
© Ibrahim Matta, 2011 	  
[Type	  text]	  

	  
	   	  

Advanced Computer Networks 

Professor Ibrahim Matta 

These notes build on a basic knowledge of computer networks, in particular the basic 
workings of TCP/IP protocols of the Internet. We cover mathematical and algorithmic 
foundations, and architectural design principles, of the essential networking functions of 
data transfer, transfer control, and management. Essential concepts of some techniques, 
such as optimization, control theory, queuing theory, and their application to networks 
are covered. Architectural considerations for building networks that are resilient, 
scalable, secure, and market-driven, are discussed. 

These notes contain some problem sets to reinforce basic concepts.  

Preface 

Computer networks have become pervasive: 

• On the rooftops of buildings in some neighborhood connecting routers in a multi-
hop wireless fashion to provide access to local resources in that neighborhood as 
well as to remote resources over a shared Internet connection (MIT Roofnet 
project is an example),  

• In the homes to allow users to access multimedia content stored locally or 
remotely, 

• On planets to connect earth to Mars and other planets with each other, 
• In the oceans connecting sensors on top of whales to collect measurement data on 

life in the oceans,  
• And in many other settings like socially driven networks, e.g., Facebook, and file-

sharing networks, e.g., bitTorrent. 

 

 

  
Figure 1: Networks are everywhere! 

We want to become experts in the fundamentals of building distributed computing 
systems and networks, no matter where they arise, though we will use the Internet as the 
main case study. Besides fundamentals, we will get exposed to recent efforts and research 
questions that are yet to be fully answered. 

We will discuss the fundamental functions needed for networking:  



© Ibrahim Matta, 2011 	  
[Type	  text]	  

	  
	   	  

• Data Transfer concerns packetization (fragmentation/reassembly of Application 
Data Units into/from packets), sending/receiving packets, multiplexing, and 
queuing/scheduling. That happens at a short timescale, packet-level. 

• Data Transfer Control concerns controlling the transfer of a stream of related 
packets (aka flow or connection), for example flow/congestion control, and error 
control. This operates over a medium timescale. 

• Management usually happens at a slower (longer) timescale and often before the 
flow begins its transfer, e.g. locating the destination process, routing, access 
control, syncing the sender and receiver (aka connection 
management/handshaking). 

We will discuss what the architecture that glues all these functions should look like.  

What is “architecture”? It is a style of construction: what are the objects (processes and 
tasks) and how they relate to each other (i.e. interfaces). 

 Efforts to overcome limitations of the basic Internet architecture include overlays. 

What is an “overlay”? We note that there must be an “underlay” then! An overlay is a 
set of processes communicating over a “virtual” network, that is, a network of virtual 
links. A virtual link creates the illusion of a direct point-to-point connection between 
communicating processes and could be implemented using Internet transport connections, 
for example, TCP resulting in a reliable link (no loss, no duplication, no reordering). 
Thus, the Internet TCP/IP forms the underlay. Notice that the Internet itself, in particular 
its Internet Protocol (IP), was built as an overlay over telephone lines – in this case, the 
underlay was the telephone network. 

An overlay is just a network that we need to manage. We could re-use the TCP/IP 
protocols, or we could use a totally different (clean-slate) protocol suite. 

We will also get exposed to the modeling of protocols so we can study their correctness 
and performance. 

What is a model? A model is an abstraction that captures the essential elements of the 
system we want to model, but ignores unnecessary details.   

For modeling and analysis, we will make use of techniques, such as queuing theory1, 
optimization, and control theory2, at some basic level. 

                                                
1 Note that queuing theory, like any other theory, has its limitations. Network calculus 
overcomes its limitation of assuming that arrival processes are Poisson, which is not the 
case in practice. Nevertheless, queuing theory provides important insights. 
2 Control theory overcomes limitations of game theory: classical game theoretic models 
capture synchronized or sequential rounds but does not model different timing / delays 
that are important in networking settings, and assume that behavior is rational and known 



© Ibrahim Matta, 2011 	  
[Type	  text]	  

	  
	   	  

Thus, these notes assume basic knowledge of networking; basic probability, statistics, 
and queuing theory; and basic algorithms and data structures. Nevertheless, we will recap 
basic results and sometimes derive them from scratch to provide needed intuition and to 
provide a quick refresher and make the text as self-contained as possible.  

Beyond Basic TCP/IP 

The basic TCP/IP “best-effort” architecture has evolved and been extended over the years 
in support of performance-sensitive protocols and applications. This is exemplified by 
features implemented in Cisco IOS (Internet Operating Systems) and host operating 
systems like Linux3, overlay architectures, convergent wireline-wireless architectures, 
and private (enterprise) networks. Specific examples include: 

• Integrated Services (IntServ) and RSVP: the IntServ standard extends the best-
effort service architecture of the original Internet with performance guaranteed 
service provided to individual flows. The basic building block is a per-queue/flow 
scheduling algorithm that allocated a minimum rate to each queue/flow. RSVP 
(ReSerVation Protocol) provides explicit signaling to set up buffer/rate for a flow 
along its path to the destination. 

• Differentiated Services (DiffServ): To reduce state overhead in routers, the 
DiffServ standard advocates per-class resource allocation, where a class is an 
aggregate of similar traffic flows. The tradeoff is “softer” performance guarantees 
due to potential interference between flows of the same class. 

• Multi Protocol Label Switching (MPLS): This standard provides the capability 
of establishing explicit paths under IP for the purposes of fast routing (at the 
MPLS level) akin to virtual circuits, traffic engineering (where IP traffic can be 
directed over alternate MPLS paths), and setting up a VPN (Virtual Private 
Network). 

• Traffic Engineering (or QoS/CoS Routing): MPLS paths can be allocated 
resources (e.g., buffer, bandwidth) along the links to serve the requirements (e.g., 
loss, delay) of an individual flow – known as Quality-of-Service (QoS) routing – 
or of a class of flows - known as Class-of-Service (CoS) routing. 

• Content Distribution Networks (CDN): CDNs, e.g., Akamai, have emerged that 
replicates content closer to the client so as to reduce response time.  

• Peer-to-Peer (P2P) Networks: P2P networks, e.g., BitTorrent, have emerged to 
replace the traditional client-server communication model, wherein a peer can 
retrieve content from any other peer who had the content previously retrieved and 
stored. 

• Clean-slate Architectures: More recently, the networking community has been 
investigating replacements of the TCP/IP architecture.  

                                                                                                                                            
when in practice some players may be irrational or have unknown utility, e.g. exogenous 
wireless losses or attackers whose utility is typically to cause some damage to the 
network and its users. 
3 Linux can be configured on a machine to act as either a router or host. 



© Ibrahim Matta, 2011 	  
[Type	  text]	  

	  
	   	  

Our focus in these notes is not on the specific implementations of these extensions but 
rather on the fundamental concepts, their mathematical modeling and algorithmic aspects. 
Learning the fundamentals will allow us to apply basic concepts and algorithms in 
different contexts, for example a given scheduling or routing algorithm could be 
employed at different levels of the network architecture such as at the network level 
inside a router for routing or scheduling packets and at the application/higher level inside 
a web server for scheduling web requests or for routing skype voice calls across the 
skype overlay network. 

As we noted earlier, our focus will be on the design and dynamics of networks (and 
distributed computing systems in general). Dynamics often arise because of adaptations 
by both the users (or protocol entities on their behalf) in response to network performance 
they observe, and the network itself reacting to user demand in its allocation of resources 
(buffers, bandwidth, etc.) 

To study such system dynamics, we will develop and study so-called dynamic models, 
wherein system variables (and sometimes parameters) change over time. Our goal will be 
to analyze their transient / dynamic / time-dependent performance and stability 
conditions. This is in contrast to deterministic models or stochastic / queuing models 
whose variables and parameters are constants or follow certain stationary probability 
distributions, respectively, and where we primarily analyze their steady-state 
performance. We will develop and study queuing models as well.  

The following figure shows a block diagram that captures a typical adaptive (dynamical) 
system. We will revisit such diagrams later when studying different adaptive protocols 
employed by hosts and the network. In this figure, each block (box) represents a 
relationship between its input and output. “Users” block represents a protocol like TCP 
adapting its sending rate based on observed/inferred packet losses, represented here 
abstractly as “prices”. The “demand” from the users is routed by the network, represented 
by the “Plant” block, to cause certain “load” on each “resource” (e.g., an output 
link/interface of a router).  Whenever the resource exceeds a certain load level, it starts 
dropping packets – more abstractly, a “congestion signal” or “price” gets generated that 
users observe after some amount of propagation delay, known as “feedback delay”. In 
response to prices, users adjust their demand and the cycle repeats over time until the 
system may or may not converge to a stable point (state) when supply matches demand. 
We generically call such system a feedback control system. It is worth noting that this 
feedback control system is typical of many other real-life systems, e.g., the time-varying 
demand and supply for oil as a resource, wherein oil companies set prices based on 
demand. In addition to prices driven by demand, we call them “load-dependent prices”, 
there might also be external, load-independent, prices, we call “exogenous prices” – in a 
networking setting, these might be wireless losses due to transmission errors or packet 
losses due to a denial-of-service attack! We will study the convergence and stability of 
dynamical systems using control theory. 

 



© Ibrahim Matta, 2011 	  
[Type	  text]	  

	  
	   	  

 

Figure 2: A Feedback Control System. 

The TCP/IP Architecture Revisited 

We revisit here the TCP/IP (Internet) architecture, starting from its ARPANET precursor, 
how evolving requirements over the years have put the original design under stress, and 
how the original design has been extended to respond to those new requirements.  

The ARPANET (Advanced Research Projects Agency Network) was the first wide-area 
network developed in the US. It consisted of switches connected by long-distance links. 
The original goal was to develop a robust communication system that can survive nuclear 
attacks [Paul Baran, 1960-64]: 

"Both the US and USSR were building hair-trigger nuclear ballistic missile 
systems …long-distance communication networks at that time were extremely 
vulnerable …That was the issue. Here a most dangerous situation was created by 
the lack of a survivable communication system." (Baran in Abbate, 10) 

If the network is not “robust”, then if it gets attacked by one side and goes down, the 
other side won’t be able to communicate and control its missile system to retaliate. A 
dangerous situation arises because there will be no deterrence for the other side from 
initiating an attack! 

Paul Baran developed a design for the ARPANET that had the following elements: 

• Packet switching technology: this allows statistical multiplexing of packets, 
which means bandwidth of flows with no packets to send gets used up by other 
active flows. This reduces the amount of total bandwidth allocated. 

• Totally distributed: all nodes (switches) are equal, i.e. no master-slave 
relationships. This is considered a first instantiation of the so-called peer-to-peer 
(P2P) communication model, a concept that became popular in the late 1990’s at 
the application level as an alternative to the traditional client-server model for 
serving content. 

• Robust: this is accomplished by adequate physical redundancy, adaptive routing 
that directs traffic to less loaded or better performing paths, and priority 



© Ibrahim Matta, 2011 	  
[Type	  text]	  

	  
	   	  

forwarding to transit over new packets. We observe that the latter is a form of 
network flow control and differentiated service! 

• End-to-end error control: the ends (i.e. producers and consumers of the data) 
tolerate and recover from errors. The switches themselves do not retransmit lost 
packets. In other words, complexity of error control is pushed to the edges of the 
network (the ends or hosts) while keeping the network core (switches) simple. 

The design of the original Internet had many features in common. The primary (original) 
requirements, from high to low priority, were: 

• Multiplexing: to achieve cost-effective / efficient use of bandwidth, packet 
switching, statistical multiplexing was adopted.4 

• Survivability: to achieve robustness, error control is employed at the ends (so-
called “end-to-end principle”), the network is stateless, and packets are delivered 
as datagrams. By stateless, we mean that the state of a conversation (flow) is 
maintained at the end hosts, not within switches/routers. Datagrams are delivered 
independently, i.e. packets from the same flow may take different paths to their 
destination, perhaps after a failure on the primary path. 5 

• Service generality:  Originally transport (TCP for reliable service) and routing 
(IP) were considered one protocol. By separating TCP and IP, it became possible 
for applications to use transport services provided by protocols other than TCP, 
namely UDP (for unreliable service). Over the years, other transport protocols 
were developed, e.g. RTP (for real-time transport). 

• Diverse network technologies: IP adopted a “best-effort” delivery service, i.e. IP 
assumed a least common denominator service from underlying networks it 
interconnects, where no reliability or performance quality is expected. Nor does 
IP leverage any capabilities that each individual network may have. In other 
words, the Internet has become one large best-effort network that the ends have to 
live with and adapt to! That proved to be really hard, as we will see. 6 

The Internet: End-to-End Principles 

The end-to-end principle mentioned above is claimed by some to be the cornerstone of 
the Internet’s original design, and was the impetus for its phenomenal success. This is 
how its designers define it: 

                                                
4 It’s worth noting that the use of packets by itself was no choice really, given that in a 
data network, what we want to send is a buffer of bits, i.e. packet! 
5 Some would argue that the concept of datagrams was the main design choice that made 
the Internet a success. However, this concept has been earlier employed in the French 
CYCLADES network, so credit is due there! 
6 This many-transports over IP, and IP over many-networks gave rise to the so-called 
“hour glass” model (after an hour glass shape). One may argue that the best-effort IP 
routing just glued constituent networks into one single giant best-effort network, far from 
a real internetwork of diverse networks, each with its own identity and capabilities! 



© Ibrahim Matta, 2011 	  
[Type	  text]	  

	  
	   	  

A function that can be entirely accomplished in an end node is left to that node, and 
the communication state is kept only in that node  

For example, since applications requiring reliability are ultimately the ones to ensure data 
integrity as data finally gets written on the disk at the receiver, the end hosts should be 
where error control is performed, and not inside the network within routers. This is 
exemplified by TCP running only at hosts. That leads to the idea of “fate sharing”: the 
end host dies, the connection (flow) state gets lost; routers die, connection state is 
unaffected and the hosts (TCP) can retransmit lost packets resuming reliable delivery. 

Another (related) definition of the end-to-end principle is:  

The network is built with no knowledge of, or support for, any specific application 
or class of applications 

That is consistent with a network that makes minimal assumptions about the applications 
using it. This is also in line with Occam’s razor, a philosophy of succinctness articulated 
by a 14th century English logician wherein unnecessary details are shaved off from a 
model: “the simplest of competing theories/models is preferred to the more complex” 
[Merriam-Webster] The Internet complied with this philosophy by keeping the core of 
the network simple (i.e., stateless). 7  We observe that if the network does not provide 
sufficient support to applications, then application processes may end up doing 
networking themselves to overcome the network’s limitations. This is exemplified by 
overlays (e.g. skype) and CDNs (e.g. Akamai). It’s easy to imagine chaos could then 
ensue when such overlays are unaware of the state of the underlay! Recall Albert 
Einstein’s quote: “Make everything as simple as possible, but not simpler.” An important 
question is then: was the end-to-end principle good for the Internet or impediment to a 
cleaner architecture? We will discuss this question in later sections. 

The Internet: Secondary / Later Requirements 

The design of the Internet also had secondary requirements and those that emerged over 
the years: 

• Distributed management: this can be seen from the Internet’s two-tiered routing. 
Routing is based on the notion of Autonomous System (AS) as an independently 
managed network/domain. Domains exchange routing information using an EGP 
protocol (Exterior Gateway Protocol); while inside each domain an IGP (Interior 
Gateway Protocol) protocol is run. IGP could use a link-state approach, like OSPF 
and IS-IS, where each router collects a full view of the topology; or IGP could use 

                                                

7 The RISC (Reduced Instruction Set Computer) architecture is an non-networking 
example of a simple computer architecture that arguably follows Occam’s razor.  

 



© Ibrahim Matta, 2011 	  
[Type	  text]	  

	  
	   	  

a distance-vector approach, like RIP, where routers exchange their best distances 
to destinations. BGP is the de-facto EGP in the Internet. BGP uses a path-vector 
approach that extends distances with path information. 

• Security: To respond to new requirements for security, the Internet architecture 
has been extended with a “shim” layer that sits between the application and the 
transport layer to encrypt application data and provide secure channels. The de-
facto shim protocol is TLS (Transport Layer Security), whose predecessor is SSL 
(Secure Sockets Layer).  

• Mobility: To respond to new requirements for supporting the mobility of nodes, 
the mobile-IP standard was developed. Given that when a host moves and 
changes its point-of-attachment to the network, its IP address changes which 
causes the ID of the transport connection to change. As a result, transport 
connections break. We observe that coupling the connection ID with the 
location/address has been a major source of problems that had faced the Internet 
and challenged its original design. We will revisit naming and addressing in later 
sections. 

• Resource allocation: To support new requirements for supporting better than just 
“best-effort” service, standards like IntServ, RSVP, DiffServ, and MPLS, have 
been developed. This enhanced network support was motivated by real-time 
applications like streaming voice and video.  Metrics such as fairness (i.e. equal 
resource allocation among flows) and QoS (aka controlled unfairness) have been 
considered. 

Other (new) requirements include: 

• Accountability: This gave rise to value-based pricing. For example, tools that 
measure throughput promised by Internet Service Providers (ISP) were 
developed. 8 

• Trust: The commercialization of the Internet meant that users could no longer 
trust each other. Devices like firewalls and traffic filters were placed in front of 
private networks to control access from the outside, so “unauthorized” packets get 
dropped.  

• Less sophisticated users: To support users with relatively more limited resources 
(aka thin clients), proxies were placed in front of them to pre-process complex 
data on their behalf, e.g. sending them only text-only version of web pages. 

In fact, in-line devices like firewalls, traffic filters/shapers, proxies, web caches, etc. 
have collectively been called “middleboxes”. They often perform some application-
specific processing by inspecting arriving packets beyond their IP header, e.g. looking 
at transport protocol port numbers. This has been called Deep Packet Inspection 

                                                

8 See www.speakeasy.net for a tool to measure/test your computer’s download and 
upload speeds in support of voice-over-IP (VoIP) applications. 

 



© Ibrahim Matta, 2011 	  
[Type	  text]	  

	  
	   	  

(DPI). Some consider such DPI as breaking the end-to-end principle or destroying the 
pure original design of the Internet.  Does it? Looking deeper into the end-to-end 
arguments, it is only a design guideline. Moreover, violating its purest form is 
acceptable for the purpose of achieving low-cost performance enhancements as long 
as end-to-end semantics (correctness) of applications is not violated. For example, a 
web cache that always returns an up-to-date web page/object does not violate the end-
to-end principle. However, if the web server inserts dynamic advertisements that the 
web cache ignores, then we could argue that the end-to-end principle is violated. How 
about a firewall? Well, one end puts up the firewall and knows about it, so one could 
argue that the firewall as a proxy to that end does not violate the end-to-end principle. 
In summary, as long as the ends are aware of the middleboxes and what they are 
doing, one could argue that the end-to-end principle is not contradicted. We will 
revisit the relevance of the end-to-end principle in later sections. 

A Different Approach to Reliability 

We have discussed above how enhancements to the basic datagram delivery service have 
been developed in response to changing requirements.9 Another approach to build a 
robust network is to make use of circuits as in a telephone network.10 

In a telephone system, system reliability is achieved mostly by ensuring every component 
is reliable, i.e. it has minimal downtime. Furthermore, the telephone network is tightly 
controlled, where, unlike the Internet, there is a separate control plane for signaling and 
access control so circuits get pre-allocated and hence service predictability in the data 
plane can be achieved, i.e. a voice flow is guaranteed 64Kbps with no loss.11 

Thus, in a phone network, end-specific state is maintained inside the network to keep 
track of time slots statically allocated to the voice flow and the next-hop for its fixed 
path, i.e. we say that the network is circuit-switched and stateful. Furthermore, the phone 
network maintains hard state, i.e. the flow state has to be removed using explicit removal 
messages. In contrast, in a soft state approach, the flow state is removed after a timeout 
period unless refreshed, i.e. timer-based state expiration. We will discuss the modeling 
and evaluation of such flow management approaches in later sections. 

                                                
9 Some would say mostly patches got deployed! 
10 In a telephone network, circuits are allocated statically using TDM (Time Division 
Multiplexing). The bandwidth allocated to a voice circuit with no traffic can not be used 
by another voice flow. This is in contrast to statistical multiplexing of packets.  

11 4KHz (cycles/sec) is the highest frequency component of a voice signal. Nyquist says 
to digitize the signal by sampling it at twice that rate to be able to completely reconstruct 
the voice signal at the receiver. Assuming 256 quantization (amplitude/height) levels 
(i.e., 8 bits), then a voice flow would require 2*4K samples/sec * 8 bits/sample = 64K 
bits per second. 

 



© Ibrahim Matta, 2011 	  
[Type	  text]	  

	  
	   	  

The use of circuits has found its place in some architectural proposals. One idea is to use 
circuits in the core when aggregate traffic is less bursty (so, bandwidth won’t be wasted), 
and datagrams around the edges. Some studies have also found circuit switches simpler 
than software-intensive IP routers! 

Telephone networks have also employed adaptive routing of voice calls. Specifically, on 
call setup, the network may use two-hop paths if one-hop path is full (i.e. it can not carry 
one more voice circuit). 

The Network is there to Support Applications After All 
 
Telephone networks were originally designed to carry voice and support their 64Kbps 
rate requirement. Cable networks were originally designed to carry video. On the other 
hand, the Internet was designed to carry data and accommodate their bursty behavior 
(e.g., a user downloads a web page and then typically sits idle, thinking, before initiating 
another transfer). As a form of convergence, networks have started to serve other kinds of 
applications that they were not originally designed to serve. 
 
In general, we can categorize applications into: 

• Real-time: e.g., voice, video, emergency control, stock quotes, ... 
• Non-real-time (or best-effort): e.g., telnet, ftp, … 

The Internet was originally designed for non-real-time applications. Real-time 
applications, like streaming voice or video, have timing requirements. Timing 
requirements can be classified into: 

• Hard with deterministic or guaranteed requirements: e.g., no packet loss, 
packet delay must be less than a given deadline bound, the difference in delays of 
any two packets must be less than a jitter (delay variability) bound, … This kind 
of requirements give real-time applications a highly stable rate over the network, 
where packets (e.g. carrying voice samples or video frames) must be played back 
at a constant rate equal to their generation/sending rate. In this case, a packet is 
considered lost not only because of buffer overflow but also if its playback time 
(deadline) is missed. These deadlines are increasingly violated as delay jitter 
(variance) increases and packets are received after their deadline. One way to 
reduce deadline violations in the presence of delay jitter, which mostly arises 
because of queuing inside the network, is to push (delay) the playback point so 
packets are there in the receiving host’s buffers when it’s time to play them back. 
However, this delayed playback may reduce the interactivity of the application.  
Thus, a well-designed network with little jitter would require fewer buffers at the 
receiving host to absorb delay variation and the playback point can be set as soon 
as the propagation delay over the network allows. [Insert figure] 

• Soft with statistical or probabilistic requirements: e.g., no more than x% of 
packets lost or experience delay greater than a given deadline. This latter 
requirement bounds the tail of the delay distribution of packets. 



© Ibrahim Matta, 2011 	  
[Type	  text]	  

	  
	   	  

The next question is: is the original end-to-end design of the Internet enough to support 
such real-time applications? Is it enough to employ TCP for error control, oblivious to 
any delay requirements? We discuss these issues next. 

Is End-to-End Control (in the style of TCP) Enough? 

Here we answer the question: 

Is the original end-to-end design of the Internet enough to support real-time 
applications?  Is it enough to support their delay and jitter (delay variance) 
requirements? Is it enough to employ TCP for error control, oblivious to any 
delay requirements?  

Intuitively, with common FCFS schedulers at routers, delay and delay variance increase 
very rapidly with load. Furthermore, if the transport protocol is oblivious to delay 
requirements, it may attempt to retransmit a lost packet whose deadline has already 
expired – a futile exercise and waste of resources! 

M/M/1 Queuing Model 

In answering these questions more analytically, we will start introducing modeling 
techniques from queuing theory. We start with a very simple queuing model where we 
model the network as a single FCFS infinite queue with a Poisson arrival process and 
exponentially distributed service times. We denote such queuing system as 
M/M/1/∞/FCFS, where: 

“M” stands for Markovian or memoryless, i.e. whenever an event occurs, the new state of 
the system depends only on its current state, and not its history. An example memoryless 
process is the Poisson process that gives the probability of the number of arrivals x in a 
time period t as: 

! ! = !  !"  !"#$%&  ! =   !!!"   
(!")!

!!  

where λ denotes the arrival rate. Another memoryless process is the exponential 
distribution that gives the service time t given an average service time of 1 ! (i.e. 
departure rate is µ) as: 

! ! =   !  !!!" 

Note that to say that a process is Poisson is equivalent to saying that it generates 
exponentially distributed inter-event (arrival / departure) times. [Exercise: Show that this 
is the case.] 

The rest of the M/M/1/∞/FCFS notation indicates one queue that is infinite and that 
employs a FCFS scheduling discipline. We also use M/M/1 for short. 



© Ibrahim Matta, 2011 	  
[Type	  text]	  

	  
	   	  

Given an arrival rate λ and a service rate µ, an M/M/1 queue is stable iff λ < µ, i.e. ρ = 
! ! < 1. ρ is called the traffic intensity or load. 

To analyze such a system, we first have to define its “state”. Let us define the state n as 
the number of packets in the system (waiting in the queue + in service): n = 0, 1, 2, … 

Then, we can show that the average (expected) number of packets in the system 
! ! =    !

!!!
. This means that as ρ approaches 1, i.e., the system approaches saturation, 

the average number of packets in the system increases dramatically. The same can be said 
for average packet delay and variance. 

To obtain the average (expected) packet delay, we can use the PASTA property (Poisson 
Arrivals See Time Averages): a new arrival sees the average state of the queue. Thus,  

! ! =   
1
!    ! ! + 1 =   

1
!(1− !) 

The “+1” accounts for the service time of the new arriving packet itself. A typical 
objective of the system would be to limit the average packet delay E(d) to be less than a 
given delay bound D. This can be achieved by limiting ρ. Similarly for the variance, 
which is given by:  

! ! =   
1

!!  (1− !)! 

In some sense, TCP imposes this limit on ρ by doing congestion control. In reality, 
buffers are finite and as load increases, buffer overflows and router starts dropping 
packets. Once TCP detects packet loss, it backs off its transmission window. We analyze 
TCP throughput below. 

[Exercise: Derive E(n) by developing a Markov Chain, i.e. birth-death model where two 
events don’t happen at the same time. In steady state, equate the flow into a state to the 
flow out of that state. Note that ρ also denotes the utilization of the system.] 

Little’s Law:  

A very useful formula for queuing systems is called Little’s law. It relates E(n), E(d), and 
λ.  At steady state, λ is also the system’s throughput (actual packet departure rate): 

! ! =   ! ∗ !(!) 

This result is very powerful as it applies to any (stable) system in steady state. This result 
is independent of the arrival and service distributions, and of the scheduling algorithm 
used. 



© Ibrahim Matta, 2011 	  
[Type	  text]	  

	  
	   	  

TCP Throughput Analysis 

Here we develop a simple model to derive the throughput, more precisely, the sending 
rate, of a TCP connection. We will derive the so-called “inverse- ! formula” that shows 
that TCP throughput, λ, depends on: 

• The transmission window dynamics !(!), dominated by the Additive-Increase-
Multiplicative-Decrease (AIMD) adaptation,  

• The underlying path characteristics, assuming constant packet loss probability p 
and constant RTT (Round-Trip Time). 

In later sections, we will see more detailed models of TCP. But, modeling only the AIMD 
operation of TCP: 

Additive-increase rule (AI): ! ! + !"" =   ! ! + 1, if no packet loss is detected. 

Multiplicative-decrease (MD): ! ! +   !" =   ! ! /2, if packet loss is detected 
(observing duplicate acknowledgments). 

Noting that λ = ! !"", we can rewrite these two adaptation rules in terms of sending 
rate: 

AI: ! ! + !"" =   ! ! + 1/!"" 

MD: ! ! +   !" =   ! ! /2. 

Note that we say that TCP operates at the “cliff” of the throughput-load curve to induce 
packet loss – the “cliff” is the point where throughput (more precisely, “goodput” or 
output rate at which new data get delivered) starts to decrease as the input rate increases, 
a phenomenon known as “congestion collapse”. In response to packet loss, TCP reduces 
load to bound delay but there’s still oscillation in delay, upper bounded by the buffer size. 
[Insert figure]  

Assuming a periodic packet loss model, we will show that the steady-state sending rate of 
TCP is given by: 

! =   
3/2

! ∗ !""
 

Define a congestion epoch as the time period T between two packet losses. During a 
congestion epoch, assuming at steady state the window oscillates between ! and !/2, 
the number of packets sent ! is given by: 

!
2 +

!
2 + 1 +

!
2 + 2 +⋯+

!
2 +

!
2 ≈

3
8!

! 



© Ibrahim Matta, 2011 	  
[Type	  text]	  

	  
	   	  

Given that ! =    !
!

, we obtain ! = 2 !/!
!

. Given that ! = !
!
= !

!
! ∗!""

, we obtain the 

“inverse- !” throughput equation. 

We observe that the throughput of a TCP user is inversely proportional to its RTT. Thus, 
for two TCP users on different hosts sharing the same bottleneck (i.e. they observe the 
same packet loss probability p), a user with shorter RTT would obtain higher throughput 
than that of a user with longer RTT.  

We can also arrive at the same conclusion by tracing the dynamics of adaptations of two 
competing users graphically in a two-dimensional space (!!, !!). The ideal operating 
point to which the trajectory of (!!, !!) should converge is where the system is both 
efficient (i.e. !! +     !! = !) and fair (i.e. !! =     !!), that is the point where !! =     !! =
!/2. If the two users experience the same RTT, then each user converges to the same 
average throughput. On the other hand, if they experience different RTT, then the user 
with smaller RTT converges to a higher average throughput. [Insert figure] 

This can be viewed as a form of uncontrolled unfairness in the sharing of network 
bandwidth. This leads to the observation that: 

Users should not trust the network! 

Furthermore, some users may not “play by the rules” (i.e., TCP rules) and reduce their 
sending rates upon congestion, i.e. they are not TCP-friendly sources like a streaming 
voice or video UDP-based application, given that the error control of TCP does not 
account for any timing/delay requirements. This leads to the observation that:  

The Network should not trust the users! 

This uncontrolled sharing or allocation of resources has been a source of problems for 
the Internet. For one, it led to the tussle between users/applications and Internet Service 
Providers.  For example, ISPs have tended to install traffic filters to curb the appetite of 
some bandwidth-hungry applications like P2P applications (e.g., BitTorrent). And of 
course, some people cry “net neutrality”! Poor ISPs!! 

 
We have discussed the consequences of the basic Internet architecture failing to provide 
controlled allocation of resources – the users couldn’t trust the network, and the network 
couldn’t trust the users. Even David Clark, who was involved with the Internet in its early 
days, admitted this erosion of trust [David Clark & Marjory Blumenthal, 2000]: 
 

“The simple model of the early Internet – a group of mutually trusting users 
attached to a transparent network – is gone forever.” 
 



© Ibrahim Matta, 2011 	  
[Type	  text]	  

	  
	   	  

 “Making the network more trustworthy, while the end-points cannot be trusted, 
seems to imply more mechanism in the center of the network to enforce “good” 
behavior.” 

 
This admits that not all users are trustworthy (i.e. they do what they are supposed to do 
and “play by the rules”) and so the network had to enforce correct, desirable behavior, 
e.g. using firewalls, traffic filters, etc.   
 
The deviation from the original “best-effort” “end-to-end” design of the Internet has also 
been justified on the basis of economic considerations. 
 

“It is in the nature of private enterprise to separate users into different tiers with 
different benefits and price them accordingly.” 
 
 “Low prices and ease of use are becoming more important than ever, suggesting 
growing appeal of bundled and managed offerings over do it yourself 
technology.” 

 
This admits that the network may provide controlled allocation of resources, also known 
as quality of service (QoS), rather than the ends attempting to overcome limited support 
from the network. 
 
As we have mentioned earlier, this gave rise to efforts, such as IntServ and DiffServ, that 
tradeoff some complexity, namely, flow state inside the network, for more service quality 
(predictability).  A balanced approach was traffic routing using virtual circuits coupled 
with non-FCFS guaranteed-service scheduling along the paths, so that it runs under IP 
(thus supporting many applications) and it “runs over anything” (i.e. over a diverse set of 
network technologies). The goal is to provide bandwidth-guaranteed fault-tolerant virtual 
circuits for typically few aggregate flows, e.g. going from one set of access networks to 
another as opposed to individual host-to-host flows. Such architectural enhancements in 
traffic engineering/routing and resource provisioning have been exemplified by 
standards, such as MPLS and Class-based Weighted Fair Queuing (CBWFQ), 
implemented by Cisco, Juniper, Linux, etc. 
 
 

 
 
 
 
 
 



© Ibrahim Matta, 2011 	  
[Type	  text]	  

	  
	   	  

Weighted Fair Queuing (WFQ) 
 
In FCFS scheduling, all packets from all flows share the same buffer, so they interfere 
with each other in the sense that a burst of packets from one flow can cause increase 
delay and jitter for packets of other flows. This increases worst-case delay and jitter.  
 
A non-FCFS scheduler would have a separate queue for each flow, thus flows can be 
isolated from each other. Ideally, we can then allocate each queue (flow) the same equal 
service rate (capacity). This can be achieved by serving one bit from each queue in each 
round, known as “ideal bit-by-bit round-robin (RR)” scheduling, thus the worst-case 
waiting time for service can be bounded and delay guarantees can be provided.  A 
weighted service allocation version can be obtained by serving an unequal number of bits 
from each queue in each round. In practice, we can only serve packets, not bits. A 
packetized version, known as Fair Queuing (or Weighted FQ), would approximate the 
ideal bit-by-bit RR. FQ stamps an arriving packet with its finishing time if ideal bit-by-bit 
RR were used, i.e. ideal RR is simulated. Then, FQ serves packets in the order of 
increasing finishing times. The following figure shows an example of FQ in action. The 
timestamps of the packet of size 5 bits and that of size 10 bits are 5 and 10, respectively, 
as they would have finished their transmission in these rounds under ideal bit-by-bit RR. 
The timestamp of the packet of size 8 is 13. 

  
 

One can see that in practice, when packet transmission does not get preempted, FQ is 
only an approximation of ideal bit-by-bit RR. For example, if a large packet arrives to an 
empty system of two queues and joins the first queue, this large packet gets scheduled 
and transmitted. Immediately afterwards, if a second small packet that belongs to the 
second queue (flow) joins, although this small packet would have finished almost right 
away after its arrival, now without preemption, it has to wait for the large packet to finish 
its transmission. Thus, the approximation error in terms of the absolute difference 
between the packet delay under FQ and packet delay under the ideal bit-by-bit RR is 
upper-bounded by the maximum packet size divided by the link capacity. 
 
The WFQ version can allocate different service rates !!   to different queues (flows), i.e.  

!!   ≥   
!!
!!
  ! 

where !! is the weight allocated to flow i, and C is the link capacity. The right-hand side 
of this inequality represents the minimum service rate guaranteed to the flow. This 
minimum service rate is received when all queues are active (i.e. non-empty), otherwise a 
non-empty queue receives higher service rate since no capacity is wasted due to statistical 
multiplexing and rate allocated to empty queues gets proportionally assigned to non-
empty queues. 
 



© Ibrahim Matta, 2011 	  
[Type	  text]	  

	  
	   	  

How should we assign weights in WFQ? 
 
The capacity allocated to a queue (flow) depends on: 
 

• Delay	  or	  jitter	  requirement	  of	  the	  flow	  
• Shape	  of	  the	  traffic	  generated	  by	  the	  source	  of	  the	  flow	  (i.e.	  its	  

characteristics)	  
Assume the source generates traffic at the average rate of ! (packets/sec) and variance 
!!. Then, the service rate that needs to be effectively allocated to that flow, called 
effective bandwidth in the literature, is greater than or equal to !, so as to accommodate 
the variance (burstiness) of the source traffic. We want the effective bandwidth (or, its 
sum over all sources) to be less than the total capacity of the link. 
 
Discrete-Time Queuing Model 
 
We next consider a simple single queue discrete-time model where time is slotted, and 
the number of packets arriving to the queue in slot n is a random variable !! with 
average ! and variance !!. Assume that the service time of a packet is a constant of one 
time slot. Define the state of the system by the number of packets in the queue and in 
service, !! in slot n. Our goal is to compute E(y), and then find the effective bandwidth 
that satisfies ! ! <   !, where D is a given delay bound. 
 
We start with the difference equation that describes the evolution of !! over time: 

!!!! =   !! − 1 !! > 0 +   !! 
Taking the expectation of both sides: 

!(!!!!) =   !(!!)− !(1 !! > 0 )+   !(!!) 
At steady state, 

!(!) =   !(!)− !(! > 0)+   ! 
Thus, ! ! > 0 =   !. Recall that E(x+y) = E(x) + E(y). Also, ! ! ! =   Σ  ! ! !(!), 
thus ! 1 ! > 0 =   ∑!!!  1.! ! =   !(! > 0), which is the probability that the queue 
is not empty. 
Squaring both sides of the difference equation and taking the expectation, we obtain: 
!(!!) =   !( ! + ! !)− !(2 ! + !   1 ! > 0 )+   !(1 ! > 0 )!  
Recall that ! !" = ! ! !(!) if x and y are independent. We note that the arrival 
process and the number of queued packets are independent, i.e. intuitively observing one 
quantity is not sufficient to infer the other one. 
! !! =   ! !! +   ! !! + 2  ! ! ! ! − 2! !. 1 ! > 0 − 

2!(!).!(1{! > 0})+   !(1 ! > 0 )! 
Note that ! !. 1 ! > 0 = !  ! ! = !(!), !(1 ! > 0 )! = ! ! > 0 = !, and 
!! = ! !! −   !!. Simplifying, we get: 

0 = !! +   !! + 2  !" ! − 2! ! − 2!! +   ! 

! ! =   
! 1− ! + !!

2(1− !)  

 
Given the service time is one time slot, to bound waiting time by D, we want: 



© Ibrahim Matta, 2011 	  
[Type	  text]	  

	  
	   	  

!
2+

!!

2(1− !) < ! 

We know, for stability, that ! < 1.  Thus, we can write: 
!
2+

!!

2(1− !) <   
1
2+

!!

2(1− !) < ! 

Rearranging, we get: 
 

! +
!!

(2! − 1) < 1 

We observe that the right-hand side of this inequality represents the unit service rate. 
Also the left-hand side represents the effective bandwidth needed to allocate that source 
to meet the delay bound, which is equal to the average arrival rate, plus a quantity that 
depends on the traffic variance and the desired delay bound. In particular, a higher traffic 
variance or tighter (i.e. smaller) delay bound increases the effective bandwidth required 
to be allocated to that source. 
 
Overlays over IP or Underlays 
 
Another kind of attempts to overcome the limitations of the basic “best-effort” Internet 
architecture had been the building of “overlays”. An overlay is a virtual network between 
processes linked (communicating) with (TCP or UDP) transport connections. These 
virtual links may physically run over an underlay of performance-guaranteed (e.g. 
MPLS) paths. Thus, traffic may be re-routed through one or more intermediate hosts to 
avoid the possibly congested or unavailable direct path. Congestion may arise due to 
traffic overload, denial-of-service attacks, etc. Path outages may be because of 
configuration/operational errors, fiber cuts, etc. 

 
Observing that the source and destination overlay processes (nodes) can communicate 
through intermediate overlay processes (nodes) over reliable TCP connections, one 
question we may ask: do overlays “violate” the end-to-end principle? Do they break the 
end-to-end semantics of TCP when data packets received at an intermediate node get 
acknowledged before the final destination node actually receives the data? Well, overlay 
processes only perform routing over virtual links that happen to be loss-free. But, as long 
as the source and destination nodes (the ends) still maintain a higher-level TCP or TCP-
like connection to provide service to their application processes, then the end-to-end 
semantics are not violated. As we will discuss later, there seems to be an inherently 
recursive structure that emerges where overlay networks, independently managed, are 



© Ibrahim Matta, 2011 	  
[Type	  text]	  

	  
	   	  

built on top of virtual or physical links, which themselves constitute communication over 
underlying networks that are also independently managed. We will discuss our recursive 
internet architecture that generalizes and formalizes this organization.  
 
Challenged Internet 
 
The basic Internet architecture has been further challenged with its extensions with 
wireless links, including cellular radio, satellite and acoustic. One problem is that the 
widely deployed transport protocol, TCP, was designed based on the assumption that 
packet losses are because of congestion (i.e. buffer overflow), and loss rates and delays 
are reasonably low. This assumption becomes invalid over wireless links when loss rates 
and delays are high, and packet losses may be due to wireless transmission errors or 
mobility handoffs, which are exogenous, i.e. independent of load or TCP’s sending rate. 
By mistakenly backing off to such wireless errors, which may be temporary, TCP 
throughput unnecessarily decreases. To overcome this limitation, in-line devices 
(“middleboxes”), often called Performance Enhancing Proxies (PEP), have been 
developed to “hide” wireless losses or delays from the TCP sender.  For example, hiding 
of wireless losses is usually accomplished by employing a different transport (error 
control) protocol over the wireless segment so as to recover wireless losses quickly 
before the TCP sender times out. 

 
 
 

Exercises: 

1)   Assume we modify the TCP AIMD algorithm and instead use AIAD, i.e. Additive 
Increase Additive Decrease. So, when no congestion is observed, a source 
increases its window size by 1 packet every round-trip time (RTT). Whenever 
congestion is observed, a source decreases its window size by 1. Given two AIAD 
sources sharing the same bottleneck and experiencing the same RTT, do they 
converge to a fair and efficient rate allocation? Support your answer graphically 
by showing the trajectories of the two windows assuming a synchronized model 
where the windows are adapted at the same time instants. 

 
2)   For the following statements, either circle your choice, or fill in the blanks 

between parentheses: 
(a) The effective bandwidth for a source, needed to satisfy some performance 



© Ibrahim Matta, 2011 	  
[Type	  text]	  

	  
	   	  

requirement, (increases OR decreases) as the traffic burstiness of the source 
decreases. 

(b) Given the ideal transmission window size is C × D, where C is the bottleneck 
capacity and D is the round-trip propagation delay, the buffer size should be 
set to (               ) to make the AIMD operation of TCP efficient (i.e., 
100% link utilization). 

 
3)    If a TCP-Tahoe source has a packet loss whenever its window size is 16, what is 

the range in which its window size oscillates in steady state? If the round-trip time 
(RTT) is 1, and the optimal window size is 8 (i.e. optimal in terms of 100% 
utilization), what is the utilization of the bottleneck link when the source has a 
window size w? Use this to compute the average utilization of the bottleneck if it 
only carries a single source. Recall TCP-Tahoe does not implement fast recovery. 

 
4)   Consider a FCFS queue of maximum size K packets to which packets arrive 

according to a Poisson process of rate λ. A packet is served for an exponentially 
distributed time with average 1/µ.  
(a) Draw the steady-state transition diagram of the corresponding Markov chain, 

and solve for the steady-state probability of being in the different states. 
(b) Write down expressions for the throughput and average packet delay. (You 

don’t need to solve for the final closed-form equations.) 
(c) How large does K have to be so that the probability of buffer overflow does 

not exceed X? (You don’t need to solve for the final closed-form equation.) 
 
 
 


