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Abstract
The congestion control mechanisms of TCP make it vulnera-
ble in an environment where flows with different congestion-
sensitivity compete for scarce resources. With the increas-
ing amount of unresponsive UDP traffic in today’s Inter-
net, new mechanisms are needed to enforce fairness in the
core of the network. We propose a scalable Diffserv-like
architecture, where flows with different characteristics are
classified into separate service queues at the routers. Such
class-based isolation provides protection so that flows with
different characteristics do not negatively impact one an-
other. In this study, we examine different aspects of UDP
and TCP interaction and possible gains from segregating
UDP and TCP into different classes. We also investigate
the utility of further segregating TCP flows into two classes,
which are class of short and class of long flows. Results
are obtained analytically for both Tail-drop and Random
Early Drop (RED) routers. Class-based isolation have the
following salient features: (1) better fairness, (2) improved
predictability for all kinds of flows, (3) lower transmission
delay for delay-sensitive flows, and (4) better control over
Quality of Service (QoS) of a particular traffic type.

Keywords: Class-based isolation vs. sharing, packet
dropping (RED, Tail-drop), fairness, queuing analysis.

1. Introduction

Internet traffic is a mixture of smooth, unresponsive
(or not sufficiently responsive) real-time traffic (UDP) and
bursty, congestion-sensitive traffic (TCP). However, mixing
flows with different characteristics can cause performance
problems. Real-time traffic not only performs poorly be-
cause of delay variations and packet drops, but also hurts
congestion-sensitive traffic when they compete for scarce
bandwidth [18]. TCP congestion control works well in iso-
lation but in aggregate it can be unfair [9]. In times of
congestion, responsive TCP flows tend to give up band-
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width to competing unresponsive UDP flows, which is the
main reason for performance degradation and unfairness for
congestion-sensitive flows. In addition to bandwidth star-
vation imposed on responsive traffic, uncontrolled deploy-
ment of unresponsive traffic could also lead to Internet-wide
congestion collapse [11]. To solve fairness issues among
TCP and UDP flows, we should not focus on penalizing
UDP flows. UDP flows need to have the same fair treat-
ment as TCP flows as they usually carry multi-media con-
tent [16].

To be able to provide protection, so that flows with dif-
ferent characteristics do not negatively impact one another,
we propose and examine a Diffserv-like architecture, where
flows with different characteristics are classified into sepa-
rate service queues at the routers. This can be implemented
using a class-based queuing scheme [8] or by routing differ-
ent groups of flows on (logically) separate communication
paths [20] as described in [14]. The proposed architecture
has the advantages of Diffserv architectures such as sim-
plicity and scalability, since core routers only need to keep
state information for each class rather than for each flow.

We also argue for further isolation of TCP flows as long-
lived and short-lived, because they also have very differ-
ent characteristics. Short-lived TCP flows arrive in a more
bursty fashion, which prevents long TCP flows from op-
erating in a predictable mode. Short TCP flows seldom
need to operate beyond the slow-start phase of TCP to finish
their transmission, that is why their window size is gener-
ally smaller, so they generate smaller packet bursts. Since
long-lived TCP connections mostly operate in congestion
avoidance phase probing for bandwidth with larger win-
dows, they produce larger packet bursts. TCP connections
with large window sizes are more tolerant of packet loss
than those with small windows. While long TCP flows may
recover from multiple packet losses in one round-trip time
(RTT) [6], short TCP flows may have to wait for a time-
out period to recover from a single packet loss. It is ob-
served that long TCP flows may completely shut off short
TCP flows [14]. This causes performance problems for
short TCP flows, which generally carry interactive/delay-
sensitive data.
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Class-based isolation, at low cost, provides a fair en-
vironment for TCP flows. Isolation also provides a more
predictable environment for real-time data carried by UDP
flows by shielding them from the burstiness of TCP traffic.

The rest of the paper is organized as follows: Section 2
explains our analytic model, describes our experiments, and
performance measures. General observations and results of
individual experiments are presented in Section 3 and Sec-
tion 4, respectively. Section 5 revisits related work and fi-
nally Section 6 concludes the paper.

2. Experiments and Analytic Model

2.1. Buffer Management Schemes

In this study, we examine FIFO queuing with Tail-drop
and RED [10] with mixture of different traffic types such as
UDP, long-lived TCP and short-lived TCP. We investigate
the effects of isolation for each case.

FIFO queuing with Tail-drop is the most widely imple-
mented and deployed queuing mechanism in today’s routers
because of its simplicity. However, it has problems such as
tendency to penalize bursty connections and not providing
any kind of protection against misbehaving flows that send
more than their share. A single source, sending packets to
the router at sufficiently high rate, can capture arbitrarily
high fraction of the bandwidth of the outgoing link. Thus,
in non-cooperative environments, Tail-drop would fail to
provide fairness. RED on the other hand, hopes to elim-
inate bias against bursty traffic by limiting the queue oc-
cupancy so that there is always room left in the queue to
buffer transient bursts. RED addresses fairness by dropping
packets from flows in proportion to their bandwidths. In
non-cooperative environments, we expect RED to perform
better than Tail-drop, however, in [12, 7, 19], it is shown
that RED alone may not provide fairness when a mixture
of different traffic types share the same link. Also, it has
been shown that RED prevents bias against bursty traffic by
increasing the drop probability of smooth traffic [2]. This
means that RED would penalize UDP and TCP flows with
small packet bursts to improve overall fairness.

2.2. Analytic Model

Bonald et al., in [2], evaluated the performance of RED
against Tail-drop. Their analytic model for RED uses the
following approximation: “All packets in the same burst see
the same drop probability.” In this paper, we relax this ap-
proximation so as to accurately evaluate the performance of
short- and long-lived TCP flows with different packet burst
sizes. Here we summarize the way the parameters are set
and describe the analytic model for both kinds of buffer
management scheme: Tail-drop and RED.

For TCP flows, bursts of � packets arrive according to a
Poisson process of rate ������� . Since TCP is window-based,
it sends a burst of packets every round-trip time (RTT). That

is why we fix ���	��� to 1/RTT bursts/second and vary the
number of TCP flows, 
 , to vary TCP load. Throughout the
study, we assume all TCP flows of the same class (short- or
long-lived) have the exact same characteristics. We choose
RTT so that ���	���
������� bursts/sec. For UDP flows, pack-
ets arrive according to a Poisson process of rate ���	��� . We
vary UDP load through ���	��� .

The total offered TCP load is �������������������	��� �
"!$#&% . The total offered UDP load is ���	���'�(���	����#)% .
Thus the total offered load is ���	*,+.-0/��1�2�	���435�6�	��� .

The processing times of the packets in the router are as-
sumed to be exponentially distributed with mean 1/ % . The
queue length is set to the bandwidth-delay product, where
the bandwidth is % and delay is RTT.

The burst size, � , models the average window size of a
flow during its life-time. Since long-lived TCP flows mostly
operate in congestion avoidance phase and short-lived TCP
flows mostly operate in slow-start, long-lived TCP flows
will have bigger window sizes on average than short-lived
TCP flows [3]. Unless otherwise stated, we take � =1, � =4,
and �87 4 for UDP, short-lived TCP and long-lived TCP
flows, respectively.

The number of packets buffered in the queue defines a
Markov chain. Let 9 denote the stationary distribution of
the total number of packets in the queue. Using PASTA
property, the drop probability of a packet from a TCP flow
and UDP flow in a Tail-drop router is given by:

: �	�;�=<?> : !@�19���AB!$3?9���A�CED&!�FHGJILKNMG 3O�P�Q3?9���A5CR�S3TD)! KG: �	�;�VU;W : !@�19���AB!
where A is the buffer size of the router in terms of packets.

With the RED buffer management scheme, incoming
packets are dropped with a probability that is an increasing
function X��,�Q! of the average queue size Y2-[Z[\ . The average
queue size is computed using an exponential weighted mov-
ing average: Y]-0Z[\^�_�`DaC5ba!$Y]-[Z[\a3cb;Y , where b is fixed
and Y is the instantaneous queue size when a packet arrives.
As in [2], we assume for simplicity that the drop rate de-
pends on instantaneous queue size Y rather than on average
queue size Y]-[Z[\ . Thus, the drop function, X��,�Q! , is defined as

X��VY6!d�
efg fh FQi�I�jkiml2npoqMFPj -qr npo&I�jkimlsnpoqMut4vswyx if min +=zT{cYS| max +=z6}~

if Y�| min +=z6}D if Y�� max +=z6�
In all the experiments, for RED gateway, the parameters

are min +=z = A /2 packets, max +=z = A packets, and max x =1.
The model in [2] makes the following approximation:

“The RED router uses the same drop probability X��VYy! for
all packets in the same burst, where Y is the instantaneous
queue size at the time the first packet in the burst arrives
at the router.” With this approximation, the model gives a
lower bound on the drop rate. Using PASTA property, the
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drop probability of a packet from a TCP flow or a UDP flow
in a RED router is approximately given by:

:���� �E�=<?> : !@� :���� �;�VUaW : !@� ���
	 K 9d�VY6!,X��VY6! (1)

This approximation underestimates TCP drop probabil-
ity, especially for large burst (window) sizes. Throughout
our experiments, we need to compare the performance of
short- and long-lived TCP flows when they share the same
queue. However, the model with the above approximation
is only accurate if the burst size, � , is not large compared
to the buffer size. That is, for fixed A , smaller values of� give more accurate results than larger values of � . We
overcome this inaccuracy by removing the approximation.
To compute the drop probability of TCP under RED, instead
of equation (1), we compute the expected number of drops
for a typical TCP packet burst. Thus the drop probability is
given by::���� �E�=<?> : !@��� ��
	 K 9��VY6!0�
� Gl 	�� : l FpGJI�l2MG !
where

: l is the probability that exactly � packets of the
TCP burst are not dropped.

: l obviously depends on X��VYy! .
To illustrate, the probability of going from state Y to state�VY 3 D&! , i.e. exactly one packet of the burst is not dropped,
is given by:

: K � GJILK
�� 	�� X � �VYy!0�`DRCBX��VY6!$!0��X��VY;3 D)!$! FpGJI � I�K,M �

Similarly, the probability of going from state Y to state �VY 3� ! , i.e. exactly two packets of the burst are not dropped, is
given by:����� ���������� �"!$#&%('*) �,+ � -/.102-
3�4 + -/.,050 + �
-/.7683902-
3�4 + -/.76839050 + !:-/.76<;=0?>

Other transition probabilities can be similarly computed.
The drop probability of UDP can be computed as a spe-

cial case where � =1,:���� �;�VU;W : !d��� ��@	 K 9d�VY6!,X��VY6!u�
2.3. Performance Parameters and Measures

The experiments in this study fall under the following
categories: Effect of fraction of service rate allocated to
different classes, effect of burst size on interacting flows,
effect of having both short-lived and long-lived TCP flows,
effect of isolation into two classes (UDP and TCP) vs. three
classes (UDP, short-lived TCP, and long-lived TCP).

Each experiment is repeated for the cases where flows
with different characteristics compete with each other and
where they are isolated. Henceforth, we refer to the first
case as ACB vEDGF �IH or tJF wLK X case, and the second case as

F A=MCN v,O5F M=� . In isolation, the service rate and queue size are
split in proportion to the load introduced by each class while
the buffer management scheme is kept the same. We useAQPV/Q-@RSR +UT x
V and %WP /Q-@RSR +UT x=V to refer to the queue size and
service rate allocated to a particular class, respectively. All
experiments are done for both Tail-drop and RED routers,
and repeated for high load (where total load=2) and low load
(where total load=1). The main performance measures are:
(1) drop probability as a measure of effective goodput, and
(2) fairness across flow types. For fairness across 
 classes,
we use Chiu and Jain’s fairness index [4], which is defined
as X

� �
�ZYi 	 K w i !S[

�
� Yi 	 K w [i !
where w i is the drop probability of flow-type i .
3. General Observations

Before presenting the experiments, we summarize our
observations:\ At high load (load � 1), isolation improves fairness

across TCP and UDP classes over shared Tail-drop by
reducing drop probability of TCP at the expense of in-
creased drop probability for UDP. Although the perfor-
mance of shared RED is as good as isolated Tail-drop
queues, isolated queues have an advantage that shared
RED cannot provide: Better control over quality of ser-
vice of each traffic type by controlling the allocation of
resources to each class.\ Unlike shared RED or Tail-drop, isolation of UDP and
TCP significantly reduces drop probability of short-
lived TCP flows, which constitute the majority of TCP
flows over the Internet. Since short-lived TCP flows
are usually interactive/delay-sensitive, isolation im-
proves the quality of service of this class. Decreased
drop probability of short-lived TCP flows would also
improve fairness among short TCP flows, which are
more likely to timeout to detect packet drops. Time-
outs are not desirable as they lead to extended idle pe-
riods and degradation of throughput.\ Further isolation of TCP ensures fairness across all
3 types of flows: UDP, short-lived TCP, and long-
lived TCP. By having a separate queue for each class,
it is easier to manage quality of service of a par-
ticular traffic type. If we want to increase quality
of service of short-lived TCP flows, which are usu-
ally interactive/delay-sensitive and tend to timeout on
packet drops, we can just allocate more resources to
the class of short TCP flows to further improve qual-
ity.\ While taking advantage of isolated queues across dif-
ferent traffic classes, using RED within each class
may further improve the intra-class quality by prevent-
ing synchronization of TCP flows as RED randomizes
losses.
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\ At low load, we observe that (static) isolation lowers
statistical multiplexing gain compared to sharing. To
avoid this, dynamic resource allocation as in CBQ [8]
should be used.\ Isolation creates a more predictable environment for
real-time UDP traffic by shielding them from the
burstiness of competing TCP traffic.\ Class-based isolation simplifies the problem of provid-
ing deterministic delay bounds by increasing the ser-
vice predictability for all kinds of flows.

4. Experiments

4.1. Effect of Service Rates Allocated to Classes

4.1.1. Experimental Setup: In this experiment, effects of
isolation into two classes, namely UDP class and TCP class,
are observed as resources allocated to each class are varied.

The experiment in this section is repeated for different
total load assignments of 0.5, 1, 1.5, 2 and 2.5. ������� =8.3
bursts/second, �a����� =4 packets, % =930 packets/second,
and A =56 packets. The offered load by TCP and UDP
are equal. For different load values, 
 ����� and �����d� are
computed. In corresponding isolated cases, the fraction of
service rate and queue size allocated to TCP is varied. The
remaining of the resources not assigned to the TCP class are
allocated to the UDP class. When there is excess resources
(load | 1), they are divided equally between the TCP and
UDP classes.
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Figure 1. Effects of isolation as service rate
and queue size allocated to TCP class in-
creases whereas service rate and queue size
allocated to UDP class decreases.

4.1.2. Results: Results are shown in Figure 1. Figures 1(a)
and (b) show the cases where total arrival rate of packets is
less than the total service rate. Figures 1(c) and (d) show
the cases where total arrival rate of packets is greater than
the total service rate. In all figures, as service rate allocated
to TCP increases, service rate allocated to UDP decreases.
The drop probability is inversely proportional to the allo-
cated service rate and queue size as expected.

The observations for Tail-drop can be summarized as
follows: When total load { 1 (Figure 1(a)), we do not have
a scenario such that in isolation, resources can be split
between the two classes in such a way that fairness is im-
proved without increasing the drop probability of both TCP
and UDP. This is because in low-load environments, (static)
isolation reduces statistical gains obtained by sharing.
When total load increases (Figure 1(c)), we observe that in
isolation, if we split the resources equally between the two
classes, we have the same drop probability for both kinds of
traffic. This provides a very fair environment (see Figure 2).
Table 1 shows the values of parameters of the points where
fairness is improved by isolation. The common property of
such points is %��	���1� %L�	��� and A �	��� �'A �	��� . This
is because �s�	���d#y�=�s�����13'�6�	���d!
��� ~�� . Therefore,
fairness can be achieved by class-based isolation, where
total service rate is divided in proportion to the load of
TCP and UDP. We observe that at points where isolation
improves fairness, the drop probability of TCP flows is
reduced by the same amount as the drop probability of
UDP is increased.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.5 1 1.5 2 2.5

Fa
ir

ne
ss

 I
nd

ex

Total Load

Values of Fairness Index at Fairness Points (with Tail Drop)

Isolation
Mixed

Figure 2. Fairness index for both isolation and
sharing at points where resources are split
equally among TCP and UDP classes (with
Tail Drop).

Figures 1(b) and (d) show that multiplexing TCP and
UDP in a RED router does not hurt TCP flows seriously.
Isolation provides little improvement of TCP drop rate and
fairness.

In conclusion, if Tail-drop buffer management scheme
is used, isolation is necessary to improve overall fairness,
and performance of TCP flows. We observe that a shared
RED queue performs as well as isolated Tail-drop queues.
However, isolated queues have the advantage of providing
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UDP TCP
������� � � 	 � � 	 
 �

Load=1.5 465 28 697.5 465 28 8.3 21 4
Load=2 465 28 930 465 28 8.3 28 4

Load=2.5 465 28 1162.5 465 28 8.3 35 4

Table 1. Parameters at points where fairness
is observed.

better control over quality of service for a particular class.

4.2. Effect of Burst Size

4.2.1. Experimental Setup: The goal of this experiment is
to examine the way UDP and TCP flows interact as the burst
size of TCP flows increases. Effects of isolating traffic into
UDP and TCP classes are observed in terms of drop proba-
bility of each class, and fairness. We consider two scenar-
ios:

(1) High Load: �s�	*`+.-0/ =2, %���*`+.-0/ = 1660 packets/second,A =100 packets, �6�	��� = �2�	��� =1, �	�	��� =1660 pack-
ets/second, ���	��� = 8.3 bursts/second. 
 and �a�	��� are
varied.

(2) Low Load: Parameters are the same as high load,
except �s�	*,+.-0/ =1, �y���d� = �2�	��� =0.5, �	�	��� =830 pack-
ets/second.
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Figure 3. Effects of isolation as burst size of
TCP flows increases (with Tail Drop): (a) High
Load (b) Low Load.

4.2.2. Results: The results are shown in Figure 3 and Figure
4 for Tail-drop and RED, respectively.

At high load, both Tail-drop and RED show similar be-
havior: Mixing TCP and UDP hurts TCP. As burst size of
TCP increases, performance degradation to TCP increases.
Of course, even in this case, RED is much more fair than
Tail-drop. The average drop probability of TCP and UDP
in the shared case is very close to individual drop probabili-
ties in isolation, which means that what is lost by TCP class
is gained by UDP class. The reason behind the behavior
of shared Tail-drop is its known bias against bursty traffic
[12, 2, 10]. As burst size increases, it becomes more diffi-
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Figure 4. Effects of isolation as burst size
of TCP flows increases (with RED): (a) High
Load (b) Low Load.

cult to find a space in the queue to squeeze into. For shared
RED, since we are using instantaneous queue size rather
than average queue size, the big transient bursts might not
be handled the way they could have. However, even in this
case, unfairness to TCP does not seem serious (see Figure
5).
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Figure 5. Fairness Index for effect of burst size
experiments: (a) Tail Drop (b) RED.

At low load, for both Tail-drop and RED, isolation in-
creases drop probability of TCP and does not seem to be a
necessary alternative. The reason is that at low load, isola-
tion reduces statistical gains compared to sharing.

In conclusion, when the load is high, which means net-
work resources are scarce, isolating traffic into TCP and
UDP classes provides fairness and performance improve-
ments for TCP flows. Isolation also improves predictability
for both TCP and UDP flows. The gain is more obvious for
longer-lived TCP flows (with large bursts) as shown by the
fairness index in Figure 5. If Tail-drop buffer management
is deployed, isolation is a necessity, whereas for RED, the
gain observed by isolation is not so significant.

4.3. Effects of Isolation into 2 Classes

4.3.1. Experimental Setup: The goal of this experiment
is to see the effects of isolation of flows into two classes,
namely TCP and UDP. In this experiment, the TCP class has
two kinds of flows: long-lived TCP, and short-lived TCP.
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We consider two scenarios:
(1) High Load: �s�	*,+.-q/ =2, %	�	*,+.-0/ = 1660 pack-

ets/second, A =100 packets, �����d� /( �2�	��� I /P* l \ 3�s����� I R`z&*�� + 3��y�	��� )=50%, �s�	��� I /P* l \ /( �s�	��� I /Q* l \B3�s����� I R`z&*�� + )=80%, �	�	��� =1660 packets/second,���	��� I /P* l \ = ���	��� I R`z&*�� + = 8.3 bursts/second,
O����� I R`z&*��$+ =10 and � ����� I R`z&*�� + =4 packets. 
O�	��� I /P* l \and � �	��� I /Q* l \ are varied. As we increase the ratio
O����� I R`z&*��$+ / 
O�	��� I /Q* l \ , we are actually reducing the
number of long-lived TCP flows while increasing their
burst size to keep �s�	��� I /Q* l \ constant.

(2) Low Load: The same parameters as high load, except�s��*`+.-0/ =1, %���*`+.-0/ = 3320 packets/second, A =200 packets.
The load offered by long-lived TCP is chosen to be 80%

of total TCP load. This percentage reflects the fact that only
a small percentage of flows are long-lived, however they
carry the majority of total traffic bytes in the Internet [17].
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Figure 6. Effects of isolating TCP and UDP
flows into 2 classes: UDP and TCP (with Tail
Drop): (a) High Load (b) Low Load.
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Figure 7. Effects of isolating TCP and UDP
flows into 2 classes: UDP and TCP (with
RED): (a) High Load (b) Low Load.

4.3.2. Results: The results are shown in Figures 6 and 7 for
Tail-drop and RED, respectively.

In the case of high load, when different kinds of TCP
flows (short- and long-lived) and UDP share a Tail-drop
router, isolating them into two classes helps both kinds of
TCP flows. The improvement is very significant for short-

lived TCP flows, which typically carry interactive/delay-
sensitive data. However, drop probability of UDP increases
when it is isolated. This means that UDP is taking advan-
tage of both short- and long-lived TCP flows when they
are mixed. Another interesting observation is when long
and short TCP flows are in the same class, drop probabil-
ity of short TCP flows decreases at the expense of increased
drop probability for long TCP flows, and this unfairness in-
creases as burst size of long TCP flows increases. This can
also be seen from the fairness index plotted for the isolated
TCP class in Figure 8. From this perspective, it seems that
long TCP flows are the only victim of aggregation, and there
is no way for short TCP flows to be shut off by long TCP
flows. This is only because the model does not reflect the
fact that when a packet is dropped, short TCP flows would
back off and may wait for a timeout period to send again
[14, 13]. With RED, results are similar to the results ob-
tained by Tail-drop, however as usual, unfairness is small
(see Figure 8). Overall, isolation improves fairness for TCP
flows and their performance.
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Figure 8. Fairness Index for isolation into 2
classes: UDP and TCP: (a) Tail Drop (b) RED.

In the case of low load, isolation increases drop proba-
bility of TCP flows and does not improve fairness, since we
are losing statistical multiplexing gains obtained by sharing.

4.4. Effects of Isolation into 3 Classes

4.4.1. Experimental Setup: All the parameters are the
same as in Section 4.3. However, in this experiment we
examine the effects of isolating flows into 3 classes instead
of 2, which are UDP, long TCP, and short TCP. By doing
this, we expect to have better fairness values for isolated
TCP flows.

4.4.2. Results: The results are shown in Figures 9 and 10
for Tail-drop and RED, respectively.

In the case of high load, isolation provides better and
predictable drop probability for all classes. UDP no longer
hurts TCP flows, and short-lived TCP flows no longer hurt
long-lived TCP flows. The fairness index for these scenar-
ios is shown in Figure 11. In isolation, we observe per-
fect fairness (=1) across flow types, which means short-
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Figure 9. Effects of isolation into 3 classes:
Long-lived TCP, short-lived TCP and UDP
(with Tail Drop): (a) High Load (b) Low Load.
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Figure 10. Effects of isolation into 3 classes:
Long-lived TCP, short-lived TCP and UDP
(with RED): (a) High Load (b) Low Load.
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Figure 11. Fairness Index for isolation into 3
classes: (a) Tail Drop (b) RED.

and long-lived TCP flows should be further isolated to pre-
vent negative effects on one another. Note that shared RED
also provides fairness index very close to 1. However, iso-
lated queues would provide better predictability for UDP
(which mostly carries multi-media traffic) and short-lived
TCP even in the presence of large bursts from long-lived
TCP flows. Also, by having a separate queue for each flow
type, it is easier to manage quality of service. To further
improve quality of service of short-lived TCP flows, which
are usually interactive/delay-sensitive and tend to timeout
on packet drops, we can just allocate more resources to the
class of short TCP flows.

In the case of low load, isolation increases drop proba-
bility of TCP flows for both Tail-drop and RED. The fair-
ness index for Tail-drop increases with isolation, however
for RED it decreases. As we observed in the previous ex-
periments, we are losing statistical multiplexing gains com-
pared to sharing since we model static partitioning of re-
sources among classes. In reality, a class-based queuing
discipline would allow one class to borrow resources from
another under-utilized class [8].

5. Related Work

In order to address the problem of non-responsive flows,
a number of studies [11, 12, 7] propose detecting non-
responsive flows and limiting their rates so that they do not
impact the performance of responsive flows. Others [5] sug-
gest isolation to minimize interaction between connections
in the context of Intserv per-flow architectures. Our focus
here is on a simple, scalable, and less costly solution in the
context of Diffserv architectures, where per-flow informa-
tion is only maintained at access routers to classify pack-
ets. Core routers implement a simple class-based isolation
scheme.

In the same context, [19] addresses fairness issues to
solve the problem of unfriendly flows. However, their
method is computationally more expensive than the one we
are proposing here. In [16], Pieda et al. study TCP and
UDP interaction using different drop preference mapping
when they share the same Assured Forwarding (AF) PHB
class and conclude that 3-drop preference mapping is not
enough to solve fairness issues. In [15], Nandy et al. sug-
gest using intelligent traffic conditioners to map UDP and
TCP into different AF class queues. They observe that iso-
lation solves fairness issues among TCP and UDP. Our work
here not only examines the interaction of TCP and UDP
flows, but also concentrates on short- and long-lived TCP
flows. Our focus has been on isolating traffic with different
characteristics (UDP, short- and long-lived TCP flows) to
improve predictability of the service, fairness among TCP
flows of different size, and better control over QoS of a par-
ticular type of traffic.

In [1], Bhaniramka et al. study isolation of TCP and
UDP traffic over MPLS. Again this study does not con-
sider how different (short- and long-lived) TCP flows are
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affected by non-responsive flows and effects of isolation in
such environments. Our study extends our work in [14, 13]
to include non-responsive flows and analytically evaluate
the benefits of isolation.

6. Conclusion and Future Work

Class based-isolation provides better fairness among dif-
ferent types of traffic in high-load environments. Isola-
tion of UDP and TCP improves fairness for TCP flows and
reduces their drop probability. This improvement is in-
dependent of the buffer management scheme and is pro-
nounced for short-lived TCP flows, which usually carry
interactive/delay-sensitive data and more likely to timeout
on packet drops. Further isolation of TCP into short and
long classes improves fairness and predictability among dif-
ferent types of TCP flows.

Isolation is a necessary and simple alternative if the
deployed buffer management scheme is shared Tail-drop.
With shared RED, we see similar benefits. RED (even when
average queue size is not used) helps to reduce bias against
bursty traffic, and performs well enough in terms of fair-
ness. We expect that the results for RED would be bet-
ter if average queue length was used. Even if this would
be the case, we still believe isolation has other merits that
RED cannot provide: Better control over quality of ser-
vice of each flow type (class). To provide better quality
for a particular type of traffic, we can just allocate more
resources to that class. This is particularly important for
interactive/delay-sensitive traffic such as short-lived TCP
flows. At low-load environments, isolation must implement
dynamic resource allocation (as in CBQ [8]) to avoid statis-
tical loss.

As isolation provides better fairness and performance
improvement for TCP flows, UDP flows generally expe-
rience increased drop probability. However, isolation im-
proves service predictability for UDP flows usually carrying
real-time data.

Finally our results suggest isolated queues for better fair-
ness, performance and QoS management across different
flow types, while using RED within each class to improve
intra-class fairness by preventing synchronization of TCP
flows. Future work remains to develop more detailed mod-
els. We intend to look at fairness within each class, where
flows do not have the exact same characteristics. The goal
is to identify the minimum number of classes for a mix of
TCP flows with various lifetimes/window sizes and round-
trip times.
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