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ABSTRACT

Price war, as an important factor in undercutting competitors
and attracting customers, has spurred considerable work that
analyzes such conflict situation. However, in most of these
studies, quality of service (QoS), as an important decision-
making criterion, has been neglected. Furthermore, with the
rise of service-oriented architectures, where players may offer
different levels of QoS for different prices, more studies are
needed to examine the interaction among players within the
service hierarchy. In this paper, we present a new approach to
modeling price competition in service-oriented architectures,
where there are multiple service levels. In our model, brokers,
as the intermediaries between end-users and service providers,
offer different QoS by adapting the service that they obtain
from lower-level providers so as to match the demands of
their clients to the services of providers. To maximize profit,
players at each level, compete in a Bertrand game, while
they offer different QoS. To maintain an oligopoly market, we
then describe underlying dynamics which lead to a Bertrand
game with price constraints at the providers’ level. Numerical
examples demonstrate the behavior of brokers and providers
and the effect of price competition on their market shares.

Keywords: Service-oriented architecture, Quality of Ser-
vice (QoS), oligopolistic competition, service differentiation,
Bertrand competition, price constraints.

I. INTRODUCTION

In today’s highly competitive internet service market, ser-
vice providers, in order to survive, should offer their cus-
tomers more flexibility in their quality-of-service (QoS) /
price offerings to meet a variety of customer needs. Clearly,
any successful solution for a service provider to stay in the
market, not only depends on supporting new and updated
technologies, but also involves economic aspects. However,
pricing the services of the network, even without considering
quality differentiation, is a challenging problem that involves
different issues. There have been many studies that attempted
to address these issues with or without considering differ-
entiated QoS. Pricing approaches include Paris Metro pric-
ing [12], congestion pricing [2, 4], rate-reliability pricing [7],
and fairness pricing [6]. On the other hand, with the rise of
service-oriented architectures, such as computational clouds
and recursive networks [14], there is a need for more advanced
solutions that manage the interactions among service providers

at multiple levels. Brokers, as the intermediaries between
clients and lower-level providers, play a key role in improving
the efficiency of service-oriented structures by matching the
demands of clients to the services of providers. They can
downgrade or upgrade a service by sharing it among customers
or by combining several services to satisfy customers’ demand.

In this study we propose a multi-layer network market
in which service brokers and service providers compete at
different levels in an oligopoly to maximize their profit. In
our setting, brokers can pay a cost to upgrade or downgrade
the service that they buy from (lower-level) providers so
as to offer a new service to the market (customers). The
broker incurs costs when adapting a lower-level service as
it expends resources to either enhance the service extended
to its customers (e.g., by employing delay jitter reduction
or capacity allocation techniques over a best-effort service)
or degrade it (e.g., by multiplexing client demands over
a guaranteed service). We consider the competition among
providers and among brokers separately, while brokers impose
some preference constraints on providers. We also consider
conditions that may lead to a monopoly market and study
how players act under such conditions. Our numerical results
show that more service differentiation yields more profit for
all players, while affecting only their market share. On the
other hand, in the case of positive quality-price user utility, if
profit increases for one player, profit decreases for the other
player.

The rest of this paper is organized as follows. In the
next section, we review related work. Then in Section III,
we develop a game-theoretic model by characterizing the
competitive behavior of players with one another at each level
of the service hierarchy. Section IV presents our analysis and
numerical results and section V concludes the paper.

II. RELATED WORK

Network economics has been an active research area in
which pricing and regulating the market have been studied
widely. However the exponential growth of internet services in
hierarchical (i.e., multi-layer) markets requires a deeper study
of new market features that will become available.

Our work is inspired by Zhang et al. [15] and Nagurney and
Wolf [10]. They propose an economic model for the interaction
and competition among service providers, network providers,
and users. Both studies develop a two-stage game, where
service providers compete in a Cournot game and network



providers compete in a Bertrand game. In our framework,
providers at all levels compete in Bertrand games (i.e., com-
petition on price). [15] studies a market with two service
providers and two network providers offering the same level
of service quality. However, [10] considers a market with
more than two providers for service and network, in which
network providers offer different levels of service quality. In
their model, the market is managed through the demand-price
functions, which depend on both quality and quantity. In the
model we present here, we consider a market where at the
providers’ level, players can offer different qualities of service,
while at the brokers’ level, players can upgrade or downgrade
the service to optimize their profit.

Semret et al. [13] also consider a retail market where they
have three kinds of players: one service provider, one broker
and end users for each network. However, they develop a de-
centralized auction-based bandwidth pricing for differentiated
internet services. They show that Progressive Second Price
(PSP) provides stable pricing in the market, in which service
providers receive most of the profits and the brokers’ profit
margin is small.

Pricing for single-level games has been studied widely. He
and Walrand [5] consider a self-regulated service model, where
market demand determines the service quality. In their model,
there is one Internet Service Provider (ISP) offering two
classes of service, with different prices to manage congestion.
They show that if the price does not match the service quality,
the system may end up in an equilibrium similar to the
Prisoner’s Dilemma game.

Li et al. [8] and Fulp and Reeves [3] provide a traffic-
sensitive pricing scheme for differentiated network services.
While the focus of [3] is to maximize the profit of the service
provider who buys a differentiated service connection from
domain brokers and sells it to users, the goal of [8] is to
provide economic incentives to the users so as to maintain a
certain level of traffic load.

Ma, Baslam et al. and Nagurney et al. [1, 9, 11] present dif-
ferent game-theoretic models of a differentiated service market
of users and service providers. [11] proposes a game-theoretic
model where service providers compete with duration-based
contracts for differentiated service. [1] considers a joint price-
quality market with a Stackelberg game where providers are
leaders and users are followers. In their model, providers
consider the migration of users when setting their price and
quality. [9] studies a congestion-prone market with usage-
based pricing. They propose a model for users’ preference
over their value and sensitivity to congestion, and based on
the model, characterize the market share and optimal price for
providers. Our framework considers multi-layer differentiated
service games where service obtained from the lower level can
be upgraded or downgraded, and sold to the higher level. Our
analysis also applies price constraints when players’ optimal
price would lead to losing their market share, and we devise
how players should then update their price.

III. MODEL AND SOLUTION

In this section, we present our model and analysis of a
two-level game configuration and focus on the competition
among providers and brokers and what emerges as pricing of
their services. Figure 1 illustrates the game-theoretic model:
At the lower level, we have two service providers, while at
the higher level, we have two service sellers or brokers that
deal directly with users. We start by presenting our notation
and some basic settings, then we discuss some analytical and
numerical results.

B1 B2

S1 S2

Brokers

Service Providers

Demand
D1 D2

q1, p1 q2, p2service qualities, prices
by brokers

Q1, r1
Q2, r2service qualities, prices

by providers

Fig. 1: Game-theoretic Model of a Two-level Competition.

A. Model Description

We consider a system with N customers, two service sellers
(brokers), denoted by Bi, i = 1, 2, and two service providers,
Si, i = 1, 2. Customers have different preference for quality
(utility) described by:

θq − p

where θ is the customer’s marginal willingness to pay for
quality q, and p is the price of service. There is a distribution
of θ among customers. For simplicity, we assume that θ is
uniformly distributed on an interval θ ∈ [θmin, θmax] and
θmax > 2 θmin. Customers are looking for a broker that
maximizes their utility.

Both brokers and service providers can offer services with
different qualities. The service quality offered by brokers is
denoted by qi and is in an interval q ∈ [qmin, qmax], and
the quality offered by service providers is denoted by Qi.
Also, we assume that brokers and service providers compete
in an imperfectly competitive market. Furthermore, there is no
supply constraint. We also assume that each broker buys just
from one of the service providers that is more economical for
the broker. Without loss of generality, we suppose that Si is
more economical for Bi (unless as we note in Section III-F,
the market does not support that).

B. Demand Distribution

Brokers first choose the quality of service that they will
provide to customers, then they compete on prices. If the bro-
kers choose the same quality, then the customers decide only
based on the price and this leads to a Bertrand competition
with identical goods, whose prices should be set equal to costs,
and no one makes profit. Thus the brokers should choose to



offer different service qualities to make profits. We assume that
q2 > q1, p2 > p1, and also Q2 > Q1. Therefore, customers
with a high willingness to pay for quality will buy from B2,
while customers with a low willingness will buy from B1. We
can characterize the demand for each broker by identifying the
customers who are indifferent between the two differentiated
qualities. The indifferent customers, denoted by θ∗, satisfy:

θ∗q1 − p1 = θ∗q2 − p2 ⇔ θ∗ =
p2 − p1
q2 − q1

(1)

Having uniformly distributed θ, the demand for each broker,
B1 and B2, is given by:

D1(p1, p2) =
θ∗ − θmin

∆θ
=

1

∆θ
(
p2 − p1
q2 − q1

− θmin)

D2(p1, p2) =
θmax − θ∗

∆θ
=

1

∆θ
(θmax −

p2 − p1
q2 − q1

)

(2)

where ∆θ ≡ θmax − θmin.

C. Brokers’ Profits

Now that we have the demand distribution, we can calculate
broker i’s profit, assuming that converting Qi to qi (whether
to upgrade or downgrade the service) has a marginal cost ci:

Πi = piDi −
qiDi

Qi
ri − ciDi(Qi − qi)2 (3)

where ri is the price of service that broker Bi pays to service
provider Si and qiDi

Qi
is the amount of service that Bi needs to

buy to supply its own market. We assume here that the cost to
the broker, ci, for converting the service quality it is getting
Qi to that it offers its customers qi, is proportional to the
square of the difference in quality, (Qi − qi). Intuitively, the
cost increases more rapidly as the service quality increases, or
alternatively, there is a diminishing return in service quality
as more resources are allocated and cost increases. We hence-
forth, for simplicity, assume that c1 = c2 = c.

As we mentioned earlier, we assume that Bi buys service
from Si, i.e., the broker with lower quality (B1) buys from
the lower quality provider (S1) and the higher quality broker
(B2) buys from the higher quality provider (S2). This is the
only valid assumption to have an oligopoly market at the level
of service providers. Otherwise, if Bi prefers to buy from Sj ,
then the cost of buying from Sj must be less than the cost of
buying from Si:

qi
Qj

rj + c(qi −Qj)
2 <

qi
Qi
ri + c(qi −Qi)

2

Given (qi−Qj)
2 > (qi−Qi)

2, we have rj
Qj

< ri
Qi

. Thus, given
rj
Qj

< ri
Qi

, and also (qj −Qj)
2 < (qj −Qi)

2, we deduce that
it is less costly for broker Bj to buy from Sj as well, which
results in a monopoly market at the level of service providers.

In the first stage, given the service prices ri, and service
qualities Qi, the brokers compete in a Bertrand game with
differentiated goods. Plugging Equation (2) into Equation (3),
and solving ∂Πi/∂pi = 0 for achieving Nash equilibrium,

leads to:

p1 =
1

3
((q2 − q1) (θmax − 2θmin) +

2q1r1
Q1

+

q2r2
Q2

+ 2c (q1 −Q1) 2 + c (q2 −Q2) 2)
(4)

p2 =
1

3
((q2 − q1) (2θmax − θmin) +

q1r1
Q1

+

2q2r2
Q2

+ c (q1 −Q1) 2 + 2c (q2 −Q2) 2)
(5)

Now we have the brokers’ prices, p1 and p2, as a function of
the brokers’ and providers’ service qualities, and providers’
prices ri’s. The next step is to plug them into Di’s to obtain:

D1 =
1

3∆θ
(θmax − 2θmin) +

q2r2
Q2
− q1r1

Q1
− c (q1 −Q1) 2 + c (q2 −Q2) 2

3∆θ (q2 − q1)

(6)

D2 =
1

3∆θ
(2θmax − θmin) +

q1r1
Q1
− q2r2

Q2
+ c (q1 −Q1) 2 − c (q2 −Q2) 2

3∆θ (q2 − q1)

(7)

Now, D1 and D2 are dependent on service providers’ prices
ri’s. The next step is to find the optimal ri’s.

D. Providers’ Profits

At this stage, we have the total demand served by (service
sold by) each broker. To have an imperfectly competitive
market at the level of service providers, the combination of
their price and quality should be such that each broker prefers
a different service provider. Assuming B1 prefers S1 and B2

prefers S2, the following inequalities should hold for B1 and
B2, respectively:

q1
Q1

r1 + c(q1 −Q1)2 <
q1
Q2

r2 + c(q1 −Q2)2

q2
Q2

r2 + c(q2 −Q2)2 <
q2
Q1

r1 + c(q2 −Q1)2
(8)

These constraints ensure that broker Bi chooses provider Si

as the cost is lower than that of getting service from the other
provider Sj . We will discuss later the situation when one of
these constraints is violated.

In this stage of the game, service providers compete in
another Bertrand game. The profit of each provider is defined
as:

Ui =
Diqi
Qi

(ri − ki)− eQ2
i

where eQ2
i is the cost of providing quality Qi, ri is the service

price and ki represents some general cost (fee). After plugging
Equations (6) and (7) into the providers’ profit, we obtain
quadratic equations in ri. To obtain the optimal solution (Nash
equilibrium), we solve ∂Ui/∂ri = 0 which yields:

r1 =
2k1
3

+
k2q2Q1

3q1Q2
+
Q1

3q1
×[

c(q2 −Q2)2 − c(q1 −Q1)2 − (q1 − q2)(4θmax − 5θmin)
]



r2 =
2k2
3

+
k1q1Q2

3q2Q1
+
Q2

3q2
×[

c(q1 −Q1)2 − c(q2 −Q2)2 − (q1 − q2)(5θmax − 4θmin)
]

By substituting ri’s in Equations (4) and (5), we get the
final values for pi’s only as functions of user preferences and
service qualities:

p1 =
1

9

(
5c(q1 −Q1)2 + 4c(q2 −Q2)2

)
+

4k2q2Q1 + 5k1q1Q2

9Q1Q2
+

1

9
(q2 − q1)(16θmax − 20θmin)

p2 =
1

9

(
4c(q1 −Q1)2 + 5c(q2 −Q2)2

)
+

5k2q2Q1 + 4k1q1Q2

9Q1Q2
+

1

9
(q2 − q1)(20θmax − 16θmin)

We obtain the final values for Di’s from Equations (6) and
(7):

D1 =
1

9∆θ
(4θmax − 5θmin)+

c(q1 −Q1)2 − c(q2 −Q2)2

9∆θ(q1 − q2)
+
−k2q2Q1 +Q2k1q1
9∆θ(q1 − q2)Q1Q2

D2 =
1

9∆θ
(5θmax − 4θmin)+

c(q2 −Q2)2 − c(q1 −Q1)2

9∆θ(q1 − q2)
+

k2q2Q1 −Q2k1q1
9∆θ(q1 − q2)Q1Q2

E. Positive Utility

In the previous setting we assumed that customers buy
service either from B1 or B2 even if their utility is negative.
Here we solve a game with only positive utility customers,
i.e., customers whose value of θq − p is positive. Therefore,
customers with zero utility provide a lower bound on θ which
can be found by solving θq1− p1 = 0. Thus θmin is replaced
by p1

q1
:

D1(p1, p2) = θ∗ − p1
q1

=
p2 − p1
q2 − q1

− p1
q1

D2(p1, p2) = θmax − θ∗ = θmax −
p2 − p1
q2 − q1

(9)

Like the previous setting, this is a two-stage Bertrand game,
and the Nash equilibrium for each game is found by replacing
the Di’s into the profit functions and solving ∂Πi/∂pi = 0
and ∂Ui/∂ri = 0. We discuss the difference between this
positive utility game and the previous (unconstrained utility)
game later in Section IV.

F. Game with Constraints

At the lower level of service providers, the constraints (8)
are not considered while the equilibrium points are calculated.
Therefore, in some situations, one of the constraints might be
violated. Let us assume that after finding ri’s, the constraint
for Bi is violated, i.e., qi

Qi
ri+c(qi−Qi)

2 ≥ qi
Qj
rj+c(qi−Qj)

2.
This means that, under this condition, for broker Bi, it incurs
more cost to buy service from provider Si than provider Sj ;
so if provider Si does not change its price, Bi will get service

from Sj , and this situation leads to a monopoly market at the
providers’ level.

To find an optimal point that also meets the constraints (8),
provider Si should set its price such that ri < Qi

qi
( qi
Qj
rj +

c(qi −Qj)
2 − c(qi −Qi)

2). In response, provider Sj updates
its price by plugging ri into ∂Uj/∂rj = 0 which leads to
rj = f(ri), i.e., rj as a function of ri. Thus, Si can replace
the rj with f(ri) in its inequality to calculate an optimal price
that satisfies the constraint:

ri =
Qi

qi
(
qi
Qj

f(ri)+c(qi−Qj)
2−c(qi−Qi)

2)−ε ε > 0

In this stage of the game, Si should find a positive value
for ε that maximizes its profit. By substituting ri and rj as
functions of ε, Ui is a decreasing quadratic function of ε.
Solving ∂Ui/∂ε = 0 results in optimal ε. If ε < 0, it can be
replaced with a small positive number close to zero. Since Ui

is decreasing with respect to ε, any other positive value larger
than the chosen ε leads to less profit. Clearly, the new set of
prices for the service providers is an equilibrium point for the
game, since it maximizes the revenue of both providers while
meeting the constraints so each service provider does not lose
its market (i.e., one of the two brokers stays as its customer);
therefore neither of the service providers has an incentive to
change its price independently.

IV. NUMERICAL ANALYSIS

We present here some numerical results to illustrate the
effect of choosing different qualities of service by both brokers
and providers.

We consider a setting where θmax = 1.5, θmin = 0.2,
c = 0.1, and ki = .01265 × Q1.5

i . The service quality of the
providers are set to Q1 = 20 and Q2 = 45. For the brokers,
q2 varies between 30 and 60, and we set q1 to different values
so it is less than, equal to, or larger than Q1 to see how the
market changes under different conditions. Examining a first
set of plots shown in Figures 2 and 3, we note that the total
demand constitutes the whole market. So, when the demand
for one broker/provider side decreases, the demand for the
other side increases and vice versa. But this is not the case
for prices and profits – they increase or decrease together.
Furthermore, observing the behavior for different values of
q1, we see from the brokers’ and providers’ price plots, when
broker B1 downgrades the lower-level service obtained from
its provider S1 (i.e., q1 < Q1), all brokers and providers
can offer their service at higher prices and make more profit.
Similarly, by comparing the behavior for higher values of q2,
where q2 > Q2, with that for lower values where q2 < Q2,
we observe that a better strategy for broker B2 is to upgrade
the lower-level service that it obtains from S2 (i.e., q2 > Q2).
This happens because upgrading q2 or downgrading q1 leads
to a larger gap between q1 and q2, therefore the two sets of
broker and provider can offer more differentiated services at
higher prices.

For q1 = 29, the market exhibits abnormal behavior when
the gap between q1 and q2 is small, while the gap between
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Fig. 2: Price, profit and demand distribution for broker B1,
Q1 = 20, Q2 = 45, 30 ≤ q2 ≤ 60.
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Fig. 3: Price, profit and demand distribution for broker B2,
Q1 = 20, Q2 = 45, 30 ≤ q2 ≤ 60.

providers’ qualities and brokers’ qualities is large. Specifically,
the market approaches a monopoly where S2 and B2 have a
small market share when broker B2 is downgrading the service
obtained from its service provider S2, i.e., q2 < Q2. Observing
the results when the values of q2 are close to 30, we note that
here, although the providers’ game is a monopoly at some
points where S2’s price r2 = 0, the brokers’ game is not,
and B2 can have a small share of the market D2 while it
gets service from provider S1. This is because when the gap
between q1 and q2 is not significant, most of the customers
prefer the cheaper service provided by broker B1. When the
market is a monopoly, the provider or broker who remains
in the market can increase its price to a value that the other
competitor cannot enter the market even if it lowers its price
to equal its cost, thus there is no way for the competitor to
make profit and is prevented from entering the market.

On the other hand, for q1 = 29, when broker B2 is
upgrading the service quality obtained from S2, i.e., q2 > Q2,
as the gap between q2 and Q2 gets larger, S2 starts to decrease
its price to cover the cost of the quality upgrade for B2 so as
not to lose its market share. Since the value of q1 is somewhere
between Q1 and Q2, it is more economical for B1 to buy
service from S2 rather than S1 at the optimal prices, i.e., the
optimal price of S1 violates constraints (8) and it should update
its price r1 as we explained in Section III-F. Consequently, S2

should also update its price. Since there is a substantial gap
between q1 and q2, both providers can compete in the market.

A. Positive Utility Results

We now consider the case of positive utility competition.
Intuitively, we expect to see some restriction on the prices
for all brokers and providers, otherwise they lose part of the
market for which the utility (θq − p) is negative. Thus it
is a compromise between price and demand. The numerical
results confirm this intuition. Comparing the prices of brokers
and providers under positive utility and unconstrained utility,

for the same conditions, shows that the highest prices under
positive utility are below half of the prices in the latter case,
while the demands are less as well; compare Figures 4 and 5
with Figures 2 and 3.

Also in this positive utility game, whether brokers upgrade
or downgrade the service obtained from their providers, the be-
havior is different from that in the unconstrained utility game.
Specifically, since the positive utility market is more sensitive
to prices, a smaller gap between the service quality offered
by the broker and the quality it gets from its provider yields
more profit. Furthermore, while for both brokers, upgrading
the service obtained from lower-level providers (and in turn,
selling a higher quality service to customers) is generally more
profitable, B2 makes more profit when B1 downgrades the
obtained (lower-level) service, and B1 makes slightly more
profit when B2 upgrades the obtained (lower-level) service.

Unlike the unconstrained utility game, if profit increases
for one player, profit decreases for the other player. Another
interesting observation from these plots is when the market is
a monopoly: while there are conditions under which broker
B1 or B2 can lose their market share, service provider S1 can
manage to stay in the market under all conditions.

V. CONCLUSION

In this paper, we developed a game-theoretic model that
captures the interaction among players in a multi-level market.
In our model, brokers, as the intermediaries between users and
service providers, adapt the quality of the service that they
get from lower-level providers so as to attract more customers
and maximize their profit. The game consists of two service
providers, two brokers, and users. Numerical results show that
the more differentiation between the quality of service offered
by brokers, the more profit they can make. An interesting
result is that although players compete for more profit, the
competition only affects their market share; the profit increases
for one player if it increases for the other one.
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Fig. 4: Price, profit and demand distribution for the positive
utility game, Q1 = 20, Q2 = 45, 30 ≤ q2 ≤ 60.
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Fig. 5: Price, profit and demand distribution for the positive
utility game, Q1 = 20, Q2 = 45, 30 ≤ q2 ≤ 60.

We also studied situations where both brokers prefer to
buy service from just one of the lower-level providers, i.e.,
the providers’ market is about to become a monopoly. We
developed a Bertrand game with price constraints to keep the
market as an oligopoly if possible. Moreover, we explored the
case where customers buy the service only if the combination
of price-quality has positive utility for them. In this situa-
tion, players try to offer the service cheaper to attract more
customers. Unlike the unconstrained utility game, if profit
increases for one player, profit decreases for the other player.

We plan to further extend our model to more brokers and
providers, capture cooperation among some players (i.e., to
pool resources to meet user demand) and study the resulting
dynamics. We are also interested in considering more complex
distribution of customer behavior and modeling a market
where players maximize their profit by adjusting both price
and offered service quality.
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