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ABSTRACT
Recent empirical studies [6] have shown that Internet topologies
exhibit power laws of the form y = x� for the following rela-
tionships: (P1) outdegree of node (domain or router) versus rank;
(P2) number of nodes versus outdegree; (P3) number of node pairs
within a neighborhood versus neighborhood size (in hops); and
(P4) eigenvalues of the adjacency matrix versus rank. However,
causes for the appearance of such power laws have not been con-
vincingly given. In this paper, we examine four factors in the for-
mation of Internet topologies. These factors are (F1) preferential
connectivity of a new node to existing nodes; (F2) incremental
growth of the network; (F3) distribution of nodes in space; and
(F4) locality of edge connections. In synthetically generated net-
work topologies, we study the relevance of each factor in causing
the aforementioned power laws as well as other properties, namely
diameter, average path length and clustering coefficient. Different
kinds of network topologies are generated: (T1) topologies gener-
ated using our parametrized generator, we call BRITE1; (T2) ran-
dom topologies generated using the well-known Waxman model
[12]; (T3) Transit-Stub topologies generated using GT-ITM tool
[3]; and (T4) regular grid topologies. We observe that some gener-
ated topologies may not obey power laws P1 and P2. Thus, the ex-
istence of these power laws can be used to validate the accuracy of
a given tool in generating representative Internet topologies. Power
laws P3 and P4 were observed in nearly all considered topologies,
but different topologies showed different values of the power ex-
ponent �. Thus, while the presence of power laws P3 and P4 do
not give strong evidence for the representativeness of a generated
topology, the value of � in P3 and P4 can be used as a litmus test
for the representativeness of a generated topology. We also find
that factors F1 and F2 are the key contributors in our study which
provide the resemblance of our generated topologies to that of the
Internet.

�This work was supported in part by NSF grants CAREER ANIR-
9701988 and MRI EIA-9871022.
1for Boston university Representative In-
ternet Topology gEnerator. Available at
http://www.cs.bu.edu/fac/matta/software.html

1. INTRODUCTION
The accurate characterization of Internet topologies is key to the
successful modeling and analysis of the Internet and its protocols
[9]. Internet studies usually assume certain topologies or use syn-
thetically generated topologies. These topologies mustreflect prop-
erties (or invariants) empirically found in the actual existing struc-
ture of the Internet; otherwise, correct conclusions cannot be drawn.

Recently [6], it was observed that actual Internet topologies exhibit
power laws of the form y = x� for the following relationships:
(P1) outdegree of node (domain or router) versus rank; (P2) num-
ber of nodes versus outdegree; (P3) number of node pairs within a
neighborhood versus neighborhood size (in hops); and (P4) eigen-
values of the adjacency matrix versus rank. However, causes for the
appearance of such power laws have not been convincingly given.

In this paper, we consider four factors in the formation of Inter-
net topologies. These factors are (F1) preferential connectivity;
(F2) incremental growth; (F3) geographical distribution of nodes;
and (F4) locality of edge connections. F1 dictates the tendency of a
new node to connect to those existing nodes that have higher outde-
grees. F2 dictates that new nodes join the Internet in an incremental
way. F3 determines how nodes are distributed in space — in this
paper, we consider random and heavy-tailed distribution of nodes.
Finally, F4 dictates the tendency of a new node to connect to nearby
nodes instead of far-away nodes.

In synthetically generated network topologies, we study the rele-
vance of each factor in causing the aforementioned power laws as
well as other properties, namely diameter, average path length and
clustering coefficient. Different kinds of network topologies are
generated: (T1) topologies generated using our parametrized gen-
erator BRITE; (T2) random topologies generated using the well-
known Waxman model [12]; (T3) Transit-Stub topologies gener-
ated using GT-ITM tool [3]; and (T4) regular grid topologies. We
observe that some generated topologies do not obey power laws P1
and P2. Thus, the existence of these power laws can be used to
validate the accuracy of a given tool in generating representative
Internet topologies. Power laws P3 and P4 were observed in nearly
all considered topologies, butdifferent topologies showed different
values of the power exponent �. Thus, while the presence of power
laws P3 and P4 do not give strong evidence for the representative-
ness of a generated topology, the value of � in P3 and P4 can be
used as a litmus test for the representativeness of a generated topol-
ogy. We also find that factors F1 and F2 are the key contributors in
our study which provide the resemblance of our generated topolo-
gies to that of the Internet. Although some recent studies (e.g. [2])
have examined such factors for somepower laws, in this paper, we



examine their relevance with respect to these as well as other power
laws and metrics on a large numberof topologies synthetically gen-
erated using commonly used tools.

The rest of the paper is organized as follows. In Section 2, we
summarize three topology generation methods commonly used in
Internet studies. In Section 3, we briefly describe the power laws
found in [6]. Section 4 illustrates the absence or weak presence
of power laws in topologies synthetically generated using existing
tools. In Section 5, we briefly discuss preferential connectivity and
incremental growth (factors F1 and F2 above) and their role in gen-
erating topologies that exhibit power laws. Section 6 argues for the
geographical distribution of nodes and locality of edge connections
(factors F3 and F4 above) and their role in making synthetically
generated topologies more realistic. Section 7 describes BRITE,
a parametrizable topology generator we built. Using BRITE, we
present in Sections 8 and 9 our experiments and comparative anal-
ysis of generated topologies in order to assess the relevance of each
factor. Section 10 concludes the paper with future work.

2. COMMONLY USED TOPOLOGY GEN-
ERATION METHODS

In this section, we briefly describe three commonly used topology
generation methods [14].2 We use these methods in Section 9 to
analyze different kinds of synthetically generated topologies.

Random Method: In this method, a (fixed) set of nodes is dis-
tributed in a plane uniformly at random. A link is added between
each pair of nodes with a certain probability. The Waxman method
is an instantiation of this method where the probability of adding a
link is given by:

P (u; v) = � e�d=(�L) (1)

where 0 < �; � � 1, d is the Euclidean distance from node u to
node v, and L is the maximum distance between any two nodes.

A limitation of this method is that it does not impose any large-
scale structure among nodes. In particular, it is difficult to control
the configurations so as to generate large, sparse, but connected
Internet-like topologies.

Regular Method: This method generates regular topologies with
a specific and rigid structure and thus have no randomness at all.
Regular topologies such as grids are often used in analytic studies
of algorithm performance to make the analysis tractable.

Hierarchical Method: In this method, hierarchical topologies are
created by connecting small random graphs together according to
a larger-scale structure. Thus this method attempts to provide a
balance between randomness and structure.

The Transit-Stub method [3] tries to impose a more Internet-oriented
hierarchical structure as follows. A connected random graph is first
generated (e.g. using the Waxman method described above). Each
node in that graph represents an entire Transit domain. Each Tran-
sit domain node is expanded to form another connected random
graph, representing the backbone topology of that transit domain.
Next, for each node in each transit domain, a number of connected
random graphs are generated, representing Stub domainsthat are
attached to that transit node. Finally, some extra connectivity is
added, in the form of “back-door” links between pairs of nodes,
2Reference [14] provides detailed explanation of each method.

where a pair consists of a node from a transit domain and another
from a stub domain, or one node from each of two different stub do-
mains. By having nodes of different types, it is possible to generate
large sparsely-connected Internet-like topologies with typically low
node degrees.

3. POWER LAWS IN INTERNET TOPOLO-
GIES

Recently [6] it has been observed that certain properties of Internet
topologies can be described using power laws of the form y = x�.
This implies that those same distributions of interest in Internet
topologies are skewed. As a result, Internet studies which assume
that the distributions are not skewed, perhaps by taking into ac-
count only the average values from these distributions, can result in
misleading results. For example, for a particular snapshot of the In-
ternet topology in 1998, 85% of the nodes had outdegree less than
the average. Power laws have been used to describe several charac-
teristics of communication networks (e.g. traffic [4]), but not their
topologies. In this section we summarize the main observations in
[6] — see [6] for more details and how some power laws can be
used to estimate other related metrics.

Power laws of the form y = x� enable a compact characteriza-
tion of topologies through their exponents. If such (x; y) relation-
ships are plotted on a log-log scale, then the power-law exponent
� defines the slope of the resulting linear plot. We can then use
slopes of these linear plots to assess whether two topologies have
similar properties. Indeed, Faloutsos et al: [6] show that different
Internet domain-level topologies of different size and observed at
different times have almost equal slopes. On the other hand, their
observations indicate that a router-level topology has slopes that
significantly differ from those of domain-level topologies.

P1 (rank exponent): Consider the relationship between the outde-
grees of nodes, sorted in decreasing order, and the ranks of nodes
in the resulting order. The outdegree dv of a node v, is proportional
to the rank of the node, rv , to the power of a constant R, that is,
dv / rRv .

P2 (outdegree exponent): The frequency (number of nodes), fd,
of an outdegree, d, is proportional to the outdegree to the power of
a constant O, that is, fd / dO.

P3 (hop-plot exponent): The total number of pairs of nodes, P (h),
within h hops, is proportional to the number of hops to the power of
a constant H , that is, P (h) / hH ; h� Æ, where Æ is the diameter
of the network. 3

P4 (eigen exponent): The eigenvalues, �i, of the adjacency matrix
of a topology, sorted in decreasing order, are related as follows:
�i / iE . 4

4. LIMITATIONS OF EXISTING TOPOL-
OGY GENERATION TOOLS

Waxman [12] and Transit-Stub [3] are two of the most commonly
used tools for generating network topologies. To test their accu-
racy in generating topologies that resemble the Internet (i.e. obey
the same power laws empirically found in [6]), we show in Figure 1
3There is some controversy whether the neighborhood size, defined
by P (h) in [6], is a power law; the data in [10] show the neighbor-
hood size to grow exponentially.
4Reference [6] considered the 20 largest eigenvalues.
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Figure 1: Log-log plot of frequency fd vs. outdegree d for a 5000-node Waxman topology (left) and a 6660-node Transit-Stub topology
(right). The correlation coefficient is 0.4 for the Waxman topology, and 0.9 for the Transit-Stub topology.

a fit for the log-log plot of the outdegree exponent (cf. power law
P2 in Section 3). The linear fit is clearly not good for both Wax-
man and Transit-Stub, although it is much better for the Transit-
Stub topology. It is not surprising that both topologies exhibit the
absence or weak presence of the power law given that both tools
are not based on a dynamical growth model of the Internet, which
we subsequently discuss in Section 5. For example, both tools do
not gradually add nodes and links to form a topology, rather they
create all nodes and then start adding links to interconnect them.
Section 9 presents an extensive comparative analysis of different
topology generation models.

5. HOW POWER LAWS ARISE
In this section, we briefly discuss recent studies that suggest pref-
erential connectivity and incremental growth to be possible causes
for some power laws found in topologies. In this paper, we exam-
ine their relevance with respect to these as well as other power laws
and metrics on a large number of topologies synthetically generated
using commonly used tools.

Faloutsos et al: [6] provide evidence but not convincing possible
causes for the existence of power laws P1-P4 in Internet topologies.
Recently in [1], power law P2 has also been observed in the topol-
ogy of the World Wide Web. Here the nodes are documentsand the
links are hyperlinks. Huberman and Adamic [7] observe that the re-
lationship between the number of web pages and the different web
sites also follows a power law — many sites have only a few pages,
while very few sites have hundreds of thousands of pages. (This
may be viewed as equivalent to power law P1 in Internet topolo-
gies.) Using a stochastic dynamical growth model, power laws are
argued to arise when sites grow at the same average rate, thus sites
that are large become larger over time.

Barabási and Albert [2] suggest two possible causes for power law
P2 in any network topology: incremental growth and preferential
connectivity. Incremental growthrefers to “open” networks that
form by the continual addition of new nodes, and thus the gradual
increase in the size of the network. Preferential connectivityrefers
to the tendency of a new node to connect to existing nodes that are
highly connected or popular.

6. NODE PLACEMENT AND CONNECTION
LOCALITY

In this section, we argue for two other possible causes for the exis-
tence of power laws in Internet topologies, in addition to incremen-

tal growth and preferential connectivity. The first is the way nodes
of the network are distributed in space. Unlike random models,
we conjecture that Internet topologies have a high degree of clus-
tering. Thus, models that would generate topologies, where nodes
are distributed in space according to a skewed(e.g. heavy-tailed)
distribution, appear more realistic. This, for example, mirrors the
skewed distribution of human population or web pages over web
sites [7]. Another possible cause for power laws is the tendency
of a new node to connect to existing node(s) that are close-by in
distance.

Figure 2 shows a snapshot of a section of a topology (without links)
in which nodes were placed randomly or according to a heavy-
tailed distribution. The motivation behind using heavy-tailed place-
ment of nodes together with locality of edge connections is to ob-
tain a skewed distribution of outdegrees, where those few heavily
populated areas have highly connected nodes, while the rest of the
nodes are sparsely connected.

7. BRITE: A TOPOLOGY GENERATOR
To study the relevance of possible causes for power laws observed
in Internet topologies [6], we built a parametrized topology gener-
ator, we call BRITE5. Different combinations of possible causes
can be tested. We consider the possible causes described earlier,
namely: preferential connectivity, incremental growth, node place-
ment, and connection locality. For each combination, we analyze
the generated topologies in terms of power laws and other metrics
observed in real networks [6, 8]. In this section we describe the cur-
rent version of BRITE. Sections 8 and 9 present our experiments
and results, respectively. Table 1 lists the various parameters of
BRITE. We describe each parameter next.

The Plane:
The nodes of the generated topology are distributed in a plane di-
vided into HS � HS squares. Each one of these high-level squares
is further subdivided into smaller LS � LS low-level squares. Each
low-level square can be assigned at most one node.

Node Assignment:
A Random placement of nodes in the plane is achieved by simply
selecting a low-level square randomly and dropping a node there

5for Boston university Representative In-
ternet Topology gEnerator. Available at
http://www.cs.bu.edu/fac/matta/software.html



Figure 2: Snapshot of random node placement (left) and heavy-tailed node placement (right)

Parameter Meaning Values
HS Size of one side of the plane Integer > 1
LS Size of one side of a high-level square Integer � 1
NP Node Placement 0: Random, 1: Heavy-Tailed
m Number of links added per new node Integer � 1
PC Preferential Connectivity 0: NONE, 1: ONLY, 2: BOTH
IG Incremental Growth 0: INACTIVE, 1: ACTIVE

Table 1: Parameters of BRITE

while avoiding collisions. To achieve a Heavy-Tailed distribu-
tion of nodes, for each one of the high-level squares, the generator
picks a number of nodes n to be assigned to that square according
to a bounded Pareto distributiongiven by [5]:

f(n) =
a ka n�a�1

1� (k=P )a
(2)

A node is then placed randomly in one of the LS � LS low-level
squares while avoiding collisions.

Number of Links for a New Node:
The parameter m controls the number of neighbor nodes to which a
new node connects when it joins the network (or in other words, the
number of new links to be added to the topology). The greater the
value of m, the denser the generated topology. We refer to the set
of nodes from which a neighbor is selected for a newly considered
node as the candidate neighbor set.

Incremental Growth:
This parameter controls incremental growth and can take one of
two values:

� INACTIVE places all nodes at once in the plane before adding
any link. At each step, a node is randomly selected and m

links are used to connect it to m candidate neighbors from all
other nodes.

� ACTIVE places nodes in the plane gradually one at a time
as they join the network. In this case, a new node considers
as candidate neighbors only those nodes that have already
joined the network (i.e. nodes that are already connected to
some other node(s)).

Initially, before operating in either INACTIVE or ACTIVE
mode, the generator generates a small randomly connected
backbone of m0 nodes. The remaining nodes are then con-
nected.

Preferential Connectivity:
This parameter controls the activation or deactivation of both pref-
erential connectivity and locality. There are three possible values
for this parameter:

� NONE indicates that preferential connectivity is turned off.
In this case, a newly considered node connects to a candidate
neighbor node using Waxman’s probability function [12] (cf.
equation 1). This process is repeated to connect the new node
to m nodes.

� ONLY means that preferential connectivity is turned on. In
this case, a newly considered node v connects to a candidate
neighbor node i with the following probability:

diP
j2C dj

where di is the current outdegree of node i, and C is the set
of candidate neighbor nodes. This process implies that a new
node joining the network selects with high probability those
nodes with high outdegrees. This is repeated to connect v to
m nodes.

� BOTH combines preferential connectivity and connection lo-
cality. In this case, for a newly considered node v, we com-
pute for each candidate neighbor node i a Waxman’s proba-
bility wi (cf. equation 1). This gives preference to close-by
nodes. Then, the final probability of connecting to node i is
computed as follows:

wi diP
j2C wj dj

This process is repeated to connect v to m nodes.



8. EXPERIMENTS
In this section we describe our experiments. Section 9 presents
our results and observations. We consider topologies of size rang-
ing from 500 nodes to about 15000 nodes.6 For each selected size
and each combination of parameters described in Section 7, three
BRITE topologies were generated using three different random
seeds, and the average results are plotted.

Section 9 shows results for BRITE topologies generated starting
from a backbone of size m0 = 100 on a plane with HS = 1000 and
LS = 100. In the heavy-tailed node placement experiments, we
take the parameters of the bounded Pareto distribution (cf. equa-
tion 2) as follows: a minimum value k of 1, maximum value P of
10000 � LS � LS and shape parameter a of 1.7 Also, for a newly
considered node, we connect it with only one link, i.e. m = 1. We
obtained similar results for different values of HS, LS and m, and
thus are not shown. This includes the value of m = 5 considered
in [2]. For network sizes of 500 to 15000, as m increases from 1
to 5, the average node degree ranges from 2 to 10 with incremen-
tal growth, and ranges from 30 to 100 without incremental growth.
Note that with incremental growth, the average node degree is ap-
proximately 2m. We also do not show results for the case when both
preferential connectivity and connection locality are activated (i.e.
PC = 2) as it yields results similar to the case when only prefer-
ential connectivity is present (i.e. PC = 1).

We compare the results from BRITE topologies with topologies
generated using other models and tools. We generate topologies
according to the Waxman method, using the GeorgiaTech topology
generator, GT-ITM [14]. In our experiments, we set the parameters
of Waxman’s function to � = 0.2 and � = 0.15.8 Also using the GT-
ITM tool, we generate Transit-Stub topologies. Table 2 lists the
parameters we used to generate Transit-Stub topologies of various
sizes. For the considered network sizes, the average node degree
for Waxman topologies ranges from 15 to 500, whereas Transit-
Stub topologies have an average node degree of about 3. We also
generate regular grid topologies.

For each generated topology, we verify the presence or absence
of the power laws observed in [6] (cf. Section 3). For the log-
log plots obtained, we test the existence or absence of power laws
using Pearson’scorrelation coefficient9 — the closer the absolute
value of the correlation coefficient is to one, the closer the data
follows a power law, that is, we have a good linear fit on a log-log
plot. For the different kinds of topologies we generate, we obtain
graphs of the correlation coefficient as a function of the topology
size. A good linear fit should give a correlation coefficient of 0.95
or higher. If a given power law is found across different kinds of
topology, then we analyze the slopes of the linear fits to determine
which is closer to the slopes observed in [6].

We also measure for each generated topology other characteristics,
namely diameter, average path length, and clustering coefficient.

6Due to the high computational cost of computing eigenvalues, we
only consider topology sizes up to 7000 nodes for the eigenvalue
exponent results.
7To obtain a sufficiently skewed distribution, we take P greater
than LS � LS, which is the maximum number of nodes that can be
assigned to a high-level square. Thus we take this maximum to be
the number of nodes we assign to a high-level square if the random
number generated turns out greater.
8These are the same parameter values selected in [14].
9We obtain correlation coefficients using Mathematica[13].

The average path lengthin a topology is defined as the average
path length taken over all pairs of nodes. The clustering coefficient
is defined as follows [11]: consider any node v and its set of kv
neighbors. At most

�
kv+1
2

�
edges can appear between these nodes.

The clustering coefficient Cv for this node is the fraction of that
set of edges which are actually present in the graph. The clustering
coefficient of the graph is then defined to be the average value of
Cv , averaging over all nodes.

9. RESULTS
Before presenting our results, we first list general observations:

� The rank and outdegree power laws (cf. P1 and P2 in Sec-
tion 3) are the most effective in distinguishing different kinds
of topologies.

� The hopplot and eigenvalue power laws (cf. P3 and P4 in
Section 3) are observed in nearly all topologies that we stud-
ied, however, different topologies differ in their H and E
exponents.

� Preferential connectivity and incremental growth are found
to be the main causes for all power laws in our simulations.

9.1 Rank Exponent
For different topologies, we consider the log-log relationship be-
tween outdegree and rank of a node for varying topology sizes.
Then we plot the correlation coefficient obtained when we perform
a linear fit of those plots as the topology size grows.

9.1.1 Waxman, Transit-Stub and Grid Topologies
Figure 3 shows the results for Waxman, Transit-Stub and grid topolo-
gies. Waxman and Transit-Stub topologies give correlation coeffi-
cients that are around 0:8 and 0.85, respectively. This indicates
poor linear fits. For all Internet topologies studied in [6], the cor-
relation coefficients were higher than 0:95. Thus, Waxman and
Transit-Stub topologies do not seem to be representative of Inter-
net topologies, at least with respect to the rank exponent.
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Figure 3: Correlation Coefficient vs. Size (Rank Exponent for
Waxman, Transit-Stub and grid topologies)

As expected, grid topologies show very poor linear fits especially
for large sizes. This is because nodes have only degrees of 2, 3 and
4, where only the four corner nodes have degree of 2, other nodes
at the periphery have degree of 3 and the rest have degree of 4.



Size Transit domains Nodes/Transit domain Stubs/Transit node Nodes/Stub

510 10 1 5 10
1020 20 1 5 10
4040 20 2 10 10
10100 100 1 10 10
16160 20 8 10 10

Table 2: Parameters of Transit-Stub topologies

9.1.2 BRITE Topologies
Figures 4 and 5 show results for topologies obtained using our
generator. Figure 4 corresponds to random node placement while
Figure 5 corresponds to heavy-tailed (bounded Pareto) node place-
ment. In Figure 4, for different combinations of incremental growth
and preferential connectivity, we observe the following:
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Figure 4: Rank Exponent for BRITE topologies (Random Node
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� PC set to 1 and IG set to 1: Topologies generated with
bothpreferential connectivity and incremental growth show
excellent correlation coefficients approaching 1. In this case,
the slopes of the linear fits are around �0:6 for all generated
topologies, which is very close to the value of�0:5 observed
in [6] for actual Internet topologies. This suggests that if the
rank power law is a fundamental property of Internet topolo-
gies, then using a topology generation model that includes
both preferential connectivity and incremental growth will
produce topologies that highly resemble Internet toplogies
with respect to the rank power law.

� PC set to 1 and IG set to 0: Topologies generated with pref-
erential connectivity but without incremental growth show
relatively high correlation coefficients (approaching 0.9). This
indicates that, for the rank exponent, preferential connectiv-
ity plays a more important role than the incremental growth
property.

� PC set to 0 and IG set to 1: Topologies generated with in-
cremental growth but without preferential connectivity show
the lowest correlation coefficients in terms of the rank expo-
nent. This suggests that preferential connectivity is a neces-
sary condition for the rank exponent power law to hold.

� PC set to 0 and IG set to 0: Topologies generated without
incremental growth nor preferential connectivity also show

poor correlation. This setting corresponds to a variant of
Waxman’s random model.

Figure 5 shows the results when nodes are distributed according to
a Pareto distribution. We observe the following:
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Figure 5: Rank Exponent for BRITE topologies (Pareto Node
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� Topologies generated without preferential connectivity nor
incremental growth show the worst correlation coefficients.

� In the presence of incremental growth, the skewed distribu-
tion of nodes makes the generation model less sensitive to
the absence of preferential connectivity. The values of the
correlation coefficient are relatively high (around 0.85), but
the linear fits are still not good.

� The performance of topologies generated with preferential
connectivity alone or with both preferential connectivity and
incremental growth are comparable to those observed with
random node placement. This suggests that skewed node
placement may not be a fundamental cause for the appear-
ance of power laws in Internet topologies.

Figure 6 shows a fit for the log-log plot of the rank exponent. The
linear fit is clearly best for BRITE topologies with both preferential
connectivity and incremental growth (under random node place-
ment).

9.1.3 Conclusions on Rank Exponent
With respect to the rank exponent, preferential connectivity seems
to be a necessary condition for the power law to hold. The pres-
ence of incremental growth increases the correlation coefficients,
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Figure 6: Log-log plot of outdegree dv vs. rank for a 5000-node Waxman topology (left), a 4040-node Transit-Stub topology (middle)
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for the Waxman topology, 0.87 for the Transit-Stub topology, and 0.96 for the BRITE topology.

resulting in excellent linear fits. For Waxman, Transit-Stub and grid
topologies, the rank exponent did not appear as the linear fits did
not show high degrees of correlation. This suggests that the rank
exponent can effectively distinguish different classes of topologies.

9.2 Outdegree Exponent
For different topologies, we plot for varying topology sizes the cor-
relation coefficient of the log-log relationship between frequency
and outdegree (cf. Section 3). As in [6], we plot outdegrees starting
from one until an outdegree with exactly one node is found.

9.2.1 Waxman, Transit-Stub and Grid Topologies
Figure 7 shows the results for Waxman, Transit-Stub and grid topolo-
gies. Waxman topologies give very low correlation coefficients, in-
dicating that the outdegree power law is not present. Transit-Stub
topologies give correlation coefficients that are around 0.9, indicat-
ing that the linear fits are not good. Again, this suggests that, at
least with respect to the outdegree exponent, Waxman and Transit-
Stub topologies do not resemble Internet topologies.

For grid topologies, agreement with the outdegree power law seems
to be present. However, this may be misleading because any grid
has only three different degrees (2, 3 and 4), resulting in only three
nearly colinear points in the log-log plot, and consequently the data
can be easily fit to a straight line.
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Figure 7: Correlation Coefficient vs. Size (Outdegree Exponent
for Waxman, Transit-Stub and grid topologies)

9.2.2 BRITE Topologies
Barabási and Albert [2] show that both preferential connectivity
and incremental growth are needed for the outdegree power law to

exist. Our results are consistent with theirs as observed in Figures
8 and 9. Thus, any topology generation model should include both
properties.

For the router-level topology analyzed in [6], the value of the out-
degree exponent was�2:48. For BRITE topologies generated with
both preferential connectivity and incremental growth, the slope of
the linear fits was in the same range — from �2:03 for a 500-node
network to �2:36 for a 15000-node network.
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Figure 8: Outdegree Exponent for BRITE topologies (Random
Node Placement)
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Figure 9: Outdegree Exponent for BRITE topologies (Pareto
Node Placement)



9.2.3 Conclusions on Outdegree Exponent
Waxman and Transit-Stub topologies do not exhibit the outdegree
power law. BRITE topologies generated with both preferential con-
nectivity and incremental growth closely resemble Internet topolo-
gies reported in [6]. Thus, like the rank exponent, the outdegree
exponent can effectively distinguish different classes of topologies.
Since conclusions under Pareto node placement are consistent with
those under random node placement, we henceforth show results
only for the latter.

9.3 Hopplot Exponent
For different topologies, we plot for varying topology sizes the cor-
relation coefficient of the log-log relationship of the number of
node pairs within a certain distance versus the distance (cf. Sec-
tion 3). Here we consider distance values up to the diameter of the
topology.

9.3.1 Waxman, Transit-Stub and Grid Topologies
Figure 10 shows the results for Waxman, Transit-Stub and grid
topologies. All Waxman topologies yield linear fit correlation co-
efficients close to 1, indicating that the hopplot power law holds.
However, this may be misleading given that the number of data
points was too low (around 3 or 4 data points). The reason for hav-
ing so few data points has to do with a fundamental limitation of
random methods for topology generation. In order to generate large
connectedtopologies, the number of links needed is large. Conse-
quently, the diameter of the network decreases significantly and the
complete set of pairs of nodes is covered within few hops (around
3 or 4 hops).
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Figure 10: Correlation Coefficient vs. Size (Hopplot Exponent
for Waxman, Transit-Stub and grid topologies)

Transit-Stub and grid topologies also yield correlation coefficients
that are above 0:95. Thus, the hopplot exponent holds for different
kinds of topologies, although they belong to three different classes
(random, hierarchical and regular). As mentioned in Section 8, the
correlation coefficients act as an initial test for assessing the resem-
blance to Internet topologies. Once this initial test is passed, we
must look at the slopes of the linear fits to determine their close-
ness to those empirically found in [6]. We discuss this further in
Subsection 9.3.3.

9.3.2 BRITE Topologies
Figure 11 shows the results for BRITE topologies. All generated
topologies show the presence of the hopplot power law.
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Figure 11: Hopplot Exponent for BRITE topologies

It is important to notice that when the incremental growth prop-
erty is turned off, the generated topology “behaves” somewhat like
a randomly generated topology with respect to a higher number of
links needed to make the topology connected and, consequently, the
generated topology has a smaller diameter (like Waxman topolo-
gies). Having a small diameter means that the log-log plot has few
data points, which makes it easier to obtain a good linear fit. On
the other hand, when incremental growth is present, the number
of points in the plots increases significantly. However, the hopplot
power law holds in both cases with correlation coefficients above
0.95.

9.3.3 Conclusions on Hopplot Exponent
Figure 12 shows a plot of the slopes of the linear fits for the hopplot
exponent data for all kinds of topologies and for varying topology
size.
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Figure 12: Linear Fit Slopes for Hopplot Exponent data (All
topology classes)

Waxman topologies are generated with the highest degree of ran-
domness, while grids are the most regular (no randomness at all).
Thus, intuitively, the slopes for other kinds of topologies (including
Transit-Stub) should lie between those of Waxman and grid topolo-
gies. This agrees with the results of Figure 12, where the slopes for
Waxman topologies are the largest and they increase as topologies
grow larger. For a 5000-node Waxman topology, the value of the
slope is 7:65. At the other end of the spectrum, the slopes for the
grid topologies were constant across all sizes with values always



around 1:5. These slopes are significantly different from the one
measured in [6] for the router-level topology, which was 2.8.

BRITE topologies without preferential connectivity nor incremen-
tal growth show, as expected, slopes similar to that of Waxman
topologies. The slopes for those topologies lie between 4:19 for
500-node network and 6:73 for 15000-node network. BRITE topolo-
gies with preferential connectivity but no incremental growth have
less randomness and, as expected, show lower slope values. Fi-
nally, we observe that BRITE topologies with incremental growth
alone or together with preferential connectivity behave very simi-
larly to Transit-Stub topologies. Also, the values of the slopes lie
between 2:39 and 3:52 for Transit-Stub topologies, and between
2:37 and 3:11 for BRITE topologies with preferential connectiv-
ity and incremental growth. Thus, BRITE topologies have slopes
closer to the value of 2:8 measured in [6]. In summary, with respect
to the hopplot exponent, both Transit-Stub and BRITE topologies
with incremental growth resemble Internet topologies.

9.4 Eigenvalue Exponent
For different topologies, we plot for varying topology sizes the cor-
relation coefficient of the log-log relationship of the eigenvalues of
the topology adjacency matrix versus their rank in decreasing order
(cf. Section 3).

9.4.1 Waxman, Transit-Stub and Grid Topologies
Figure 13 shows the results for Waxman, Transit-Stub and grid
topologies. The eigenvalue power law tends to hold for Waxman
topologies as they grow large. Similar to large Waxman topologies,
all generated Transit-Stub topologies show correlation coefficients
above 0:95, indicating good linear fits. Grid topologies show rela-
tively low correlation coefficients.

Similar to the hopplot exponent, this result indicates that it is dif-
ficult to distinguish different topologies in terms of the eigenvalue
exponent. We thus examine the slopes of the linear fits in Subsec-
tion 9.4.3.
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Figure 13: Correlation Coefficient vs. Size (Eigenvalue Expo-
nent for Waxman, Transit-Stub and grid topologies)

9.4.2 BRITE Topologies
Figure 14 shows the results for BRITE topologies. The correla-
tion coefficients are above 0.95 for nearly all topologies. Topolo-
gies generated with preferential connectivity but without incremen-
tal growth have clearly inferior correlation coefficients. It is worth
mentioning that the value of the first (dominant) eigenvalue relative

to that of other eigenvalues largely determines the linearity of the
log-log plot. Since different kinds of topologies exhibit the eigen-
value power law (at least for certain network sizes), we examine
next the slopes of the linear fits as a means to distinguish different
classes of topologies.
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Figure 14: Eigenvalue Exponent for BRITE topologies

9.4.3 Conclusions on Eigenvalues
Figure 15 shows a plot of the slopes of the linear fits versus topol-
ogy size for all considered topologies. For Waxman topologies, in
which there is a high degree of randomness, the slope of the linear
fits ranges from �0:21 for 500-node network to �0:65 for 5000-
node network with correlation coefficients close to 0:9 in all cases.
In contrast, for grid topologies, where there is no randomness at
all, the eigenvalue log-log plots are flatter as the size of the grid in-
creases. The slope of the fits for the grids ranges from �0:031 for
400-node grid to �0:002 for 6400-node grid. Thus, for both kinds
of topologies, there is a clear difference in the value of the expo-
nents/slopes. For these two classes of topologies, the slope values
differ significantly from the value of -0.17 measured in [6] for a
router-level topology.
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Figure 15: Linear Fit Slopes for Eigenvalue Exponent data (All
topology classes)

Again, BRITE topologies generated without preferential connectiv-
ity nor incremental growth behave similar to Waxman topologies.
The other four topology classes, Transit-Stub, BRITE with incre-
mental growth only, BRITE with preferential connectivity only, and
BRITE with both preferential connectivity and incremental growth,



lie between the extremes of complete randomness (Waxman) and
complete regularity (grids). For these classes of topologies the
slope values are not significantly different from the value of�0:17
reported in [6]. BRITE topologies with preferential connectivity
show slopes closest to -0.17.

9.5 Path Length and Clustering Coefficient
In addition to the power laws, we also studied the diameter, the
average path length and the clustering coefficient, defined earlier in
Section 8, for all generated topologies.

Figure 16 shows the average path length for topologies of differ-
ent sizes. We observe that Waxman (random) topologies and those
BRITE topologies in which incremental growth was turned off,
“behave” similarly in terms of the average path length. On the other
hand, those topologies generated with incremental growth turned
on are less random, resulting in a much higher average path length.
This is consistent with results in [11].
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Figure 16: Average Path lengths for all topology classes

We observe that topologies generated with both preferential con-
nectivity and incremental growth activated, have an average path
length approaching 12 hops as the network size increases. In con-
trast, other topologies show lower average path lengths.

Figure 17 shows the clustering coefficients for all topology classes.
Figure 18 shows the diameters. The diameter plot shows the same
trends as the average path length. BRITE topologies generated
with both preferential connectivity and incremental growth acti-
vated, show a diameter approaching 30 hops as the network size
increases.10

Finally, we note that for Waxman topologies and BRITE topolo-
gies without incremental growth, as the network size increases, the
diameter and average path length tend to decrease. This is because
in a random network, as the number of nodes increases, the num-
ber of links needed to have a connected topology increases signifi-
cantly, making “shortcuts” between many nodes and consequently
decreasing the diameter and average path length of the network.

10. CONCLUSIONS
We studied possible causes for power laws [6] in Internet topolo-
gies. The outdegree and rank exponents are found to provide a
10As a sanity check, Paxson [8] measures a mean Internet path
length of around 16 hops and diameter of beyond 30 hops.

powerful means to test the resemblance of a topology to that of
the Internet. The hopplot and eigen exponents are found to hold
for almost every topology we studied. However, the value of the
exponent of the power law can provide a useful means to evalu-
ate a topology. We also studied other metrics besides power laws.
Topologies that strike a good balance between randomness and
structure are found to have metrics close to those measured for the
Internet. Consistent with other studies, we found that both prefer-
ential connectivity and incremental growth are the key contributors
to the success of a topology to resemble that of the Internet.

Future work remains to build an even more realistic topology gener-
ator, which generates truly representative Internet topologies. This
would include the assignment of capacities and propagation delays
to links, the introduction of queues and the grouping of nodes into
administrative domains. Further work also involves the study of
other topological properties, how such properties may affect the de-
sign of Internet protocols, and refining and extending our topology
generator.
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Figure 17: Clustering Coefficients for all topology classes
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Figure 18: Diameters for all topology classes
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