX solver [49] to analyze the tradeoff between optimality and
the speed of convergence of the primal and dual decompositions
solved by the iterative methods described in Algorithms 1 and
2. We embed a typical VN request of 50 virtual nodes onto a
physical network overlay of 10 physical (hosting) nodes. Since
we can always embed a VN leaving no residual capacity on
the hosting nodes, the Slater’s condition [46] is satisfied for
Problems (3) and (8.) This means that there is no duality gap, but
it is not desirable to wait for the optimal node embedding when
the improvements relative to the previous iterations are small.
Hence, using a diminishing step size rule ↵ = 0.5/t, where t
is the iteration step, we stopped our simulations after t = 100

(Figures 6a and b.) We note that the solutions found using a dual
decomposition policy reduces its duality gap more quickly, at the
expense of a longer convergence time.
Testbed Emulation Setup. In all our prototype evaluation exper-
iments, an Ubuntu image was hosted on a VirtualBox instance
over a 2.5 GHz Intel Core i5 processor, with 4GB of DDR3
memory. We start our InP overlay, and we launch one or multiple
VN requests with different size and topologies. We tested the
embedding of VNs with up to 16 virtual nodes, with linear,
star (hub-and-spoke), tree and full virtual network topologies

0 20 40 60 80 100

10
−4

10
−2

10
0

Iteration t

O
p
ti

m
al

it
y
 G

ap

Primal
Dual

(a)

0 20 40 60 80 100
10

−1

10
0

10
1

10
2

Iteration t

C
o
n
v
er

g
en

ce
 T

im
e

[s
]

Dual
Primal

(b)

Fig. 6. Decomposition Policy Tradeoff. Using a diminishing step size rule
↵t = 0.5/t to complete the first 100 iterations, a node embedding solved
by dual decomposition leads to a smaller duality gap (a), at the expense
of a longer convergence time.

0 5 10 15
0.2

0.4

0.6

0.8

1

VN Size [#nodes]

A
llo

ca
tio

n
R

at
io

SAD
MAD

0 5 10 15
0.2

0.4

0.6

0.8

1

VN Size [# nodes]

A
llo

ca
tio

n
R

at
io

MAD
SAD

0 5 10 15
0.2

0.4

0.6

0.8

1

VN Size [#nodes]

A
llo

ca
tio

n
R

at
io

MAD
SAD

0 5 10 15
0.2

0.4

0.6

0.8

1

VN Size [#nodes]

A
llo

ca
tio

n
R

at
io

SAD
MAD

Fig. 7. Prototype Evaluation: Policy configuration tradeoff. Five InP
processes hosting: (top-left) VNs with linear (top-right) star (bottom-
left) tree and (bottom-right) full virtual topology. Policies that require
partitioning perform worse as the number of virtual links increases
(confidence intervals are almost always too small to be seen).

(Figure 7.) 17

Note that we have tested the scalability of VINEA with our
simulator; the limit on the number of virtual nodes in our prototype
was imposed by the use of OpenFlow. In particular, we used Open
vSwitch (OVS) in OpenFlow mode, that (at this time) requires
an OpenFlow controller with at most 16 interfaces. Each of the
controllers supported turns the OVS switches into Ethernet bridges
(learning switches.) Using the command route add, we set
up the routes for each virtual node following the requested VN
connectivity.
Testbed Network Models. We vary the virtual network size from
2 till the limit of 16 nodes is reached and we tested VINEA on
several InP overlay sizes, and with linear, star, tree, and fully
connected physical (InP overlay) topologies, with a wide range
of virtual topologies. We only show results for InP overlay of size
10. The other results are similar. We randomly assign physical
link capacities between 50 and 100 Mbps (as in [1]), then we
assign the InP process capacity to be the sum of its outgoing

17. Note that when the number of physical paths is limited, e.g., in a
linear physical topology, MAD may perform worse (Figure 7 top-left). This
is because MAD can assign multiple virtual nodes in the same auction round
on the same physical node, the outgoing virtual capacity might exhaust the
physical link capacity hence causing future VN requests to be rejected.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, APRIL 2015 13

0 5 10 15

0.2

0.4

0.6

0.8

1

Virtual Network Size [# of Virtual Nodes]

V
N

 A
llo

ca
tio

n
R

at
io

Single Partition
Nv/2 Partitions0 5 10 15

0.2

0.4

0.6

0.8

1

Virtual Network Size [# of Virtual Nodes]

V
N

 A
llo

ca
tio

n
R

at
io

Single Partition
Nv/2 Partitions

0 5 10 15

0.2

0.4

0.6

0.8

1

Virtual Network Size [# of Virtual Nodes]

V
N

 A
llo

ca
tio

n
R

at
io

Single Partition
Nv/2 Partitions

0 5 10 15

0.2

0.4

0.6

0.8

1

Virtual Network Size [# of Virtual Nodes]

V
N

 A
llo

ca
tio

n
R

at
io

Single Partition
Nv/2 Partitions

0 5 10 15

0.2

0.4

0.6

0.8

1

Virtual Network Size [# of Virtual Nodes]

V
N

 A
llo

ca
tio

n
R

at
io

Single Partition
Nv/2 Partitions

(a)

2 4 6 8 10 12 14 16
0

50

100

150

200

250

300

SAD
MAD

Virtual Network size [# vnodes]

O
ve

rh
ea

d
[K

B
]

Nv/2 Partitions
MSingle Partition

(b)

Fig. 8. Prototype Evaluation. Partitioning a VN results in a lower VN
request allocation ratio, leading to lower cloud revenue (a), and to higher
signaling overhead (b). This result is an improvement with respect to
existing approaches [3], [4], [8], in which the VN embedding mechanism
requires VN partitioning.

physical link capacities. We specify the capacities in the InP
process configuration file. We assume the virtual link capacity
to be randomly chosen between 1 and 5 Mbps. The virtual node
capacity of a VN request is assigned to be the sum of its outgoing
virtual links. Results are shown with 95% confidence intervals,
while the overhead results refer to a single run.
Utility Model and VN Lifetime. All InP processes use the
same utility function. The goal of the experiment is to embed
a set of 100 virtual networks, with one second inter-arrival
time between VN requests, aiming to reach Pareto optimality
U = max

PNp

i=1

PNv

j=1 bijxij , subject to the embedding con-
straints, that is, the distributed embedding aims to maximize the
sum of the utility of every InP process. Np is the number of InP
processes, Nv the number of virtual nodes, bi the utility function
used by InP processes, and xij = 1 if an InP process i is hosting
virtual node j and zero otherwise. VINEA releases the allocated
resources after the VN lifetime has expired. We sample the lifetime
of the VNs from our dataset of VN requests to Emulab.
Embedding Overhead and Load Tradeoff. The load balancing
policy (SAD) which requires partitioning the VN request to a
set of smaller requests made of each virtual link with its two
end virtual nodes, performs worse in terms of VN allocation
ratio, as the number of virtual links increases (Figure 8a.) To
assess the message overhead, we measured the actual number of
bytes exchanged across the InP overlay (Figure 8b). Our results
show how an SP can significantly limit the network overhead by
selecting a single InP process to send its requests. This result is
an improvement with respect to existing approaches [3], [4], [8]
in which the VN embedding mechanism requires VN partitioning.

10 CONCLUSIONS AND OPEN PROBLEMS

In this paper we presented VINEA, an architecture for virtual
network embedding policy programmability. VINEA separates
policies (i.e., high-level goals) from underlying mechanisms
of the embedding problem: resource discovery, virtual network
mapping, and allocation. VINEA’s design leverages an asyn-
chronous consensus mechanism, and enables VNs to be built
using resources of a single provider, or across multiple federated
providers; our object model serves as a foundation for a VN
embedding protocol specification. We compared the performance
of representative policy configurations with simulations and over
a prototype implementation, and we illustrated their performance
and overhead tradeoffs. Each VINEA node can be instantiated as
a service or infrastructure provider. Our prototype can augment

existing open-source “Networking as a Service” solutions such
as OpenStack [20], enabling VN users to program their own
embedding policies, and it provides a clean solution to the slice
stitching problem for the GENI testbed [16]. We released our
single-host Linux-based virtual network testbed to enable users
to test their own embedding policies, and run applications within
the embedded VNs.

Our work leaves a number of open research problems. From
the system perspective, the VINEA embedding object model can
be extended to the problem of virtual network function placement,
and to the problem of steering virtual links after a network has
been embedded. From the algorithmic design perspective, we
believe the analysis of embedding performance with heterogenous
policies, and a secure VN embedding protocol able to function
even in the presence of misconfigurations, malicious users, or
(Byzantine) failures are also interesting research directions.

REFERENCES

[1] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking Virtual Network
Embedding: Substrate Support for Path Splitting and Migration,” SIG-
COMM CCR., vol. 38, no. 2, pp. 17–29, 2008.

[2] Chowdhury, M. et al., “ViNEYard: Virtual Network Embedding Algo-
rithms with Coordinated Node and Link Mapping,” IEEE/ACM Trans.
Netw., vol. 20, no. 1, pp. 206–219, Feb. 2012.

[3] Houidi, I. et al., “Virtual Network Provisioning across Multiple Substrate
Networks,” Computer Networks, vol. 55, no. 4, Mar. 2011.

[4] M. Chowdhury, F. Samuel, and R. Boutaba, “PolyViNE: Policy-Based
Virtual Network Embedding Across Multiple Domains,” ser. SIGCOMM
VISA Workshop, 2010.

[5] F. Esposito, D. Di Paola, and I. Matta, “On distributed virtual network
embedding with guarantees,” IEEE/ACM Transactions on Networking.,
Feb. 2014. [Online]. Available: http://dx.doi.org/10.1109/TNET.2011.
2159308

[6] Y. Zhu et al., “Cabernet: Connectivity Architecture for Better Network
Services,” in CoNEXT, 2008, p. 64.

[7] J. Lu and J. Turner, “Efficient Mapping of Virtual Networks onto a Shared
Substrate,” Washington Univ. in St. Louis, Tech. Rep., 2006.

[8] F. Zaheer, J. Xiao, and R. Boutaba, “Multi-provider Service Negotiation
and Contracting in Network Virtualization,” in IEEE NOMS, 2010.

[9] J. Day, I. Matta, and K. Mattar, “Networking is IPC: A Guiding Principle
to a Better Internet,” in Proc. of the CoNEXT. ACM, 2008, pp. 67:1–
67:6. [Online]. Available: http://doi.acm.org/10.1145/1544012.1544079

[10] F. Esposito, Y. Wang, I. Matta, and J. Day, “Dynamic Layer Instantiation
as a Service,” in In Proc. of 10th USENIX Symp. on Networked Systems
Design and Implementation (NSDI 2013), Lombard, IL, April 2013.

[11] Y. Wang, I. Matta, F. Esposito, and J. Day, “Introducing ProtoRINA: A
prototype for programming recursive-networking policies,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 129–131, Jul. 2014.

[12] F. Esposito. (2014) The Virtual Network Embedding Architecture
(VINEA) Project. http://csr.bu.edu/vinea.

[13] Open Virtual Switch Community. (2013) Open Virtual Switch. [Online].
Available: http://openvswitch.org/

[14] F. Esposito and I. Matta, “A decomposition-based architecture for
distributed virtual network embedding,” in Proc. of the 2014 ACM
SIGCOMM Workshop on Distributed Cloud Computing, ser. DCC ’14.
New York, NY, USA: ACM, 2014, pp. 53–58.

[15] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop:
Rapid Prototyping for Software-Defined Networks,” in Proc. of ACM
SIGCOMM Hotnets-IX, 2010, pp. 19:1–19:6. [Online]. Available:
http://doi.acm.org/10.1145/1868447.1868466

[16] GENI. http://www.geni.net.
[17] F. Esposito, I. Matta, and V. Ishakian, “Slice Embedding Solutions for

Distributed Service Architectures,” ACM Computing Surveys, vol. 46,
no. 2, March 2014.

[18] Neutron. https://wiki.openstack.org/wiki/Neutron.
[19] CloudStack. http://cloudstack.apache.org/.
[20] OpenStack. http://openstack.org/,.
[21] McKeown N. et al., “OpenFlow: Enabling Innovation in Campus Net-

works,” SIGCOMM CCR., vol. 38, no. 2, pp. 69–74, Mar. 2008.
[22] Qazi, Z. A. et al, “SIMPLE-fying Middlebox Policy Enforcement Using

SDN,” ser. SIGCOMM ’13, New York, NY, USA, 2013, pp. 27–38.
[23] Voellmy, A. et al., “Maple: Simplifying sdn programming using algorith-

mic policies,” ser. SIGCOMM ’13, 2013, pp. 87–98.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, APRIL 2015 14

[24] Mattar K. et al., “Declarative Transport: A Customizable Transport
Service for the Future Internet,” in In Proc. of NetDB 2009, co-located
with SOSP 2009, Big Sky, MT, 2009.

[25] Liu C. et al, “Declarative Policy-based Adaptive Mobile Ad Hoc
Networking,” IEEE/ACM Trans. Netw., vol. 20, no. 3, Jun. 2012.

[26] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan, “Declarative
Routing: Extensible Routing with Declarative Queries,” ser. SIGCOMM.
ACM, 2005, pp. 289–300.

[27] Schaffrath G. et al, “Network Virtualization Architecture: Proposal
and Initial Prototype,” in ACM SIGCOM VISA workshop. New
York, NY, USA: ACM, 2009, pp. 63–72. [Online]. Available:
http://doi.acm.org/10.1145/1592648.1592659

[28] Guo, C. et.al, “SecondNet: a Data Center Network Virtualization
Architecture with Bandwidth Guarantees,” in Proc. of CoNEXT 2010.
New York, NY, USA: ACM, 2010, pp. 15:1–15:12. [Online]. Available:
http://doi.acm.org/10.1145/1921168.1921188

[29] F. Esposito, “A Policy-based Architecture for Virtual Network Embed-
ding,” Ph.D. dissertation, Boston University, Computer Science Depart-
ment., Sept. 2013.

[30] I. Houidi, W. Louati, and D. Zeghlache, “A Distributed Virtual Network
Mapping Algorithm,” in IEEE International Conference on Communica-
tions (ICC), May 2008, pp. 5634 –5640.

[31] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. Parulkar, “Can the production network be the
testbed?” in Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 1–6. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1924943.1924969

[32] Y. Xin, I. Baldine, A. Mandal, C. Heermann, J. Chase, and
A. Yumerefendi, “Embedding virtual topologies in networked clouds,”
in Proceedings of the 6th International Conference on Future Internet
Technologies, ser. CFI ’11. New York, NY, USA: ACM, 2011, pp. 26–
29. [Online]. Available: http://doi.acm.org/10.1145/2002396.2002403

[33] B. Chun and A. Vahdat, “Workload and Failure Characterization on a
Large-Scale Federated Testbed,” IRB-TR-03-040, Intel Research Berke-
ley, Tech. Rep., 2003.

[34] J. Lischka and H. Karl, “A Virtual Network Mapping Algorithm based
on Subgraph Isomorphism Detection,” ACM SIGCOMM VISA Workshop,
Aug. 2009.

[35] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat, “SHARP: an
Architecture for Secure Resource Peering,” SIGOPS Operating System
Review, vol. 37, no. 5, pp. 133–148, 2003.

[36] J. Albrecht, D. Oppenheimer, D. Patterson, and A. Vahdat, “Design and
Implementation Trade-offs for Wide-Area Resource Discovery,” ACM
Transactions on Internet Technology, vol. 8, no. 4, pp. 1–44, 2008.

[37] N. A. Lynch, Distributed Algorithms, 1st ed. Morgan K., Mar. 1996.
[38] D. Eppstein, “Finding the k Shortest Paths,” SIAM Journal of Computing,

vol. 28, no. 2, pp. 652–673, 1999.
[39] K. McCloghrie and M. Rose, “Management Information Base for Net-

work Management of TCP/IP-based internets. http://www.ietf.org/rfc/
rfc1156.txt,” 1990.

[40] A. AuYoung, B. Chun, A. Snoeren, and A. Vahdat, “Resource allocation
in federated distributed computing infrastructures,” in Proceedings of the
1st Workshop on Operating System and Architectural Support for the
Ondemand IT InfraStructure, October 2004.

[41] Beck Kent et al., “Manifesto for Agile Software Development,” Agile
Alliance, June 2010.

[42] Google Protocol Buffers. (2013) Developer Guide http://code.google.
com/apis/protocolbuffers.

[43] B. Lucier, R. P. Leme, and É. Tardos, “On revenue in the
generalized second price auction,” in Proceedings of the 21st
International Conference on World Wide Web, ser. WWW ’12. New
York, NY, USA: ACM, 2012, pp. 361–370. [Online]. Available:
http://doi.acm.org/10.1145/2187836.2187886

[44] A. B. Jorge Londono and S. Teng, “Collocation games and their applica-
tion to distributed resource management,” in In Proceedings of USENIX
HotCloud’09: Workshop on Hot Topics in Cloud Computing, San Diego,
CA,, June 2009.

[45] Y. Wang, F. Esposito, I. Matta, and J. Day, “Recursive InterNetworking
Architecture (RINA) Boston University Prototype Programming Man-
ual,” Boston University, Tech. Rep. BUCS-TR-2013-013, Nov 2013.

[46] S. Boyd and L. Vandenberghe, Convex Optimization, online, Ed.
http://www.stanford.edu/people/boyd/cvxbook.html, 2004.

[47] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An Integrated Experimental
Environment for Distributed Systems and Networks,” SIGOPS Operating
System Review, 2002.

[48] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An
Approach to Universal Topology Generation,” in Proceedings of the
Ninth International Symposium in Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, ser. MASCOTS ’01.
Washington, DC, USA: IEEE Computer Society, 2001, pp. 346–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=882459.882563

[49] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[50] D. Jackson, Software Abstractions: Logic, Language, and Analysis. The
MIT Press, 2006.

[51] S. Mirzaei and F. Esposito, “An alloy verification model for consensus-
based auction protocols,” in Inter. IEEE Workshop on Assurance in
Distributed Systems and Networks, In conjunction with IEEE ICDCS
2015, ser. ADSN, 2015.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers, and Dr.
Robert Ricci for handing us the non-public Emulab dataset. This
work is supported in part by the National Science Foundation
under grant CNS-0963974.

Flavio Esposito (M’11) received his Ph.D. in
computer science at Boston University in 2013,
and his Master of Science in Telecommunication
Engineering from University of Florence, Italy
in 2005. Flavio is currently a member of the
Advanced Technology Group at Exegy, Inc. and
a Visiting Research Assistant Professor in the
Computer Science & IT Dept. at University of
Missouri, Columbia. His research interests in-
clude network management; design, implemen-
tation and evaluation of algorithms and protocols

for service-based architectures, such as Software Define Networks
(SDN) and Delay-Tolerant Networks (DTN); modeling and performance
evaluation of wireless, and peer-to-peer networks. Flavio worked at
Alcatel-Lucent, interned at Bell Laboratories, Holmdel, NJ, at Raytheon
BBN Technologies, Cambridge, MA, and at EURECOM, France. He was
also a visiting researcher at MediaTeam, Oulu and at the Center for
Wireless Communications, Oulu, Finland. He is a member of both the
ACM and the IEEE.

Ibrahim Matta (M’93-SM’06) received his Ph.D.
in computer science from the University of Mary-
land at College Park in 1995. He is a professor
of computer science at Boston University. His re-
search involves network protocols, architectures,
and performance evaluation. His current projects
include recursive networks, their management
and economics implications, and their experi-
mental evaluation. He has published over 100
peer-reviewed articles. He received the National
Science Foundation CAREER award in 1997,

and won a patent (in 2011) and two best-paper awards (in 2008 and
2010) on his work on wireless ad hoc and sensor networks. He has
served as the chair or co-chair of many technical committees, including
IEEE 2011 CCW and 2005 ICNP. He is a senior member of ACM and
IEEE.

Yuefeng Wang Yuefeng Wang (S’14) is a Ph.D.
candidate in CS Dept. at Boston University. He
received his Master of Science in Computer
Science from University of Windsor, Canada in
2010. His research interests include design, im-
plementation and evaluation of future network
architecture; performance evaluation of network
management architecture. Yuefeng worked as a
research intern at Akamai Technologies, Cam-
bridge, MA, focusing on platform performance.
He is a student member of the IEEE.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, APRIL 2015 15

11 VINEA ASYNCHRONOUS AGREEMENT RULES

In this appendix we report the conflict resolution table rules
used in the VINEA asynchronous implementation of the VINO
protocol, see Table 11.

As defined in Section 3, a virtual network is denoted by the
graph H = (VH , EH) and a physical network by G = (VG, EG),
where V is a set of (physical or virtual) nodes, and E the set of
(physical or virtual) edges. The first column of Table 11 shows the
view of the sender physical node k on the assignment (or winner)
vector a. The second column shows the view on the receiver
physical node, and the third column the receiver’s action to
guarantee asynchronous consensus. In Table 11 vector bi 2 R|VH |

+
is the a vector of utility values. Each entry bij 2 bi is a positive
real number representing the highest utility value known so far on
virtual node j 2 VH . ai 2 V

|VH |
G is the winner vector —a vector

containing the latest information on the current assignment of all
virtual nodes. aij 2 ai is the identity of the winner of virtual
node j, as currently known by physical node i. There are three
possible actions when a physical node i receives a bid message
from a sender physical node k: (i) update, where both the
utility vector and the allocation vector are updated according to
the sender information; (ii) reset, where the utility value is set
to zero, and the allocation vector to null, and (iii) leave, where
both the utility vector and the allocation vector are left unchanged
by the receiver physical node.

The time stamp vector ti 2 R|VH |
+ is a vector of time stamps

where each entry tij 2 ti is a positive real number representing
the forging time of the bid on virtual node j as currently known
from physical node i. This vector is necessary for an asynchronous
conflict resolution. We implemented these rules in our VINEA
prototype, whose code is available at [12] while we verified and
discussed the correctness of our asynchronous max-consensus
auction strategy used with an Alloy [50] model in [51].

k thinks akj is i thinks aij is Receiver’s action (default leave & no br.)

k

i
if bkj > bij ! update and rebroadcast
if bkj = bij & akj < bij ! update & rebr.
if bkj < bij ! update time & rebroadcast

k
if tkj > tij ! update & rebroadcast
if |tkj � tij | < ✏ ! leave & no broadcast
if tkj < tij ! leave & no rebroadcast

m /2 {i, k}

if bkj > bij & tkj � tij ! update & rebr.
if bkj < bij & tkj � tij ! leave & rebr.
if bkj = bij ! leave & rebroadcast
if bkj < bij & tkj < tij ! rebroadcast
if bkj > bij & tkj < tij ! update & rebr.

none update & rebroadcast

i

i
if tkj > tij ! update & rebroadcast
if |tkj � tij | < ✏ ! leave & no-rebroadcast
if tkj < tij ! leave & no rebroadcast

k reset & rebroadcast?
m /2 {i, k} ! leave & rebroadcast

none ! leave & rebroadcast?

m /2 {i, k}

i
if bkj > bij ! update and rebroadcast
if bkj = bij and akj < aij ! update and rebr.
if bkj < bij ! update time and rebroadcast

k

if bkj < bij ! update and rebr. (sender info)
if tkj > tij ! update and rebroadcast
if |tkj � tij | < ✏ ! leave and no rebroadcast
if tkj < tij ! leave and rebroadcast

n /2 {i, k,m}

if bkj > bij and tkj � tij ! update and rebr.
if bkj < bij and tkj < tij ! leave and rebr.
if bkj < bij and tkj > tij ! update and rebr
if bkj > bij and tkj < tij ! leave and rebr

none update and rebroadcast

none

i leave and rebroadcast
k update and rebroadcast

m /2 {i, k} update and rebroadcast
none leave and no rebroadcast

Legend rebroadcast

alone, with leave, broadcast receiver states
with update time, broadcast receiver states
with update, broadcast sender states
with reset, broadcast sender states

rebroadcast? broadcast empty bid with current time

