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1 Introduction

These notes highlight the main issues related to synchronizing the data at both sender and
receiver of a protocol. For example, in a P2P file sharing application protocol, one peer
(sender) may inform the file directory server (receiver) about the set of files it has and it
can serve to other peers. In this case, we say that the state of such protocol is the set
of files a peer is willing to share with other peers. Keeping the states at the sender and
receiver consistent ensures that a query for a file does not get directed to a peer who no
longer is serving the file, or the query does not get falsely rejected as the directory server
is unaware of a peer who is currently serving that file.

As another example, a transport protocol that provides reliable service would need to
synchronize the sequence numbers of those packets sent and received successfully so that
the receiver can distinguish “new” data/ACK packets from “old” ones (i.e. duplicates).
In this case, the state of such protocol is the range of valid sequence numbers, in addition
to other transfer information such as RTT estimate for the connection, RTO timers, etc.
Keeping the states at the sender and receiver consistent ensures that the receiver does
not accept duplicate data, or the sender falsely assumes that new data has been delivered
because of an old duplicate ACK.

There are two main approaches to synchronizing the state: hard state (HS) and soft
state (SS). HS employs reliable explicit signaling for establishing the state when the session
starts and for deleting the state when the session ends. On the other hand, SS typically
employs best-effort signaling for establishing the state and henceforth the state at the
receiver is deleted after a timeout if not refreshed by the sender.

We have also discussed in class that there is a spectrum of schemes that lie between SS
and HS, e.g. SS+ER (soft state with explicit reliable state removal).

We first start with reliable transport as a case study, and then we consider general
signaling protocol design and performance.
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2 Connection Management for Reliable Transport

TCP is an example of HS, though the sender deletes its state after a timeout (i.e. SS
timer). So we classify TCP as hybrid HS+SS. Delta-t is an example of pure SS.

To provide transport reliability, the network must provide a Maximum Packet Lifetime
(MPL) guarantee. So, in some sense, there is no way around the need for timers. Delta-t
relies only on this MPL knowledge to set timers at the sender and receiver to make sure
the connection state at both sender and receiver is not deleted until all packets from this
connection instance (incarnation) have died out.

On the other hand, TCP relies on explicit handshaking to distinguish a new connection
incarnation by way of a “new initial sequence number” – the sender chooses this new initial
sequence number to ensure no packets inside the network have that sequence number, which
implicitly assumes knowledge of MPL. We have seen in class, considering reliable one-data
message delivery, how we can evolve the design of a reliable transport protocol from a
minimal two-message exchange (DATA, and ACK) to five-message exchange (SYN, SYN-
ACK, DATA, ACK, CLOSE), which degenerates to TCP if we additionally had a state
timer at the sender, initialized to 2MPL, to ensure the last CLOSE from the sender has
been received successfully at the receiver before the sender deletes the connection state.

We have also seen how Delta-t just augments the two-message exchange with two SS
timers: (1) an SS timer at the receiver, initialized to 2MPL whenever a new in-sequence
packet is received, to ensure that the receiver does not delete its state as long as the sender
is still trying to deliver a message, and (2) an SS timer at the sender, initialized to 3MPL
whenever it transmits any packet, to ensure that the sender does not delete its state before
the receiver does. Note that the SS timer at the receiver is important to ensure that the
receiver does not “forget” this connection unless the sender has given up and all packets
from that connection have died out. This way, the receiver is sure that no duplicates will
ever be received even if it starts a new connection incarnation with the same sender and
the sender uses any initial sequence number for its first packet. The key principle here is
that a Delta-t receiver, by keeping (caching) a connection state until all its packets have
died out, does not need to verify with the sender whether the first data packet belongs to
a new or old connection. If the Delta-t receiver does not have a state for the connection,
then it must be a new connection.

In what follows, we describe the basic operation of the different reliable transport
approaches mentioned above, for the worst-case scenario of reliably sending a single message
per conversation between a single sender and a single receiver, over a channel that may
lose or re-order (delay) messages.1 We say “worst case” since information from successive
packets in a stream can only help the transport protocol, e.g., to identify a missing packet
in the stream sequence or to keep the connection state alive (refreshed).

1We use the terms “message” and “packet” interchangeably. When we refer to “single-message” or
“multi-message” conversation/transfer/communication scenario, then we mean data messages.
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We review four approaches to reliable transport [Belsnes’76]. They represent a spec-
trum of solutions where the amount of explicit connection-management messages and the
use of connection-state timers vary: (1) the two-packet (DATA and its ACK) protocol has
no connection-state timers nor explicit connection-management messages, (2) the three-
packet protocol augments the two-packet protocol with an explicit connection-management
CLOSE message, (3) the five-packet (TCP) protocol augments the three-packet protocol
with explicit connection-management (SYN and SYN+ACK) messages and a connection-
state timer at the sender, and (4) the Delta-t protocol augments two-packet using only
connection-state timers at both the sender and receiver. Delta-t and its predecessor
(two-packet) represent soft-state protocols, three-packet represents a hard-state protocol,
whereas five-packet represents a hybrid hard-/soft-state protocol2.

Note that although, from a correctness standpoint, we note below that two-packet
and three-packet may result in duplicate connections being accepted, we include them to
understand the progression to five-packet and ultimately to TCP.

2.1 Two-Packet Protocol
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Figure 1: Two-Packet Protocol

To detect data (packet) loss, this protocol uses positive acknowledgments. When there
is data to send, the sender opens a connection to the receiver and transmits the data mes-
sage. Opening a connection means that control information is kept about the connection,
which we refer to as state information. When the receiver receives the data message, it
opens a connection, delivers the data message to the application, sends an acknowledgment
message back to the sender, and immediately closes the connection. Closing the connec-
tion means removing the state information of the connection. A normal conversation is
illustrated in Figure 1(a).

If the sender does not receive the acknowledgment within an estimated retransmission
timeout (RTO) duration, then it retransmits the data message. Figure 1(b) illustrates the

2We use “five-packet” and “TCP” interchangeably as we augment the basic five-packet with TCP’s
connection-state timer at the sender.
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case where the retransmission timeout value is underestimated, thus the sender prematurely
retransmits the data message. Since the receiver closes the connection right after it sends
the acknowledgment, it can not distinguish a premature retransmission (duplicate) from
new data (new connection). Thus, the receiver accepts and delivers a duplicate to the
application.

Another scenario that causes data duplication is when the network (channel) loses the
acknowledgment. Figure 1(c) illustrates this case. If the acknowledgment is lost, the sender
retransmits the data message after RTO.

In [Belsnes’76], the correctness of the two-packet protocol is studied in detail, including
the case of data messages falsely acknowledged (i.e., without being actually delivered) and
hence lost. This latter problem is solved by introducing sequence numbers [Tomlinson’75].
The sender appends to each new data message a new sequence number that has not been
recently used in its communication with the receiver.3 A sequence number should not
re-used until all messages with that sequence number (including duplicates) have left the
network. Thus, the two-packet protocol (augmented with such initial sequence numbers)
does not lose data but may accept duplicates.

2.2 Three-Packet Protocol

To solve the duplication problem due to acknowledgment loss, this protocol augments the
two-packet protocol with an acknowledgment for the ACK, which can be thought of as an
explicit CLOSE connection-management message sent by the sender. When there is data to
send, the sender opens a connection to the receiver and transmits the data message. When
the receiver receives the data message, it opens a connection, delivers the data message to
the application, sends an acknowledgment message back to the sender, and waits for the
CLOSE message from the sender before clearing the connection-state. When the sender
gets the acknowledgment, it transmits the CLOSE message to the receiver and closes the
connection. The receiver in turn closes the connection once it gets the CLOSE message.

Despite the extra CLOSE message, this protocol does not solve the duplication problem.
If a delayed retransmission of a data message arrives at the receiver right after the receiver
closes the connection, the receiver wrongly opens a new connection and accepts a duplicate.

2.3 Five-Packet Protocol

To avoid data duplication, two additional explicit connection-management messages are
introduced to open a connection. Figure 2 illustrates a normal conversation of the protocol
(ala TCP). The sender transmits a synchronization SYN message to initiate the connection.

3In practice, since the sender does not keep state once the connection ends, a sender would probably
pick a random initial sequence number in the hope that it indeed does not exist in the network! Otherwise,
the sender would use for all its connections a large sequence number space that does not wrap around for
at least 2MPL.
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Figure 2: Five-Packet Protocol

The receiver responds to the SYN message with a SYN+ACK message. The sender then
transmits the data message, which also acknowledges the receiver’s SYN, thus synchroniz-
ing the sender and receiver, ensuring that the initial SYN message is not a duplicate (from
an old connection). Upon receiving the acknowledgment for its data, the sender trans-
mits an explicit CLOSE message and closes the connection. Upon receiving the CLOSE
message, the receiver closes its end of the connection.

TCP follows this five-packet protocol. However, in TCP, after the sender sends the
CLOSE message, it does not immediately close the connection, rather it waits for at least
2×MPL. This is the case because the last CLOSE message can get lost, which would lead
to inconsistent states when the state is closed (removed) at the sender and still open at
the receiver. This timed wait of 2×MPL at the sender ensures that the last ACK-CLOSE
exchange is completed, otherwise both ends will terminate the connection and remove its
state. Note that at this point, no packets from this connection exits in the network.

2.4 Delta-t Protocol

As noted above, the transport protocol inevitably assumes, either implicitly or explic-
itly, that the underlying network (channel) provides a guarantee on the Maximum Packet
Lifetime (MPL). The Delta-t protocol [Watson’81] thus exclusively relies on connection-
management (state) timers that are bounded by MPL. Delta-t is basically a two-packet
protocol, augmented by state timers at both the sender and receiver to solve the problem of
data duplication. Unlike the five-packet protocol, there are no explicit (separate) messages
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to open and close the connection.
The sender and the receiver state timers are set to guarantee that none of the messages

(including duplicates) of the active connection will arrive to the ends after they close
the connection. Figure 3(a) illustrates the connection state lifetime at the sender and
the receiver. The sender starts its state timer whenever it sends a data message (new
or retransmission). The connection at the sender should be open long enough—denoted
by Stime—to receive the acknowledgment, which could be transmitted in the worst-case
right before the receiver state lifetime—denoted by Rtime—expires. Since the lifetime of
a packet is bounded by MPL, we have the following relationship:

Stime = Rtime + MPL (1)
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Figure 3: Delta-t Protocol

The receiver starts its connection-state timer whenever it receives (and accepts) a new
data message. The receiver state timer should be running long enough to receive all pos-
sible retransmissions of the data message in the presence of an unreliable (lossy) channel.
This allows the receiver to catch (recognize) duplicates of the data message. The connec-
tion is closed at the receiver after the last possible acknowledgment for the connection is
sent. Figure 3(b), reproduced from [Fletcher’78], illustrates the worst-case multi-message
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conversation between the sender and receiver4. Denote by G, the maximum time a sender
keeps retransmitting a data message before it gives up and aborts the connection. If n is the
maximum number of retransmissions for each data message, then G = n×RTO ≈ n×RTT .
Associate with each data packet a timer initialized to G when it is first transmitted. When-
ever a data packet’s G-timer expires, the G-timers of all other data packets are frozen
hoping to successfully get the acknowledgment, otherwise the connection is aborted and
the application is informed.

Figure 3(b) shows the multi-message scenario when a new data packet (whose sequence
number is x + 1) is received instantly, so in the worst case, Rtime is started as early
as possible. Due to consecutive losses, the G-timer of the previous data packet (whose
sequence number is x) expires while waiting for the acknowledgment ACK x for its last
retransmission attempt, which in the worst case, will take MPL to arrive. At this time
instant, the G-timers of all oustanding packets are frozen, thus data packet x+1 has not yet
used up its maximum delivery time G. Now when ACK x arrives, in the worst case, due to
ACK losses, data packet x+1 keeps getting retransmitted until all its G is consumed by the
time its last retransmission is sent, which in the worst case, takes another MPL to arrive
at the receiver. This worst-case pattern repeats with data packet x + 2, which causes the
receiver’s state timer to be re-started (refreshed). Given this worst-case scenario, a Delta-t
receiver sets its Rtime as follows:

Rtime = 2 ×MPL + G ≈ 2MPL (2)

Thus, substituting Rtime in Equation (1), we have:

Stime = 3 ×MPL + G ≈ 3MPL (3)

3 General Signaling

Inconsistent states at the sender and receiver may cause incorrect behavior or bad per-
formance. In our reliable transport case study above, we have ensured that the design of
either TCP (exemplifying mostly HS design) or Delta-t (exemplifying SS) is correct, i.e.
no data loss or duplication.

In general, in terms of performance, the design of SS wins in terms of robustness. By
robustness we mean that performance does not degrade precipitously as network conditions
get worse than normal (e.g. as message losses and delays increase). Moreover, the sender
and receiver are loosely coupled which makes the design simpler. We discussed an analytical
cost model [Lui’04] that captures a spectrum of SS and HS behavior, and used it to show
that SS is more robust than HS, i.e., SS has slightly higher cost under good/normal network
conditions, but much lower cost than HS under bad network conditions. The derived cost
expression is a function of the refresh period R; it has three terms:

4For simplicity, we assume that the receiver does not delay sending its acknowledgment.
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1. a term that represents the overhead and cost of losing refresh messages present in SS
protocols,

2. a term representing the inconsistency cost due to lost signaling messages, and

3. a term that represents the cost of “orphaned” state at the receiver, i.e. state not yet
removed waiting for explicit removal or to be timed out.

The model attempts to calculate the optimal R that minimizes the total cost. It
captures HS by giving higher relative weight to the first term since protocols that are more
HS have minimal or no refresh cost. SS is captured by giving higher relative weight to the
last term since protocols that are more SS should attempt to minimize the cost of orphaned
state present until the SS state timer expires. SS is shown to have much lower cost under
high message loss probability as more frequent refreshes, due to the small optimal R, are
able to overcome the high loss conditions and thus reduce the cost of orphaned state at
the receiver. An HS protocol, on the other hand, suffers from losing its signaling (state
trigger or removal) messages under high losses, where each signaling message requires at
least RTT to detect its loss and be retransmitted.5

On the other hand, in general, HS wins in terms of inconsistency ratio and signaling
overhead. This is because state triggers (installs) and removals are sent reliably, and there
is no need for periodic refresh messages. We discussed a continuous-time Markov model
[Ji’03] developed to model SS and other signaling approaches, and used it to compute the
inconsistency and signaling rate metrics. By inconsistency ratio we mean the fraction of
time when the sender and receiver are not synchronized, i.e. they do not have the same
exact views or values of the state variables. Under normal low loss conditions, reliable
signaling for state triggers and removals in HS costs much less than periodic refreshes
in SS. Note however, that this last statement is misleading: to be robust to extreme
network conditions, e.g. sender crashes, in HS, an underlying keep-alive mechanism is
usually employed to signal such error to the “orphaned” receiver so state can eventually
be removed.

Then the main drawback of SS is typically higher inconsistency because of the delay in
removing state at the receiver, waiting for the state to time out, called “orphaned” state.
The price of this is higher memory usage, in addition to inconsistency. With an explicit
state removal and/or setting the SS timer at the receiver to be the minimal possible (as
allowed by correctness and performance goals), an SS design should be the right choice
given its robustness and simplicity!

4 Exercises

1. For the following statements, circle your choice:

5In practice, there is a limit on the number of retransmission attempts, after which the session is aborted.
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(a) In Delta-t, the sender’s connection state timer is typically set to (2×MPL OR
3×MPL), where MPL is the Maximum Packet Lifetime. And the receiver’s state
timer is set to (2×MPL OR 3×MPL).

(b) Soft-state signaling protocols are generally found to be (more OR less) consis-
tent, and (more OR less) robust, compared to hard-state protocols.

2. Argue for or against Delta-t compared to TCP. Consider signaling overhead, incon-
sistency ratio, and robustness metrics and how they manifest in the two protocols in
practice. For example, consider that signaling information can be piggybacked onto
data packets, connections could be for short or long data transfers, state inconsisten-
cies may affect different aspects of correctness, performance, resource consumption,
etc.

Also, comment on the “complexity” of a Delta-t vs. TCP implementation, i.e. which
one do you think is easier to code and maintain?
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