
© Ibrahim Matta, 2011-2012

Advanced Computer Networks

Professor Ibrahim Matta

Naming and Addressing

We discuss the important issue of naming and addressing in the context of our new
Recursive service-based Inter-Network Architecture called RINA. In these notes, we
give a brief overview of RINA. They serve as complement to the slides discussed in class
and posted on the course website. The RINA website can be found at:
http://csr.bu.edu/rina/

Overview of RINA

Today's Network Architecture

The current Internet architecture is built around layers of different functions, where the
Network Layer provides a technology-independent abstraction on top of a large set of
autonomous, heterogeneous networks. The Internet Protocol (IP) is one mechanism for
achieving such an abstraction. By making the choice for a rudimentary ``best-effort"
service, the Internet has not been able to effectively respond to new requirements
(security, manageability, wireless, mobility, etc.) Today, Internet Service Providers
(ISP's) may be willing to provide better than best-effort service to their customers or their
peers for a price or to meet a Service Level Agreement (SLA). The lack of a structured
view of how this could be accomplished, given the current IP model, has led to numerous
ad hoc solutions that are either inefficient or incomplete. There is a lack of a building
block that can be composed to provide a wide scope service that meets given user
requirements.

How Is RINA Different?

The current Internet architecture has its shortcomings:

© Ibrahim Matta, 2011-2012

(1) Naming and addressing interfaces rather than nodes. By early binding communication to an IP

address, which identifies a particular connection, it becomes hard to take advantage of other
connections that a multi-homed node has.

(2) Exposing addresses to applications. By hard-coding IP addresses in applications, having them

public, together with well-known ports, the network becomes vulnerable to attacks.

(3) Artificially isolating functions of the same scope1. This isolation makes it hard for layers of the
same scope to interact and exchange relevant information. For example, the transport layer may
not have access to the exact reasons of packet losses inside the network and may react to mobility
related errors in the same way it reacts to congestion-induced losses.

(4) Artificially limiting the number of layers (levels). The Internet is basically designed around a two-

tiered routing system when different levels of management may better control different parts of
the Internet.

On the other hand, RINA leverages the inter-process communication (IPC) concept. In an
operating system, to allow two processes to communicate, IPC requires certain functions
such as locating processes, determining permission, passing information, scheduling, and
managing memory. Similarly, two applications on different end-hosts should
communicate by utilizing the services of a Distributed IPC Facility (DIF). A DIF is an
organizing structure – what we generally refer to as a “layer.” However, what functions
constitute this layer is fundamentally different in this IPC model. A DIF is a collection of
IPC processes (nodes). Each IPC process executes transport and management (routing,
directory services, access control, resource allocation, security, etc.) functions, i.e. all
what is needed to manage a “private communication network/community”. IPC processes
communicate and share state information to provide specific services to their users
(application processes) through a well-defined service interface (API). How a DIF is
managed, including addressing, is hidden from the applications. RINA’s API allows
applications to only ask for service by name – a location-independent application/service
name. In contrast, TCP/IP exposes IP addresses, which name interfaces, and thus are
location-dependent! In RINA, the underlying DIF layer itself maps service name to a
location-dependent node address. This level of indirection allows a service / application
to move to a new location while the service name remains the same.

RINA is a clean-slate internet architecture that builds on this very basic premise, yet fresh
perspective that networking is not a layered set of different functions but rather a single
layer of distributed inter-process communication (DIF) that repeats over different scopes
– i.e., same mechanisms (a la recursive function) but policies (a la parameters) are tuned
to operate over different ranges of the performance space (e.g., capacity, delay, loss) so
as to accommodate the quality of services provided by lower-level DIFs (service
providers) and to meet those requested by its users (application processes, or IPC
processes of higher-level DIFs). Specifically, a scope defines a DIF comprised of the set

1 Transport and routing/relaying functions are split into two separate layers: over the
same domain/link they are split into the Data Link and Physical layers. Internet-wide they
are split into the Transport and Network layers.

© Ibrahim Matta, 2011-2012

of IPC processes, running on different machines, that collaboratively provide a set of
well-defined (transport) flow services to upper application processes. Application (user)
processes can themselves be IPC processes of an upper DIF that is providing services
over a wider scope. Thus, RINA has one building block (the DIF layer) that can be
composed to form a higher-level DIF from the services provided by lower-level DIFs –
the figure below illustrates composition by recursion of the DIF layer.

The figure below illustrates all functions implemented by an IPC process in a RINA layer
(DIF). RINA separates mechanism (the how) from policy (the what). This is done by first
separating tightly bound mechanisms, which involves fast data transfer and PCI (Protocol
Control Information, such as source and destination addresses, sequence number, TTL,
etc.), from loosely bound mechanisms, which involves sending rate adaptation, routing
updates, etc. Policies determine what mechanism is activated, for example sending rate
adaptation can be activated using a certain flow/congestion control algorithm.

This separation of mechanism from policy yields three loci of processing operating over
different timescales from short to long:

• IPC Transfer actually moves the data and include tightly coupled mechanisms such as
fragmenting or packing SDUs (Service Data Units) coming from application processes into
packets / PDUs (Protocol Data Units). A PDU encapsulates SDU(s) with PCI information such as
source and destination addresses, a TTL field, etc.2

• IPC Control (optional) for error, flow control, etc. A Data Transfer State Vector (DTSV)
maintains the state of a flow (connection), e.g. current transmission window size, RTT estimate,

2 A PDU is basically a packet that the DIF layer transports and routes to the destination
process.

2

!"#$%&'

(&)*+,%&#

-)#)./0*'

123+04)5

6,,504)#0%*+

!"#$%&'

(&)*+,%&#

-)#)./0*'

123+04)5

6,,504)#0%*+

!"#$%&'

(&)*+,%&#

-)#)./0*'

123+04)5

6,,504)#0%*+

!"#$%&'

(&)*+,%&#

-)#)./0*'

123+04)5

6,,504)#0%*+

!"#$%&'!"#$%&'

-/ -/

178 178

9":;."<)05;.=#,;.>

$$$?4+?:@?"A@
BCD?BEF?BG?BH

BCD?BEF?BG?BBC
D?
BH
?BC

F?
CG

BCD?BH?H?H BCD?BEF?H?H

Fig. 1. TCP/IP Architecture

determining permission, passing information, scheduling, and
managing memory. Similarly, two applications on different
end-hosts should communicate by utilizing the services of a
distributed IPC facility (DIF) that provide the same functions
plus those required by the lack of a common memory. A DIF is
an organizing structure—what we generally refer to as a layer.
What functions constitute this layer, however, is fundamentally
different. A DIF is a collection of IPC processes (nodes). Each
IPC process executes routing, transport and management func-
tions. IPC processes communicate and share state information.
How a DIF is managed, including addressing, is hidden from
the applications. To understand why layers must be organized
this way, see [1].

The goal of a DIF is to provide a distributed service
that allows application processes to communicate. One use
of a DIF might be as a private network or overlay. Two
novel aspects of a DIF is that it repeats and is relative.
Each repetition addresses a different range of operation and/or
scope. As shown in Figure 2, two IPC processes P1 and P2
in an N-level DIF communicate by utilizing the services of
an (N-1)-level DIF. Thus, while the specific function of IPC
processes is to do IPC, they are also application processes
requesting IPC from a lower layer. Our IPC-based architecture
can be found in [2]. In this section, we only highlight key
aspects of this architecture that have a fundamental impact on
security.

!"!# !$ %&'()('*+,-

.%&#/&'()('*+,-0

0123(4*0525(

266'782579:
6398(00(0

,!;*6398(00
.0(:4(3<3(8(7)(3/

,!;*6398(00
.0(:4(3<3(8(7)(3/

,!;*6398(00
.0(:4(3<3(8(7)(3<3('2=/

Fig. 2. RINA Architecture

A. Access Control

Unlike TCP/IP, RINA requires explicit enrollment for an
IPC process within a system to either join an existing DIF, or
create a new DIF.

a) Adding a New Member to an (N)-DIF: Suppose that
DIF I consists of a number of IPC processes on a set of
systems. Suppose that an IPC process, j, wants to join DIF I .
j knows the application (service) name of an IPC process, i,
in I , not its address — j has no way of knowing the address of
any process in DIF I . i and j are connected by an underlying
(N-1)-DIF3. Using the underlying (N-1)-DIF, j requests that
the (N-1)-DIF establish an IPC channel (connection) with i
using the application name of i. In RINA, application processes
incorporate a common protocol for establishing application
connections that includes a plug-in module for authentication.

The (N-1)-DIF determines whether i exists and whether j
has access to i. After the connection has been established, i
authenticates j and determines whether it can be a member
of DIF I . This authentication can be as strong or as weak as
required by the DIF. If the result is positive, i assigns an (N)-
address to j. Note that the address is taken from the name space
for DIF I , i.e., DIFs have their own name (address) space. j
uses the (N)-address to identify itself to other members of
DIF I . Other initialization parameters associated with DIF I
are exchanged with j, possibly including a shared secret key.
The IPC process, j, is now a member of DIF I .

b) Creating a New DIF: Creating a new DIF is a
simple matter. A management or similar application with the
appropriate permissions causes an IPC process to be created
and initialized, including pointing it to one or more (N-1)-
DIFs. As part of its initialization, the IPC process is given the
means to recognize allowable members of the DIF (e.g., a list
of application process names, a digital signature, and so on). It
might be directed to initiate enrollment with them or to simply
wait for them to find this initial IPC process. When this has
been achieved, adding more members to the DIF proceeds as
described earlier.

B. Addresses and their Binding

The TCP/IP architecture has a global addressing space,
which allows any system to freely connect to any other system.
On the contrary, in RINA, the addresses are internal to a DIF.
For two application processes to communicate, they have to
have access to a DIF in common. If there is no common DIF,
then one must be created either by joining an existing DIF or
creating a new one. This provides the opportunity to restrict
access based on the security policy of the DIF.

In the TCP/IP architecture, TCP overloads the port-id to be
both a local handle, which identifies the application process,
and connection-endpoint-id, which identifies the data-transfer
connection. Figure 3 illustrates TCP’s management of data-
transfer connections. And by overloading the port-id again by
giving it application semantics as a well-known destination
port forces the receiver to rely on the sender’s id informa-
tion for its identity/consistency checking, rather than ids it
generated, which makes it easier for attackers to guess/spoof
the source port and thwart any consistency checking by the
receiver.

3Ultimately the lowest level DIF is the physical medium.

© Ibrahim Matta, 2011-2012

legal sequence numbers, etc.
• IPC Management for routing, resource allocation, locating applications, access control,

monitoring lower layer, etc. Here, these functions are viewed as application processes which make
use of one “stateless” Common Distributed Application Protocol (CDAP) to access objects of
different kinds (e.g., routing tables, access control lists) stored in a RIB (Resource Information
Base). CDAP supports a limited number of operations on objects like CREATE, DELETE,
UPDATE, etc.

Benefits of RINA

The RINA architecture possesses features that intrinsically solve long-standing
networking problems. Most notably, the repeating structure of its distributed IPC model
allows it to scale indefinitely, thus it avoids current problems of growing routing tables
(by limiting the number of processes within each DIF layer), and supports features such
as multihoming and mobility, with little cost (by localizing DIF management).
Furthermore, RINA views each DIF as a ``privately managed" network thus it offers
intrinsic security features.

The distributed IPC model also creates the robust feedback needed for a healthy
marketplace. Each DIF can be configured to not only provide the traditional services of
lower networking layers but also application-support (transport) services. This removes
the barrier created by the Transport Layer in the current Internet, opening potential new
markets for ISPs to provide IPC services directly to their customers, leveraging their
expertise in resource management of lower layers and creating new competition with
``host" providers.

How Does RINA Work?

We next highlight two distinguishing features of the RINA architecture: (1) RINA's
inherent support for mobility and multihoming, and (2) RINA's separation of security and
data-synchronization concerns and support for explicit security and robust soft-state data
synchronization.

More details (presentations, papers, etc.) on the RINA architecture can be found at the
RINA website: http://csr.bu.edu/rina/

Mobility and Multihoming

As the Internet has evolved and grown, an increasing number of nodes (hosts or
autonomous systems) have become multihomed, i.e., a node is connected to more than
one network. Multihoming can be viewed as a special case of mobility – as a node
moves, it unsubscribes from one network and subscribes to another, which is akin to one
interface becoming inactive and another active. The current Internet architecture has been
facing significant challenges in effectively dealing with mobility (and consequently
multihoming), which has led to the emergence of several custom point-solutions. RINA
inherently supports mobility and multihoming as it treats them as local routing updates as
opposed to wider scoped tunnel changes in existing architectures (e.g., LISP) as we

© Ibrahim Matta, 2011-2012

explain next.

The figure below illustrates how RINA routes from a source IPC process (node) to a
destination IPC process (node) to deliver messages to a given destination application
process. After mapping the destination application name to a destination (IPC process)
node address, the DIF layer computes a route as a sequence of (IPC process) node
addresses at that DIF layer. At each hop, the underlying lower DIF layer maps the node
address (viewed as a name by the underlying lower layer) to a corresponding Point-of-
Attachment (PoA) (viewed as a node address in the underlying lower layer). Thus,
addressing in RINA is relative and not static as in current architectures – a node address
is viewed as node name by the lower layer and as a PoA by the higher layer. This yields
an architecture where a node address is late bound to a PoA. In the figure below, by the
time the message reaches the last hop, the mapping of the destination node address has
been locally updated to the operational/active PoA (interface) over which the message
gets delivered.

RINA’s approach to routing is in contrast to existing approaches, such as LISP
(Location/ID Separation Protocol), which relies on wide scoped tunnels. For example, in
LISP, a host is assigned a location-independent identifier (EID). An ingress border router
transparently maps the destination EID to the IP address of an egress border router (called
Routing LOCator, RLOC) that currently has a path to the destination host. The packet is
then encapsulated to that RLOC. A fundamental problem with such loc/id split
approaches is that the “loc” is not the location of the ultimate destination node but it
specifies some point on the path to the destination node (i.e. PoA). This form of early
binding of the node name to a PoA is still as problematic as the early binding of Internet
name to IP address in the current TCP/IP architecture – if the PoA fails, one has to wait
for the new mapping to propagate over the whole Internet!

Transport and Security

RINA's separation of security and data-synchronization concerns enables an explicit
organized placement of security mechanisms (authentication, access control, and
encryption), and a more general and robust soft-state approach to data synchronization.

The figure below illustrates the recursive placement of security functions within the
RINA architecture. Application processes authenticate themselves before exchanging
data. This is the case before application processes start exchanging data over a DIF, or
when application processes communicate to first join a DIF layer and before they start
acting as IPC processes exchanging messages among themselves within that DIF. IPC

© Ibrahim Matta, 2011-2012

processes encrypt data they send over an underlying DIF layer that they do not trust.

Before application processes start authenticating themselves and exchanging data, they
have to first request from the underlying DIF that a communication flow be established.
If successful, the DIF would return to the application process a handle (port number)
through which to send its messages. When establishing a communication flow through a
DIF, RINA decouples port allocation and access control from data transfer. The
management part of the DIF layer is responsible for allocating source and destination
ports (and connection endpoint IDs) and for performing access control. A Flow
Allocation management application uses the CDAP protocol for this purpose to carry out
a request/reply exchange between the source and destination IPC processes.3

Once a flow is allocated, data transfer can start. In a RINA DIF layer, the Data Transfer
Protocol (DTP), which includes tightly bound mechanisms, and the Data Transfer
Control Protocol (DTCP), which includes loosely bound mechanisms, are modeled after
the soft-state Delta-t transmission protocol. Different policies support different
requirements, e.g. flows without data transfer control (no ACKs or transmission window)
are UDP-like. In a soft-state approach, the sender and receiver IPC processes do no need
to synchronize their sequence numbers. The sender can start from any initial sequence
number. If there is a long idle period, the connection state (DTSV) is discarded, but ports
(and connection endpoint IDs) remain. The idle period must be long enough to ensure
that all packets and their duplicates have cleared the network. When data transfer
resumes, a DTSV is automatically re-created and the sender can again start transmission
from any initial sequence number.

Note that connection endpoint IDs can change over the lifetime of the transfer and bound
to the same ports. Dynamically allocating port numbers and connection endpoint IDs
makes it hard to mount transport-level attacks – no well-known ports, and connection IDs
are internal to the DIF layer. Furthermore, to mount a transport-level attack, a process has
to join the DIF layer first, a hurdle that does not exist in TCP/IP networks.

3 Note that for CDAP-based management applications to communicate, they have to
recursively request from the underlying DIF layer that a flow be established. Once this is
successful, they can start exchanging messages through the returned port number.

6

TABLE I
COMPARISON OF TCP/IP AND RINA UNDER TRANSPORT ATTACKS. TO BE ABLE TO MAKE A DIRECT COMPARISON, WE HAD TO ASSUME THAT A RINA
NETWORK HAD BEEN COMPROMISED AND A ROGUE MEMBER HAD BEEN ALLOWED TO JOIN—A HURDLE THAT IS NOT PRESENT IN TCP/IP NETWORKS.

Vulnerability TCP/IP RINA
Port-scanning possible due to well-known ports not possible with unknown CEP-ids
Connection-opening 232 possibilities to guess ISN 216 possibilities to guess

destination CEP-id
Data-transfer 229 possibilities to guess 240 possibilities to guess source and destination
(right after conn. open) source port-id and valid SN CEP-ids and agreed-upon QoS-id
Data-transfer 229 possibilities to guess 253 possibilities to guess source and destination
(after transfer started) source port-id and valid SN CEP-ids, agreed-upon QoS-id, and valid SN

!"#

$%&'()&*+,&*-)./-0%1(

")&(23*&4.5.6-)7*0()&*,1*&4.
/-0%1(

,881*+,&*-).83-+(99

":6.83-+(99

Fig. 6. Security policies applied recursively

domain (such as system “B” in the figure) into the NAT
public address. Communication across the private domain and
the public (Internet) domain, say between systems “B” and
“A”, is done through the NAT, which translates between its
public NAT address and port number, which identifies “B”
externally, and B’s actual private address and port number.
Furthermore, the NAT acts as a firewall, preventing attacks
on private addresses and ports. However, it is clear that this
kind of hand-crafted arrangement makes it hard to coordinate
communication across domains when we want to.

!"#$%&'#'%'"%(&!)##(!%')#
*+,-&'.+!" /-&'./

/
+

*+,

,)0&*+,-&'.+
,)0&/-&'./

1"22'#3&,"45(

6(77"3(6(77"3(

Fig. 7. Security through NATs in TCP/IP

Figure 8 illustrates the procedure in RINA, where com-
munication is established between application processes to
join the same DIF. First, process “B” joins DIF z, which
initially only contains process “C” (Figure 8(a)). As mentioned
earlier, this explicit enrollment procedure happens using a
common underlying DIF (DIF y, in this example), and involves
authenticating that B is a valid member of DIF z, initializing
it with current DIF information, and assigning B an internal
address for use in coordinating communication within DIF
z. Then, similarly, process “A” joins DIF z (Figure 8(b)).

Thus, in RINA, there are no “middleboxes” per se, but rather
processes join and leave DIFs as determined by management
(security) policies. Furthermore, such enrollment procedures
can be repeated horizontally to create concurrent DIFs, or
vertically to create stacked DIFs.

!"

!"#$%
!"#$$&

#
!"#$'

()*

!" #

!"#$% !"#$$&

!"#$'

(+*

Fig. 8. (a) Process “A” is about to join DIF z, (b) Process “A” after joining
DIF z.

V. CONCLUSION

In this paper, we compare a clean-slate internet architecture,
RINA, that is based on fundamental IPC principles, to TCP/IP
in terms of architectural support for security. We specifically
compare the resiliency of RINA to security vulnerabilities
found in the TCP/IP architecture. In some cases, to make a
fair comparison, we had to assume that a RINA network had
been compromised and a rogue member had been allowed to
join. (A hurdle that is not present in TCP/IP networks.) Even
so, we found RINA to be more secure and resistant to these
attacks.

We focused on access control, addresses and their binding,
and data transfer. We contrast the open access of TCP/IP
to the controlled access of RINA, which requires an explicit
enrollment phase to join a network of IPC processes (DIF).
Unlike TCP/IP, in RINA, node addresses (of IPC processes)

