
Declarative Transport
A Customizable Transport Service for the Future Internet

Karim Mattar† Ibrahim Matta† John Day‡ Vatche Ishakian† Gonca Gursun†

†College of Arts & Science ‡Metropolitan College
Department of Computer Science, Boston University

{kmattar, matta, day, visahak, goncag}@bu.edu

ABSTRACT
We argue that in a clean-slate architecture, transport state
is an integral part of the network state, which includes in-
formation for routing, monitoring, resource allocation, etc.
Given the myriad of transport policies needed to support
advanced functions such as in-network caching, in-network
fair allocation, and proxying, these policies should be made
programmable. We outline how flexible and generic trans-
port policies can be specified in a declarative language to
realize a transport service where distributed transport state
is shared and manipulated using recursive queries.

1. INTRODUCTION
As the Internet continues to grow, network technologies (with
new quality-of-service properties) and applications (with new
requirements) continue to emerge. This has led to several
transport paradigms and even more custom point-solutions
that need to be continually adapted, but little in terms of
a unified theory. There are efforts to standardize transport
solutions and develop extensible platforms (see the work by
Bridges et al. [4] and references therein) but none of which
are generic across all environments1. In this position paper,
we start by answering an important question:

What aspects of designing and programming transport func-
tions make their generalization across different environments
inherently difficult?

We believe that the introduction of congestion control mech-
anisms in TCP, after the congestion collapse in 1986, is a
kludge. Since then TCP has become the de-facto transport
protocol and transport functions (state) are executed (main-
tained) primarily at the end-hosts. End-hosts, however, may
be the farthest points from the congestion event and the
least suited to react. This does not mean that end-hosts
should not perform end-to-end checks but makes one ques-
tion whether they should be the only ones. In addition, the
end-to-end principle [18] views any in-network modification
(e.g., router support or proxy) that breaks the end-to-end
semantics as a “hack”. This is the case because there is no
support for the “ends” to explicitly coordinate with “middle-
boxes”. This view of building networks is an artifact of the
Internet’s architecture. If an alternate organizing structure
is considered, the solution concepts become fundamentally
different.

1By environment we are referring to the underlying network
technology and the class of applications being supported.

We are proponents of Robert Metcalf’s view that networking
is only inter-process communication (IPC). IPC in an oper-
ating system requires certain functions (e.g., locating pro-
cesses, checking permissions, passing information, schedul-
ing, managing memory) to allow two processes to commu-
nicate. Similarly, two applications on different end-hosts
should communicate by utilizing the services of a distributed
IPC facility (DIF). A DIF is an organizing structure—what
we generally refer to as a “layer”. The functions that con-
stitute this layer, however, are fundamentally different. A
DIF is a collection of IPC processes (nodes) that communi-
cate and share state information. Each IPC process executes
routing, transport and management functions. The goal of a
DIF (private network or overlay) is to provide a distributed
service that allows application processes to communicate.

Two novel aspects of a DIF is that it repeats and is relative.
As shown in Figure 1, two IPC processes A and B in an N-
level DIF communicate by utilizing the services of an (N-1)-
level DIF. Thus, IPC processes are the application processes
requesting service from the lower-layer.

BA C N-level DIF

(N-1)-level DIFs

shared state

application
processes

IPC process
(sender/receiver)

IPC process
(sender/receiver)

IPC process
(sender/receiver/proxy)

Figure 1: An N-level DIF consisting of IPC pro-
cesses maintaining shared state and communicating
via the (N-1)-level DIFs.

Our IPC-based architecture can be found in [11]. Here we
only highlight two key aspects of this architecture that have
a fundamental impact on how transport functions should be
designed and programmed, namely:

• The “ends” are not only end-hosts. Any two commu-
nicating nodes within a private network are considered
the “ends” of communication over the underlying net-
work that connects them.

• Transport is a service provided by all nodes in the net-
work to support applications. Transport state is dis-
tributed. It can be collected, stored, manipulated and
queried by all nodes.

Our Contribution:

We show that our novel perspective on transport as a ser-
vice that manipulates distributed transport state makes it
possible to program flexible and generic transport functions
across nodes in a network. Instead of programming end-
hosts, one would program the transport functions executed
by each IPC process, as well as how it interacts (i.e., shares
state) with other IPC processes within the same DIF. Pro-
gramming transport as a distributed service allows us to:

1. Leverage declarative networking systems, that have
been extensively used to implement routing protocols
[14, 16], overlays [15] and applications [20], to specify
the transport functions of an IPC process.

2. Query resource monitoring information made available
by other protocols and applications that have already
been specified declaratively.

Transport state may include packet sequence numbers sent,
received, acknowledged, transmission rates used, as well as
other monitoring information such as delay or bandwidth
estimates. Since the size of a DIF is a design decision, trans-
port state can be made quite manageable. Also, the relative
nature of DIFs has a profound impact on the manageability
of transport state. Generally, transport state is associated
with a “flow” (i.e., transport connection). In a relative ar-
chitecture, what constitutes a flow is different at every layer.
More specifically, many N-level flows may be aggregated into
a few (N-1)-level flows. For example, a core network con-
stituting a low-level DIF may maintain transport state for
only a few aggregate flows.

Using a few examples, we show that by eliminating the no-
tion of “end-hosts”, transport functions such as those typ-
ically done by proxies (e.g., snoop [2], ack-regulator [6]),
in-network support mechanisms (e.g., jtp [17], xcp [12]), or
even multicast-specific mechanisms (e.g., stair [5]) become
significantly easier to realize. We also show that transport
state is naturally represented as relations that can be ma-
nipulated and shared by executing recursive queries over the
network.

Traditionally, transport constitutes data-intensive functions
performed by end-hosts. Such functions may not be well-
handled by a declarative language [20]. We show, however,
that transport decomposes naturally into data transfer, con-
trol and management functions. This separation of concerns
allows for an efficient implementation of data-intensive func-
tions and a declarative manipulation of transport control
and management information.

2. DECOMPOSING TRANSPORT
In our previous work [11] we showed that the functions exe-
cuted by an IPC process can be broadly classified as transfer,
control and management functions. These functions oper-
ate at different timescales as shown in Figure 2. Generally,
control and management functions operate over a longer

routing, monitoring,
resource allocation,
access control, etc.

IPC

Transfer

IPC

Control IPC Management

Delimiting

Transfer

Relaying/ Muxing

PDU Protection

DTSV RIB

Figure 2: Functions executed by an IPC process over
different timescales.

timescale. Here we outline how this is also the case for
transport functions.

The two end-points of a transport connection maintain shared
state by exchanging protocol data units (PDUs). A PDU
consists of the user’s data and the protocol control infor-
mation (PCI)2. State information is either passed explicitly
in the PCI (e.g., available buffer space) or inferred from the
exchange of PDUs over time (e.g., round trip time). Analyz-
ing the PCI in traditional transport solutions, one quickly
realizes that there are two types of information:

1. Information that must be associated with the user’s
data (e.g., checksums, sequence numbers) and must
be transmitted with the data—the transfer PDU.

2. Information that does not have to be associated with
the user’s data (e.g., bandwidth estimates) and can be
transmitted in a separate PDU—the control PDU.

We refer to the mechanisms that produce these PDUs as
tightly-coupled and loosely-coupled mechanisms, respectively.
The degree of “coupling” is with respect to the user’s data.
This leads to a natural decoupling of transport into the data
transfer protocol (DTP) and the data transfer control pro-
tocol (DTCP). DTP and DTCP share information via the
data transfer state vector (DTSV). Our view is consistent
with Clark et al. [9] who argued for the general separation
of data manipulation and control functions.

It is important to note that this decoupling of transport is a
fundamental property that is independent of any particular
implementation. This decoupling, however, makes trans-
port functions more amenable to a declarative specification
where only transport control and management information
need to be manipulated declaratively. Also, in principle the
decomposition could in some instances be logical where in-
formation generated by DTCP is “piggybacked” onto DTP
messages. Similarly, PDUs generated by different DTCP
mechanisms could be automatically combined together into
a single control PDU.

2.1 Data Transfer Protocol (DTP)
Every flow (i.e., transport connection) must have a DTP
instance associated with it. Service data units (SDUs) are
enqueued by the application3. DTP is responsible for de-
limiting, fragmenting / concatenating SDUs to create trans-

2We use the term PCI as opposed to the traditional“header”
to make clear that “information” is what the protocol under-
stands as opposed to the “data” which it does not.
3An SDU is the unit of data handed by the N-level DIF to
the (N-1)-level DIF.

fer PDUs whose size is less than the maximum transmis-
sion unit, as well as appending sequence numbers, addresses
and checksum information. DTP is also responsible for re-
assembling / separating PDUs to recreate the original SDUs
before handing them to the application. DTP only imple-
ments mechanisms that are tightly-coupled with the user’s
data over a short timescale (i.e., packet-level) and generates
a single PDU type—the transfer PDU. DTP’s implementa-
tion could be made very efficient. Note that DTP represents
a UDP-like transport connection.

2.2 Data Transfer Control Protocol (DTCP)
DTCP consists of all the loosely-coupled mechanisms that
execute concurrently and are independent from the user’s
data. Each mechanism generates its own control PDU over a
longer timescale (i.e., flow-level). The existence of a DTCP
instance depends on whether the supported flow requires
any of the control mechanisms to be activated. Sample con-
trol mechanisms include: error, acknowledgment, retrans-
mission, flow and rate control. While all loosely-coupled con-
trol mechanisms execute independently, in some instances
they may affect the operation of DTP. For example, the
policy instantiated in DTCP’s error control mechanism may
instruct DTP’s PDU protection mechanism to use a partic-
ular forward error correction scheme.

2.3 Transport Management
Transport management provides support for the required
performance monitoring applications. Performance moni-
toring can be done either passively (by observing transfer
PDUs) or actively (by sending probes). All network per-
formance monitoring information, including those collected
by other protocols, is stored in a resource information base
(RIB)4. Any information in the RIB can be queried by the
transport control mechanisms and disseminated to other
nodes periodically.

We do not require any explicit state management mecha-
nisms (e.g., TCP’s handshaking mechanism) as Watson et
al. [22] proved that timers are necessary and sufficient for
maintaining transport state. We therefore rely exclusively
on timers rendering explicit state management mechanisms
unnecessary.

3. P2 SYSTEM
We use the declarative networking system P2 [1] to specify
transport functions. In P2 users specify network protocols in
NDlog, a declarative language based on extensions to Data-
log. These specifications are then compiled into a dataflow
graph where each declarative rule is converted to a strand
of elements implementing the required operations to eval-
uate the rule. Rules query or update relations and trigger
events to implement the desired logic. Tuples, representing
PDUs and events, are sent and received over the network.
Figure 3 outlines the dataflow graph that when executed
results in the implementation of the specified protocol.

P2 does provide transport functionality in the Network-In
and Network-Out modules. These modules implement func-

4The RIB only signifies the existence of some “information
base” without excluding the various notions of what it might
mean to implement it.

MUX

Queue

UDP Rx

CC Rx

ACK

Demux

Rule strands specifying protocol behavior

Join Project Aggregate

Join Select Project

Relation A Relation CRelation B

Queue

Retry

CC Tx

UDP Tx

Demux

Local

Remote

N
e
tw
o
rk
 I
n

N
e
tw
o
rk
 O
u
t

Insert Insert Insert

Figure 3: Dataflow in P2

tions for sending and receiving tuples, reliable transmission,
and rate control. The dataflow architecture adopted by P2
also allows these modules to be re-ordered and configured
dynamically [10]. P2’s transport modules, however, only
perform end-to-end transport functions. Tuples are retrans-
mitted and acknowledgments are sent but only between a
pair of communicating nodes. We, on the other hand, are in-
terested in programming a transport service across nodes in
the network. Nodes manipulate distributed transport state
and can execute transport functions to act as relays, caches,
proxies, etc.

In NDlog, a rule has the form rulename <head>:-<body>. The
body consists of predicates and the head is triggered only
when all these predicates evaluate to true. All predicates
are relations which can either be hard-state, soft-state or
event relations. Hard-state and soft-state relations are ma-
terialized relations containing tuples that have infinite and
finite lifetimes, respectively. Event relations, on the other
hand, are triggers. Each generated tuple is stored at the ad-
dress associated with the location specifier, @. If the address
is remote, the tuple is sent over the network.

We consider three sample declarative rules. We denote event
relations by eEventName and materialized relations by rela-

tionName. The body of rule r1 is triggered when the event
tuple is triggered (i.e., exists and evaluates to true). Tuples
are then selected from table1 such that the values under
the common fields I, A and B match those in eEvent1. Each
matching tuple causes eHead1 to be triggered.

r1 eHead1(@I,A,B) :- eEvent1(@I,A,B), table1(@I,A,B).

The body of rule r2 is triggered when either table1 or table2

is triggered. Materialized relations are triggered when tuples
are inserted or updated. The materialized relations are first
joined, then a projection on field B is done. All eHead2 tuples
are sent from node I to J.

r2 eHead2(@J,I,B) :- table1(@I,J,A,B), table2(@I,J,B,C).

In rule r3, the head contains a_COUNT<*>, an aggregation op-
erator that returns the number of tuples in table3. The
current time T is found using a built-in function f_now().

r3 eHead3(@I,T,a_COUNT<*>) :- table3(@I,D), T := f_now().

4. TRANSPORT POLICIES IN P2
We illustrate the ease of declaratively specifying transport
policies using a few examples. We show that by eliminating
the notion of “end-hosts”, transport functions such as those
typically done by proxies, in-network support mechanisms
or even multicast-specific mechanisms become significantly
easier to realize. In our specifications, distributed transport
state is manipulated and shared across nodes by executing
recursive queries over the network. The distributed nature of
transport state makes it an integral part of the network state
(i.e., routing, monitoring and resource allocation informa-
tion). This integration of state allows for flexible / generic
transport functions to be realized without requiring so-called
“cross-layer” communication. From our perspective, a tra-
ditional end-to-end solution (e.g., TCP, DCCP [13]) is a
degenerate case where only two nodes in the network, the
end-hosts, execute transport functions over a virtual link.
Our sample specifications consider two scenarios where:

1. Nodes are located along a path, connecting a sender
and receiver, to support a single application (i.e., trans-
port connection). The network provides a hop-by-hop
transport service. Any transport tuples sent over the
network are destined to the appropriate neighbor, on
the forward or reverse path, by querying local routing
information which populates the nextHop and prevHop

relations.

2. Nodes are located on a tree, connecting a single source
to multiple receivers, to support a layered multicast
session. Any transport tuples sent over the network are
destined to the appropriate upstream or downstream
neighbor, by querying local routing information which
populates the upstreamNeighbor and downstreamNeigh-

bors relations.

In general, one would program any configuration of nodes
supporting multiple transport connections based on their
roles (e.g., relay, cache, proxy, bandwidth estimator). One
could also program a transport service for a wireless sensor
network where all nodes potentially maintain transport state
(see [21] for a survey of existing transport solutions). In the
sample transport policies below, the role of a node should
be clear.

4.1 Acknowledgment Control
One of the most common transport control functions is ack
control. There are several ack policies that are commonly
used. Cumulative acks inform previous nodes along the path
of the last in-order correctly received packet. Selective acks,
on the other hand, inform previous nodes of all (potentially
non-contiguous) received packets. Other types of “exotic”
ack policies may include: (1) a periodic cumulative ack that
is transmitted, irrespective of lost packets, provided some
minimum delivery rate for new packets is maintained, or (2)
a periodic ack used primarily as a keep-alive message.

4.1.1 Cumulative Acknowledgments
When a node receives a transfer PDU its sequence number is
enqueued in the rcvSeq relation maintained in DTSV5 which
triggers rule ack1. If the received sequence number Seq is ex-
pected then the eIncrement event is triggered to increment

5Recall that DTSV allows DTP and DTCP to share infor-
mation.

the expected sequence number in rule ack2. Every time the
expSeq relation is updated, it indirectly triggers rule ack4

via rule ack3. Rules ack4 and ack5 deal with the case where
the received transfer PDU is indeed the expected one but
subsequent PDUs were previously received. In this case,
expSeq is incremented again (recursively) to reflect the se-
quence number following the last in-order correctly received
sequence number.

ack1 eIncrement(@I, J) :- rcvSeq(@I,J,Seq),
expSeq(@I,J,ExpSeq), Seq == ExpSeq.

ack2 expSeq(@I,J,NewExpSeq) :- eIncrement(@I,J),
expSeq(@I,J,ExpSeq), NewExpSeq := ExpSeq + 1.

ack3 eIncremented(@I,J,ExpSeq) :- expSeq(@I,J,ExpSeq).

ack4 eMinSeq(@I,J,a_MIN<Seq>) :- eIncremented(@I,J,
ExpSeq), rcvSeq(@I,J,Seq), Seq >= ExpSeq.

ack5 eIncrement(@I,J) :- eMinSeq(@I,J,MinSeq),
expSeq(@I,J,NewExpSeq), MinSeq == NewExpSeq.

The ack control mechanism is triggered periodically at some
appropriate update rate, 1

T
, to transmit a cumulative ack

updating the transport state maintained by other nodes.
Note that acks traverse nodes on the reverse path towards
the source and the shared state is the sequence numbers
received by each node.

ack6 ePeriodic(@I,J) :- periodic(@I,E,T),
prevHop(@I,J).

ack7 eAckPDU(@J,I,Seq) :- ePeriodic(@I,J),
expSeq(@I,J,ExpSeq), Seq := ExpSeq - 1.

When a node receives a cumulative ack it removes all records
in its retransmission queue rtxQ such that the sequence num-
ber received in the ack is greater than or equal to the se-
quence number field in the transfer PDU’s record. Each
matching record triggers eDel to delete that record from
rtxQ.

ack8 eDel(@I,J,TimeSent,Seq) :-
eAckPDU(@I,J,RcvdSeq), rtxQ(@I,J,TimeSent,Seq),
RcvdSeq >= Seq.

ack9 delete rtxQ(@I,J,TimeSent,Seq) :-
eDel(@I,J,TimeSent,Seq).

4.1.2 Selective Acknowledgments
For selective acks, a node could send an ack for every trans-
fer PDU that is received or for every new transfer PDU as
shown in rules ack10 and ack11, respectively.

ack10 eAckPDU(@J,I,Seq) :- rcvSeq(@I,J,Seq),
prevHop(@I,J).

ack11 eAckPDU(@J,I,Seq) :- rcvSeq(@I,J,Seq),
expSeq(@I,J,ExpSeq), Seq >= ExpSeq,
prevHop(@I,J).

A less expensive approach would be similar to cumulative
acks where the node periodically transmits a selective ack
containing an encoding of the unacknowledged sequence num-
bers received so far.

4.1.3 Smart Acknowledgments
A “smart” ack policy at an intermediate node can realize the
behavior of a performance-enhancing proxy. For example, an
ack regulator proxy was introduced in [6] for cellular data

networks to alleviate the impact of the wireless channel on
TCP. The proxy only forwards acks when it has sufficient
buffer space to absorb incoming packets, while forcing TCP
to operate in congestion avoidance by deliberately losing one
packet per “congestion epoch”. Such an ack policy can be
easily specified declaratively.

4.2 Retransmission Control
Retransmission control is responsible for handling transfer
PDUs whose information is currently stored in DTSV’s re-
transmission queue, rtxQ. For simplicity, we only consider
timeout-triggered retransmissions. When the timer for a
transfer PDU expires, several retransmission policies are
possible: (1) retransmit the PDU whose timer expired, (2)
retransmit all PDUs in rtxQ, or (3) retransmit at most N
PDUs where N could be a limit set by a rate control policy.

To retransmit only the PDU whose timer expired, we pe-
riodically check if the timer for any transfer PDU has ex-
pired. If so, that PDU is retransmitted. Assume that all
PDUs have the same retransmission timeout RTO and that
triggering event eRtx handles the retransmission task.

rtx1 eRtx(@I,J,Seq) :- periodic(@I,E,T),
rtxQ(@I,J,TimeSent,Seq),
Tnow := f_now(), Tnow - TimeSent > RTO.

Caching transfer PDUs and executing a retransmission con-
trol policy at an intermediate node can realize a performance-
enhancing proxy that performs local retransmissions. For
example, Snoop [2] is a proxy solution that locally retrans-
mits packets on behalf of the TCP source. Snoop also hides
duplicate acks from the source. This can be done declara-
tively by keeping track of transmitted ack tuples to make
sure that an ack tuple is transmitted at most once.

4.3 Rate Control
In general, monitoring applications keep track of a wide
range of performance metrics (e.g., delay, throughput, avail-
able bandwidth). A rate control policy can query the RIB for
the appropriate metrics to compute the maximum transmis-
sion rate that does not overload the network. More specif-
ically, giving a source in-network support in the form of an
explicit rate (e.g., jtp [17], xcp [12]) can be done easily us-
ing a recursive query. In jtp, the source receives an esti-
mate of the minimum available bandwidth on the path to
the destination. Declaratively, this can be done by having
the destination node execute rule rc1 to periodically send
a measurement tuple. All other nodes execute rule rc2 to
update the minimum bandwidth estimate and forward the
measurement tuple towards the source. Here the shared
transport state is the minimum available bandwidth on the
path traversed by the supported transport connection.

rc1 bwPDU(@J,I,BW) :- periodic(@I,E,T), prevHop(@I,J).

rc2 bwPDU(@K,I,BWout) :- bwPDU(@I,J,BWin), bw(@I,J,BW),
BWout = f_min(BWin,BW), prevHop(@I,K).

4.4 Flow Control
Consider a flow control policy executed by nodes in the net-
work to support a layered multicast session connecting a sin-
gle source to multiple receivers as shown in Figure 4. The
stream to be disseminated utilizes a layered encoding where

R1 (b)

R2 (b)

R3 (b)

R4 (e)

I2 (b)

I3 (e)

I1 (e)S (e)

Figure 4: A sample multicast tree with a source
S and four receivers R1 to R4. Nodes are marked
with the highest layer they are subscribed to. The
base and enhanced layers are denoted by b and e,
respectively.

it is divided into two layers, namely, a base layer and an en-
hanced layer. Depending on the receiver’s device type (e.g.,
laptop, personal digital assistant, mobile phone) and its net-
work connection (e.g., broadband, LAN, 3G) it either sub-
scribes to both layers or only the base layer. Depending on
each receiver’s capability, upstream nodes must disseminate
the appropriate streams accordingly to avoid overloading the
receivers. One example of a layered multicast solution can
be found in [5].

In this simple example, each node keeps track of the highest
layer it needs to subscribe to in the relation layer and peri-
odically updates its upstream neighbor using the event tuple
eLayerUpdate. The base and enhanced layers are encoded in
the relations as 0 and 1, respectively.

m1 eLayerUpdate(@J,I,HighestLayer) :- periodic(@I,E,T),
upstreamNeighbor(@I,J), layer(@I,HighestLayer).

Once a layer update from downstream neighbors is received,
each node must update its view of the network. This view
includes the highest layer downstream neighbors are sub-
scribed to and in turn the highest layer that the node itself
needs to support (i.e., which streams need to be transmit-
ted).

m2 downstreamNeighbors(@I,J,Layer) :-
eLayerUpdate(@I,J,Layer).

m3 layer(@I,a_MAX<Layer>) :-
downstreamNeighbors(@I,J,Layer).

Assume that the triggering of events eSendBaseStream and
eSendEnhancedStream handles the task of disseminating the
appropriate streams to downstream neighbors.

m4 eSendBaseStream(@J,I) :-
downstreamNeighbors(@I,J,NeighborLayer),
NeighborLayer ≥ 0.

m5 eSendEnhancedStream(@J,I) :-
downstreamNeighbors(@I,J,NeighborLayer),
NeighborLayer == 1.

5. POSSIBLE EXTENSIONS TO NDLOG
Based on our preliminary specifications of transport policies,
we identified possible extensions to NDlog.

5.1 Support for Timers
Implementing transport policies in NDlog requires support
for timers (e.g., retransmission timers, state timers). Using

periodic to check if a timer expired triggers tuples unneces-
sarily which degrades performance. We are considering the
following extensions:

1. Allowing each tuple in a materialized relation to have
its own lifetime attribute6.

2. Triggering a rule-level event containing the informa-
tion in an expired tuple that is being removed from a
materialized relation.

Given these extensions, consider the tuples in rtxQ that con-
tain information about transfer PDUs that may need to be
retransmitted. Each tuple has a lifetime that is equal to
the PDU’s retransmission timeout (i.e., RTO). When a tu-
ple expires, the triggering of the expired tuple allows the
retransmission of the transfer PDU to be handled.

5.2 Support for Transactions
NDlog does not support multi-rule atomicity. This leaves
specifications susceptible to race conditions. One may re-
quire rules to be executed sequentially and atomically to
guarantee correct behavior. This can be crudely achieved
by assigning priorities to rules as done by Chu et al. [8] to
bias the scheduling of rule execution.

When dealing with transport state in DTSV, race conditions
either degrade performance or threaten protocol correctness.
Thus, in addition to implementing the data-intensive and
time-sensitive DTP mechanisms in the underlying dataflow
elements in P2, we are considering possible extensions to
NDlog based on Transactional Datalog [3].

6. CONCLUSIONS
We argued that in a clean-slate architecture [11], transport
state is an integral part of the network state, which includes
information for routing, monitoring, resource allocation, etc.
Given the myriad of transport policies needed to support ad-
vanced functions such as in-network caching, in-network fair
allocation, and proxying, these policies should be made pro-
grammable. We outlined a few sample declarative transport
specifications in P2. We are completing and testing our spec-
ifications to evaluate ease of programming, correctness, and
performance. Our evaluation will include prototyping on
heterogeneous environments that include different network
technologies (e.g., wireless, cellular) and various application
requirements (e.g., delay-tolerant, loss-tolerant).

Open problems include determining the appropriate tradeoff
between maintaining transport state across nodes and pass-
ing state information in PCI fields (as done for TCP to im-
prove its scalability and resilience properties [19]). Another
open problem is in selecting optimal locations for maintain-
ing transport state and/or invoking the appropriate trans-
port functions (as done in sensor networks where query opti-
mizations automated the selection of rendezvous and proxy
locations [7]).

Acknowledgments
This work has been partially supported by National Science
Foundation awards: CISE / CCF #0820138, CISE / CSR
#0720604, CISE / CNS #0524477, CNS / ITR #0205294,
and CISE / EIA RI #0202067.
6NDlog associates a single lifetime attribute with all tuples.

7. REFERENCES
[1] P2: Declarative Networking.

http://p2.berkeley.intel-research.net/.

[2] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz.
Improving TCP/IP Performance over Wireless Networks.
In ACM MOBICOM, November 1995.

[3] A.J. Bonner. Workflow, Transactions, and Datalog. In
ACM PODS, November 1999.

[4] P. G. Bridges, G. T. Wong, M. A. Hiltunen, R. D.
Schlichting, and M. J. Barrick. A Configurable and
Extensible Transport Protocol. IEEE/ACM Trans. Netw.,
15:1254–1265, 2007.

[5] J. Byers, G. Kwon, M. Luby, and M. Mitzenmacher.
Fine-grained Layered multicast with STAIR. IEEE/ACM
Trans. Netw., 14(1):81–93, 2006.

[6] Mun Choon Chan and Ramachandran Ramjee. TCP/IP
Performance over 3G Wireless Links with Rate and Delay
Variation. In ACM MOBICOM, September 2002.

[7] D. Chu and J. Hellerstein. Automating Rendezvous and
Proxy Selection in Sensornets. In IPSN, April 2009.

[8] D. Chu, L. Popa, A. Tavakoli, J. Hellerstein, P. Levis,
S. Shenker, and I. Stoica. The Design and Implementation
of a Declarative Sensor Network System. In International
Conference on Embedded Networked Sensor Systems, 2007.

[9] D. D. Clark and D. L. Tennenhouse. Architectural
Considerations for a New Generation of Protocols. In ACM
SIGCOMM, September 1990.

[10] T. Condie, J. Hellerstein, P. Maniatis, S. Rhea, and
T. Roscoe. Finally, a Use for Componentized Transport
Protocols. In HotNets-IV, November 2005.

[11] J. Day, I. Matta, and K. Mattar. Networking is IPC: A
Guiding Principle to a Better Internet. In Re-Architecting
the Internet (ReArch), December 2008.

[12] D. Katabi, M. Handley, and C. Rohrs. Congestion Control
for High Bandwidth-Delay Product Networks. In ACM
SIGCOMM, August 2002.

[13] E. Kohler, M. Handley, and S. Floyd. Designing DCCP:
Congestion Control Without Reliability. In ACM
SIGCOMM, September 2006.

[14] C. Liu, Y. Mao, M. Oprea, P. Basu, and B. T. Loo. A
Declarative Perspective on Adaptive MANET Routing. In
ACM SIGCOMM Workshop on Programmable Routers for
Extensible Services of TOmorrow, August 2008.

[15] B. Loo, T. Condie, J. Hellerstein, P. Maniatis, T. Roscoe,
and I. Stoica. Implementing Declarative Overlays. In ACM
SOSP, October 2005.

[16] B. Loo, J. Hellerstein, I. Stoica, and R. Ramakrishnan.
Declarative Routing: Extensible Routing with Declarative
Queries. In ACM SIGCOMM, August 2005.

[17] N. Riga, I. Matta, A. Medina, C. Partridge, and J. Redi.
JTP: An Energy-conscious Transport Protocol for
Multi-hop Wireless Networks. In CoNEXT Conference,
December 2007.

[18] J. Saltzer, D. Reed, and D. Clark. End-to end Arguments
in System Design. ACM Trans. Comput. Syst.,
2(4):277–288, 1984.

[19] A. Shieh, A. Myers, and E. Sirer. Trickles: A Stateless
Network Stack for Improved Scalability, Resilience, and
Flexibility. In NSDI, May 2005.

[20] A. Tavakoli, D. Chu, J. Hellerstein, P. Levis, and
S. Shenker. A Declarative Sensornet Architecture. SIGBED
Rev., 4(3):55–60, 2007.

[21] C. Wang, K. Sohraby, B. Li, M. Daneshmand, and Y. Hu.
A Survey of Transport Protocols for Wireless Sensor
Networks. IEEE Network, 20:34–40, 2006.

[22] R. Watson. Timer-Based Mechanisms in Reliable Transport
Protocol Connection Management. Computer Networks,
5:47–56, 1981.

