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Abstract

The majority of the traffic (bytes) flowing over the Inter-
net today have been attributed to the Transmission Control
Protocol (TCP). This strong presence of TCP has recently
spurred further investigations into its congestion control
mechanism and its effect on the performance of short and
long data transfers. In this paper, we investigate the in-
teraction among short and long TCP flows, and how TCP
service can be improved by employing a low-cost service-
differentiation scheme. Through control-theoretic argu-
ments and extensive simulations, we show the utility of
isolating TCP flows into two classes based on their life-
time/size, namely one class of short flows and another of
long flows. With such class-based isolation, short and
long TCP flows have separate service queues at routers.
This protects each class of flows from the other as they
possess different characteristics, such as burstiness of ar-
rivals/departures and congestion/sending window dynam-
ics. We show the benefits of isolation, in terms of better pre-
dictability and fairness, over traditional shared queueing
systems with both tail-drop and Random-Early-Drop (RED)
packet dropping policies.

1 Introduction

In order to improve Internet services, enhancements to
the Internet’s basic best-effort architecture have been re-
cently proposed, most notably, the Intserv and Diffserv ar-
chitectures. In the Intserv architecture [31], routers are
stateful, i.e. they maintain state information about each
communication flow of packets. Thus, per-flow delivery
guarantees can be provided at the expense of complexity
at routers. The Diffserv architecture [4, 10, 34], however,
requires only access (border) routers at the edge of the net-
work to maintain per-flow information, whereas routers in
the core of the network are kept essentially stateless. In
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this paper, we concern ourselves with Diffserv-like archi-
tectures and how they can best manage TCP flows � , which
constitute the majority of the traffic volume (80-90%) on
the Internet today [35].

Recent measurements of Internet traffic [29] show that
the length (in terms of both lifetime and transfer size) of
TCP flows follows a heavy-tailed distribution, i.e. only a
small percentage (e.g. less than 20%) of flows are long-lived
(e.g. more than 20 packets), but they carry a large percent-
age (e.g. 85%) of the total traffic (in bytes). This calls for
a careful design of the network so that these few long-lived
TCP flows are managed well. Furthermore, many recent
proposals (e.g. [10, 15]) have attempted to provide long-
lived TCP flows with predictive (or controlled-load) ser-
vice, where a TCP flow is statistically allocated a certain
rate/bandwidth. In these proposals, it has been shown that
a TCP flow has to operate in a predictable mode, otherwise
it may not be able to take advantage of its reservation. This
predictability is hard to achieve in the presence of the many
short-lived TCP flows, which have a more bursty flow ar-
rival/departure process [14, 35] and more drastic sending
window dynamics.

In this paper, we argue for an architecture that iso-
lates short-lived and long-lived TCP flows into two classes.
This can be implemented, for example, by using a class-
based queueing (CBQ) scheme [17], or by routing these
two classes of flows on (logically) separate communication
paths [34]. See Figure 1 for an illustration of isolation con-
trol. Edge routers will be responsible for classifying flows
and marking packets as belonging to long-lived or short-
lived flow. Once a flow is classified into a long flow (e.g.
after a certain number of packets from that flow are ob-
served), edge routers will be able to direct the recognized
flow to a new path, for example, by establishing a label-
switched path using MPLS [6, 2, 34].

We show using control-theoretic arguments and exten-
sive simulations the utility of such class-based isolation
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out the paper. A flow can be generally defined as a sequence of packets
which share some common properties. In this paper, we define a flow as
packet sequence between the same source host/network and destination
host/network pair.
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Figure 1. Edge routers perform isolation control

scheme. We show that fairness and predictability are im-
proved for both short and long TCP flows. Furthermore,
by allocating more bandwidth to the class of short flows,
which are usually interactive and delay-sensitive, we can
significantly reduce their response time. Our work differs
from previous work (reviewed in Section 5) in that we study
the benefits of class-based isolation to not only long TCP
transfers

�
, but also to short TCP transfers, which constitute

a large percentage of TCP flows on the Internet today.
The rest of the paper is organized as follows. Section 2

uses control-theoretic arguments (similar to [21, 30]) to es-
tablish the benefits of isolation (or individual) control over
traditional aggregate control, where flows of different char-
acteristics (e.g. size) are mixed together to share the same
resources (e.g. buffer, transmission capacity). Section 3 de-
scribes our simulation model and experiments. Section 4
supports our claims by extensive simulations of TCP-reno
flows. Section 5 discusses related work, and Section 6 con-
cludes the paper. Due to space limitations, we refer the
reader to [23, 22] for the derivation of stability conditions
in Section 2, and for more simulation results.

2 Aggregate versus Individual Control

In this section, we formulate two discrete-time control
models. In the first model (Section 2.1), each flow controls
its input traffic rate based on the aggregate state of the net-
work due to all

�
flows. In the second model (Section 2.2),

each flow (or class of homogeneous flows) controls its rate
based on its own individual state within the network. Here
we do not model TCP flows whose control generally leads
to oscillatory behavior [8], rather we assume PID control �
for which a stable solution exists under certain conditions
[27, 30, 21]. The motivation behind this assumption is to
keep the models simple while still gaining insights into the
fundamental differences between aggregate and individual
controls, and how these differences can affect the perfor-
mance of TCP flows of different size.

In the aggregate control model, the number of new pack-
ets that a flow � sends into the network at time step � , de-
noted by ���� , is adapted based on the difference between a
target total buffer space, denoted by 	 , and the current to-
tal number of outstanding packets, denoted by 
�� . In the
�
Many TCP studies assume infinite transfers.
PID control is a controller where the control signal is a linear combi-

nation of the error, its integral, and derivative [27].

individual control model, ���� is adapted based on flow (or
class) � ’s target, denoted by 	 � , and its current number of
outstanding packets, denoted by 
 �� . We denote by � � the
total number of packets acknowledged at time step � , and
by ���� the number of flow/class � packets acknowledged at
step � . In what follows, for each control model, we deter-
mine conditions under which the system stabilizes. We then
solve for the values of the state variables at equilibrium, and
show whether fairness (or a form of weighted resource shar-
ing) can be achieved. Table 1 lists all system variables along
with their meanings.

Table 1. Table defining system variables

Variable Meaning�
total number of flows (or classes of homogeneous flows)���� number of new packets of flow/class � at step �� �� number of outstanding packets of flow/class � at step �� �� number of flow/class � packets acknowledged
(i.e. no longer outstanding) at step �� � total number of outstanding packets at step �� � total number of packets acknowledged (served) at step ��
target total buffer space� � target buffer space allocated to flow/class �� � , � � parameters controlling increase and decrease rates of � ��

2.1 Aggregate Control or Sharing

Under aggregate PID control, the evolution of the system
state is described by the following difference equations:
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For simplicity, assume a constant acknowledgment (ser-
vice) rate, i.e. �7� �98 for all � . Let ! and * be the maxi-
mum of ! � and * � , respectively. Then, it can be shown that
this system is stable if the following condition is satisfied
[23]:

!: <;=*?>A@� (2)

Otherwise, the system does not converge to a stable state.
This indicates that the existence of flows which rapidly
change their sending rates through high values of ! � and/or* � can cause the system to become unstable. This suggests
that short TCP flows, which aggressively change their send-
ing windows in slow start phase, may affect the stability
of long TCP flows, which change their sending windows
cautiously in congestion avoidance mode, in a system that
mixes both kinds of TCP flows. Furthermore, in such a sys-
tem, the value of

�
may be high so as to cause instability.



We now derive the values of the state variables at equilib-
rium given that the system is stable, i.e. the system satisfies
equation (2). Denote by # � � ( � and 
 � the steady-state values
of ���� and 
 � , respectively. Then, at equilibrium, we have
from equations (1):
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Thus, at equilibrium, 
 � � 	 and
� 3�65

�
# � � ( � � 8 . In

other words, the system converges to a state where the total
input rate matches the total service rate, and the total buffer
space is full.

We note that if ! � � ! and * � � * for all � , then � ��
changes by the same amounts for every flow � . Conse-
quently, if we start the evolution of the system with ���� be-
ing the same for all flows, only then we have equal sharing
of the network at steady-state, i.e. # � � ( � ���3 , regardless of
the initial values of 
��� . However, in general, when ���� are
not equal for all flows, the system converges to an unfair
state, more precisely, to a state where

# � � ( � � � ��  
8 % � 3� 5 � �	��� (4)

To summarize, controlling several flows by observing the
resulting aggregate state of the network may lead to instabil-
ity due to either the existence of flows which are rapidly ad-
justing their sending rates, or a high number of flows com-
peting for the same shared resource. Furthermore, even if
the system is stable, the system is highly likely to converge
to an unfair state where flows receive unequal shares of the
resource.

2.2 Individual Control or Isolation

Under individual PID control, the evolution of the sys-
tem state is described by the following difference equations:

� �� � � �0� ��  <! �$# 	 � %'
 �� (  
* �,+-# 	 � %/
 �� ( % # 	 � %/
 ��� �� (21
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 �0� ��  � ��� �� %'� ��� �� (5)

Recall that under individual control, flow/class � regu-
lates its input, ���� , based on its own number of outstanding
and acknowledged packets. For simplicity, assume a con-
stant acknowledgment (service) rate, i.e. � �� �.8 � for all � .
Following the same stability analysis to derive equation (2)
[23], it is easy to see that flow/class � stabilizes if the fol-
lowing condition is satisfied: 
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We set ���� in equation (2).

Observe that, unlike aggregate control, flows/classes are
isolated from each other. Therefore, the existence of
flows/classes, which rapidly change their sending rates
through high values of ! � and/or * � (e.g. short TCP flows),
does not affect the stability of other flows (e.g. long TCP
flows). This isolation can be implemented using, for exam-
ple, a class-based queueing (CBQ) discipline [17]. In such
a CBQ system, each class of homogeneous flows can be al-
located its own buffer space and service capacity.

We now derive the values of the state variables of
flow/class � at equilibrium given that it stabilizes, i.e.
flow/class � satisfies equation (6). Denote by # � � ( � and# 
 � ( � the steady-state values of � �� and 
 �� , respectively.
Then, at equilibrium, we have from equations (5):
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Thus, at equilibrium, # 
 � ( � � 	 � and # � � ( � �.8 � . In other
words, each flow/class � converges to a state where its in-
put rate matches its allocated service rate, and its allocated
buffer space is full. We note that if the allocated buffers 	 �
and service capacities 8 � are equal, then every flow receives
an equal share of the resources, regardless of the initial val-
ues of �	�� and 
��� . One can also achieve a weighted resource
sharing by assigning different 	 � and 8 � allocations. Thus,
a flow/class with higher priority (e.g. short interactive TCP
flows) can be allocated more resources, so as to receive bet-
ter throughput/delay service.

To summarize, controlling each flow (or class of homo-
geneous flows) by observing its own individual state within
the network provides isolation between them. Thus, stabil-
ity can be achieved for a flow/class regardless of the be-
havior and number of other flows/classes. Furthermore, the
system can converge to a fair state where flows/classes re-
ceive a weighted share of the resources.

3 Simulation Model and Experiments

As pointed out in Section 1, recent measurements of In-
ternet traffic [29] show that the length (in terms of both life-
time and transfer size) of TCP flows follows a heavy-tailed
distribution, where few long-lived TCP flows carry most of
the bytes. Short flows behave very differently compared to
long flows. First, some measurement studies [14, 35] sug-
gest that short-lived flows arrive to the network in a more
bursty fashion than long-lived flows. In addition, for TCP
traffic, which contributes most of the Internet traffic today,
long-lived flows, which typically acquire enough knowl-
edge about the congestion state of the network, spend most
of their time in congestion avoidance phase, while short-
lived flows mainly transmit in slow start phase [7]. In other
words, short flows generally finish their transmission before
they can adapt to their fair share of the bandwidth. Gener-
ally speaking, the TCP congestion window changes more



drastically during slow start than during congestion avoid-
ance. However, because short TCP flows generally attain
smaller window sizes, they generate smaller packet bursts
(albeit more variable in size) than long TCP flows.

These differences in the behavior of short and long TCP
flows suggest that it may be beneficial to treat network flows
differently based on their size. More precisely, isolating
short flows from long ones promises to reduce the volatil-
ity (seen by long flows) of the state of congestion in the
network created by the burstier arrivals of short TCP flows
and their more drastic window dynamics (i.e. variation in
packet burst sizes). Thus, the few well-behaving (more sta-
ble) long-lived TCP flows, which are carrying most of the
bytes, can be protected and provided better service.

Furthermore, with isolation, short TCP flows are also
protected from long TCP flows, which generally attain
larger window sizes (or generate larger packet bursts). This
reduces the chances that short TCP flows are completely
shut off by long flows, which would increase their response
time. This is clearly undesirable for short interactive/delay-
sensitive flows. This undesirable situation has been ob-
served when both shared tail-drop queues and Random-
Early-Drop (RED) queues are deployed [16, 5], where
sources generating smaller packet bursts (i.e. short flows
with smaller window sizes) are penalized.

Our objective is to investigate the effect of isolating
(or splitting) a set of short and long flows into two (size-
homogeneous) classes, namely short class and long class,
in the absence and presence of background traffic. We then
measure various performance metrics, including fairness
within each class. We obtain our simulation results using
the UCB/LBNL/VINT Network Simulator—ns (version 2)
[36]. All simulations are for the TCP-reno version [32, 33].
Simulations with TCP-tahoe support the same conclusions.
In our experiments, we consider links with FIFO queues
employing either tail-drop or RED packet dropping policy.
Unless otherwise specified, packet queues are assumed to
deploy a tail-drop policy.

3.1 Flow Assignment Policies

We compare three traffic management schemes em-
ployed at an edge router distributing flows over two paral-
lel paths (cf. Figure 1): (1) a load-balanced strategy where
incoming flows are randomly distributed with equal proba-
bility over the two paths; (2) a size-based splitting strategy
where short flows, whose transfer volume in bytes is below
a certain size threshold, are routed on one path (Path 1) and
long flows on the other (Path 2); and (3) a lifetime-based
splitting strategy where each flow is first routed on Path 1,
then if the flow is still active after some time threshold or
a certain number of packets (e.g. 30 packets are observed
from that flow), that flow is considered long and is routed
on Path 2.

When a splitting (isolation) policy is used, unless other-
wise specified, a size-based splitting strategy is used. Note

that size-based splitting assumes that TCP flows are classi-
fied based on the exact size of the transfer, rather than by
classifying a flow as long-lived after observing it for some
time or for a certain number of packets. The latter mech-
anism, used in lifetime-based splitting, would likely be the
one used in practice [29]. However, it is not straightfor-
ward to quantify the effect of a re-routed long flow on the
ongoing group of long flows. Thus, in this paper, we also
use size-based splitting to exclude these effects and exam-
ine isolation if we indeed have a “clean” split among short
and long flows.

3.2 Performance Measures

We consider the following performance measures: (1) ef-
fective throughput (or goodput) to measure the rate
of successfully transmitted (i.e. acknowledged) packets;
and (2) fairness within each class (i.e. among size-
homogeneous flows). To measure fairness, we use Chiu
and Jain’s fairness index [8], which is defined as follows:
if there are

�
connections competing for a bottleneck re-

source, and the goodput achieved by connection � is � � , then
the fairness index

�
is given by:

� � # � 3�65
�

� � ( �� � 3� 5
�

� ��
The closer the value of

�
is to 1, the more fair the resource

allocation is (i.e. the values of � � ’s are closer to each other).
Throughout simulation lifetime, we measure the goodput
and fairness index over 20-second intervals, and either plot
these instantaneous values as a function of time, or plot the
average value.

4 Simulation Results

Simulation results in Sections 4.2 and 4.3 compare iso-
lation and sharing for varying network pipe and buffer sizes
in the presence of telnet background traffic. Section 4.4
presents performance results with web background traffic.

4.1 General Observations

Before presenting the details of our simulation experiments,
we summarize our observations:

� Isolating short flows from long ones can reduce the
load variation on the route taken by long flows. This
is because long flows are then protected from the more
bursty arrivals/departures of short flows and their more
drastic sending window dynamics. Thus isolation can
improve the predictability of the service provided to
long flows as well as fairness among them.

� Class-based isolation of short and long TCP flows also
protects short flows from being completely shut off



by long TCP flows, which generally generate larger
packet bursts due to their larger sending windows.
Thus isolation can also improve the predictability of
the service provided to short flows as well as fairness
among them.

� Class-based isolation provides short TCP flows with
much better fairness and response time than that
provided in a shared RED queueing system, since
RED usually penalizes flows generating smaller packet
bursts.

� Class-based isolation can improve service predictabil-
ity and fairness without sacrificing the overall good-
put and utilization of the network. This is especially
true when network resources are relatively scarce—
generally when the share of each connection is less
than 10 packets per round-trip time.

� Class-based isolation can allow a service provider to
more accurately predict performance and thus pro-
vide reliable guarantees to users, including through-
put/delay guarantees to short interactive transfers.

4.2 Effect of Pipe Size

Figure 2 shows the topology used for this set of exper-
iments. The link between nodes

�
and � is the bottleneck

link. Each pair of sender � � and receiver � � sets up a ses-
sion in which infinite amount of data is sent, however, the
session data is spread over several connections. Each con-
nection has a limited size and classified as either long if its
size is 1000 packets or short if its size is 10 packets. Each
session starts at a randomly chosen time in the first 5 sec-
onds of simulation time. Whenever a connection finishes
its transmission, a new connection belonging to the same
session starts. A total of six low-bandwidth telnet sessions
(using tcplib in ns [36]) are used as background traffic to
avoid deterministic (or synchronization) behavior. All the
topology and protocol related parameters are listed in Ta-
ble 2.
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Figure 2. Topology to study effects of pipe and buffer
size

We use ��� and ��� as scaling factors to control the size of
the network pipe. From the simulation parameters, we can

Table 2. Simulation parameters for studying
effects of pipe and buffer size

Description Value
Packet size 576 bytes
Maximum TCP window size 128 packets
TCP timeout granularity 0.5 seconds
Bottleneck link delay 40 ms
Access link delay 5 ms
Capacity unit �
	 2.5 Mbps = 542 packets/s
Bottleneck capacity � �������	
Buffer unit

� 	 50 packets ���
	�����
�
Bottleneck link buffer

� ���� � 	
Access link capacity ����
	
Access link buffer ������� packets
Long connection size ������� packets
Short connection size ��� packets

roughly compute the size of the network pipe and the av-
erage share that a connection should get from the network.
We use the two-way propagation delay of 100 mseconds as
an estimate of the round-trip time RTT. Therefore, the net-
work pipe size,  , is computed as:

 � 8"! �$#%#  	
� ��� ! 8�&'! �$#%#  ��� ! 	 &

Assume there are
�

concurrent connections, then each con-
nection � should be able to transmit at rate ( � �*)3 per RTT.
In this section, we set �+� � ��� � � . If � � ; and

� � ; � ,
we can compute  to be 208 packets and ( � = 10.4 pack-
ets/RTT.

We vary the value of
�

and � to study per-class fairness
under different network congestion conditions for both iso-
lation and sharing. In the isolation case, we assume class-
based queueing is employed at the bottleneck link to essen-
tially create two separate pipes: the first pipe, allocated to�

sessions of short TCP flows, has one queue with � � �
(and hence capacity of 8,& and buffer space of 	 & ). The
second pipe, allocated to

�
sessions of long TCP flows, has

another queue with � ranging from 1 to 8 (and hence ca-
pacity ranging from 8�& to - 8.& and corresponding buffer
space ranging from 	 & to - 	 & ). Each queue (pipe) is also
used by three of the six telnet sessions. In the sharing case,
all ; � sessions, in addition to the six telnet background
sessions, share a common queue (pipe) with combined ca-
pacity ranging from ; 8,& to / 8�& and corresponding buffer
space ranging from ; 	 & to / 	 & .

4.2.1 Large Pipe Case

In these experiments, we set
� �10 � , i.e. 30 sessions of

long flows and 30 sessions of short flows. In this case,
the size of the pipe allocated to short flows is 104 packets,
thus each short connection can roughly transmit at a rate
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Figure 3. Large pipe case (
� ��� � ). Performance versus long-to-short pipe size ratio ( � ): (a) Fairness index, and (b) Goodput

of 104/30=3.5 packets/RTT. Since to transmit � � packets,
at least @ round-trip times are needed, the maximum rate at
which a short connection can transmit is 2.5 packets/RTT.

�
Thus, this setup provides enough resources to short connec-
tions to transmit at the maximum rate. Figure 3(a) shows the
fairness index for isolated short flows, isolated long flows,
and for flows in the sharing (mixed) case. Figure 3(b) shows
the goodput for each class of connections.

In the isolation case, since enough bandwidth is allocated
to short connections that would allow them to transmit at
maximum rate, short connections do not suffer any packet
loss. Thus the fairness index for short connections is very
close to 1. On the other hand, long connections start to ex-
perience packet loss once the window size of a connection
approaches its fair share of 3.5 � (unless 3.5 ��� the max-
imum window size of 128), resulting in unfairness among
these long connections (consistent with [16]).

In the sharing case, when short and long connections are
multiplexed in a common queue, short connections experi-
ence packet losses. Because long connections send larger
windows (packet bursts), they can grab more bandwidth
than their fair share (c.f. Figure 3(b)). Some of the short
connections are also forced into timeout (due to insufficient
number of duplicate ACKs to fast retransmit), resulting in
unfairness among short connections as well. Therefore,
with isolation in a well-engineered class-based network,
each class of flows can enjoy a more friendly (fair) trans-
mission environment without sacrificing the overall good-
put and utilization of the network.

�
Recall that the sending window of a short TCP connection, operating

in slow-start phase, doubles every round-trip time, i.e. takes the values
���
	�������������� . Thus, to send 10 packets, in the absence of packet losses, a
TCP connection can send 1, 2, 4, and finally 3 packets over 4 round-trip
times and finish its transmission.

4.2.2 Small Pipe Case

In this set of experiments, we set
� ��� � , i.e. 60 ses-

sions of long flows and 60 sessions of short flows. The
results are shown in Figure 4. In this case, the share of
each short connection becomes 1.75 packets/RTT. This re-
sults in short connections experiencing packet losses and
timing out. Thus fairness among short connections is lower
than in the previous large pipe case.

However, with isolation, long connections do not im-
pede short connections, resulting in relatively high fairness
(around 96%). On the contrary, when short and long con-
nections are mixed, short connections suffer from severe
unfairness (

� > ��� - ) when the network pipe is small (to-
tal capacity of ; 8�& ). For long connections, isolation also
results in improved fairness, yet less significant than that
for short connections. Observe that isolation provides an
overall goodput that is comparable to that obtained by shar-
ing. More importantly, from Figure 3(b) and Figure 4(b),
we observe a (almost) perfectly linear relationship between
goodput and the amount of resources allocated to long con-
nections. This makes it possible for a service provider to
reliably predict performance for each class of connections,
which is hard to do when resources are completely shared.

4.3 Effect of Buffer Size

Buffer space provisioning is an important factor in TCP’s
performance [24, 25]. Using the same setup as in Sec-
tion 4.2, we investigate the effect of buffer space on iso-
lation and sharing. We fix

�
at 30, i.e. 30 sessions of long

flows and 30 sessions of short flows. Under isolation, we
set ��� � � for the short class pipe and �+� � @ for the long
class pipe. Thus, ��� ��� in the sharing case, i.e. a total
capacity of �)8�& . We control the ratio of the buffer space
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Figure 4. Small pipe case (
� � � � ). Performance versus long-to-short pipe size ratio ( � ): (a) Fairness index, and (b) Goodput

relative to the capacity of the pipe by varying the value of
��� from

��� ; ��� to 0 ��� . Figure 5 shows the results.
In the sharing (mixed) case, as the buffer size increases,

long connections are allowed to send bigger windows
(packet bursts), thus they grab more bandwidth from short
connections, and more short connections are forced to time-
out. As a result, the overall goodput for short connections
decreases. A side effect of this unfair treatment to short con-
nections is an improvement in fairness among them! (They
all start to equally see worse performance, consistent with
[5, 1].) However, even with such a high “fairness” value for
short connections, it’s very hard to predict the goodput of
short connections, contrary to the isolation scenario where
goodput is not affected very much by varying buffer space.

To summarize, when network resources are relatively
scarce—generally when the share of each connection is less
than 10 packets per round-trip time—isolation provides a
more fair and more predictive service, as only “similar”
connections (of the same class) compete for their allocated
resources.

4.4 In The Presence of Web Background Traffic

In this set of experiments, we compare the three traffic
management schemes, described in Section 3.1, distribut-
ing flows over two parallel paths (cf. Figure 1), in the pres-
ence of Web background traffic on the topology shown in
Figure 6.

This model is similar to the “FLEXBELL” model used
in [13]. Here, node

�
connects to the servers pool, while

node � connects to the clients pool. There is a diamond
topology between nodes

�
and � , with two separate paths

between nodes @ and � . This diamond topology represents
an administrative domain where the edge node @ is responsi-
ble for detecting and classifying flows. This diamond topol-

ogy is also comprised of the bottleneck links/paths. We as-
sume a Web session model, so a client from the clients pool
sets up a session with a server. Within each session, the
client can grab a page, which could contain several objects.
For each object, a TCP connection is established for trans-
mission. All parameters are given in Table 3. The thresh-
olds used for size-based splitting and lifetime-based split-
ting schemes were chosen so as to roughly divide the overall
traffic equally among the two separate paths.

Both foreground TCP connections and the Web back-
ground connections are routed according to the routing
scheme employed at node 4. Performance measures are col-
lected for the foreground TCP connections, and results are
shown in Figure 7.

Results are also shown when RED shared queues are
deployed in the routers (with a load-balanced strategy at
node 4). The two isolation schemes, namely size-based
and lifetime-based splitting, can achieve fairness compara-
ble to that of RED. However, with RED queues, fairness is
achieved by sacrificing the goodput for short connections
with smaller packet bursts (window sizes). On the contrary,
with isolation (size-based splitting), short connections en-
counter less packet losses and achieve both high fairness
and high goodput.

Without either RED or isolation, i.e. with tail-drop
shared queues (with a load-balanced strategy at node 4),
long connections can receive a much higher goodput. How-
ever, fairness among long connections is very low (as low
as 20%) compared to those achieved by using RED shared
queues or isolation (all above 80%). Low fairness values
imply more variability in achieved goodput, which makes
it very hard to predict the behavior of connections. In this
sense, isolation provides an important engineering tool to
service providers to more accurately predict performance
and thus provide reliable guarantees to users. Furthermore,



0.8

0.85

0.9

0.95

1

0 0.5 1 1.5 2 2.5 3

Fa
ir

ne
ss

 I
nd

ex

Buffer Size / Capacity Size 

Fairness Index vs. Buffer Size

mixed short
mixed long

isolated short
isolated long

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

0 0.5 1 1.5 2 2.5 3

G
oo

dp
ut

Buffer Size / Capacity Size 

Goodput vs. Buffer Size

mixed short
mixed long

isolated short
isolated long

(a) (b)
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unlike RED shared queues, by allocating enough resources
to short interactive TCP transfers, they can be provided
throughput/delay guarantees [23].
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Figure 6. Topology with Web background traffic

5 Related Work

A number of studies (e.g. [9, 11]) examined isolation
and sharing of network resources in the context of Intserv
per-flow architectures. We concerned ourselves here with
Diffserv-like architectures, where per-flow information is
only maintained at access routers. In Section 2, we formu-
lated discrete-time control models along the same lines as
in [21]. However, Li and Nahrstedt in [21] do not address
the benefits of isolation over sharing, particularly as related
to fairness and stability of TCP flows.

A number of studies have proposed protocols that dif-
ferentiate among flows based on their size or lifetime. For
example, Shaikh ������� � [29] investigate load-sensitive rout-
ing of only long-lived IP flows in order to improve rout-
ing stability and reduce overhead. However, the effect on

Table 3. Simulation parameters for Web model

Description Value
Foreground Traffic
Number of long connections ���
Number of short connections ���
Long (foreground) connection size � ����� packets
Short (foreground) connection size � � packets

Web Background Traffic
Number of sessions �����
Number of connections per session �
	����
Number of pages per connection �
Number of objects per page �
Interarrival of connections exponential 2.4 seconds
Connection size distribution Bounded Pareto [4:2 ����

�
],

skew parameter of 1.2

Network Parameters
Threshold for size-based split 75 packets
Threshold for lifetime-based split 32 packets
Packet size �� �

bytes
Maximum window size ����� packets
Bottleneck link capacity ( � ) 5 Mbps
Bottleneck link bandwidth  delay � � � packets
Bottleneck link buffer size �� � packets
RED queue min threshold � � packets
RED queue max threshold � ��� packets
RED queue max drop rate ��� � %
Access link capacity � � �
Access link buffer size ������� packets
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Figure 7. Performance with Web background traffic: (a) Fairness index of short connections, (b) Goodput of short connections,
(c) Fairness index of long connections, and (d) Goodput of long connections

flow-controlled sources (such as TCP) has not been studied.
Other studies have considered the cut-through switching of
long-lived IP flows (e.g. using IP/Tag Switching) [35, 14].
These studies only consider the reduced overhead due to
switching, but not the performance of flows.

Other studies have attempted to improve TCP fairness by
either modifying TCP itself or by employing non-tail-drop
buffer management at routers (e.g. [19, 18, 20, 16, 25, 30]).
In particular, Morris [25] proposes solutions that require
per-flow information at all routers. In this paper, we advo-
cate the use of a (less costly) class-based solution. Bonald
��� ��� � [5] and Nandy ��� ��� � [26] have shown that the well-
known RED buffer management policy may have a strong
loss bias against smooth UDP (e.g. audio) flows. Seddigh
��� ��� � [12, 28] propose a packet dropping mechanism to im-
prove fairness among UDP and TCP flows. Our focus here
has been on using isolation to improve predictability of the
service and fairness of TCP flows of different size.

Most TCP studies consider very long (or infinite) TCP
connections, and focus on characterizing the steady-state

transfer throughput. Only few recent TCP studies [7, 3]
have started to investigate short flows, which comprise most
of the current Internet flows [35]. However, to our knowl-
edge, the interaction among short and long TCP flows has
not been studied.

6 Conclusions and Future Work

Using control-theoretic arguments and extensive simu-
lations, we have shown that service predictability and fair-
ness can be much improved by isolating TCP flows based
on their size. In this paper, we classified TCP flows into
two classes: one of short flows and another of long flows.
Each class is (logically) allocated separate resources (buffer
space and capacity), for which size-homogeneous flows
compete. Flow classification can be done only by an ac-
cess (border) router, thus the complexity of implementing
such a class-based solution is low. By appropriately al-
locating resources to each class, the many short (usually



interactive/delay-sensitive) flows can not only enjoy better
predictability and fairness, but also faster service. This is
in sharp contrast to traditional shared systems that do not
differentiate among TCP flows with different characteris-
tics, such as burstiness of arrivals/departures and conges-
tion/sending window dynamics.

Future work remains on how to dynamically allocate re-
sources to various classes, how to determine the best thresh-
old values used to classify flows into classes, and how to
account for characteristics other than flow size (e.g. various
round-trip times).

Acknowledgment: Thanks to Azer Bestavros for various
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