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Management of Protocol State 

References: some slides courtsey of Richard Yang and Jim Kurose, 
                    work in Belsnes’76,  Delta-t’78,  
                    Ji et al. SIGCOMM’03, and Lui et al. ICNP’04 
 
 

Maintaining protocol/network state 

❒  updated when network / transfer “conditions” change 
❒  stored in multiple nodes 
❒  often associated with end-system generated call or session 
❒  examples: 

❍  RSVP routers maintain lists of upstream sender IDs, 
downstream receiver reservations 

❍  ATM switches maintain lists of VCs: bandwidth allocations, 
interface/VCI input-output mappings 

❍   TCP: Sequence numbers, timer values, RTT estimates 

state: information stored in network 
nodes by network protocols 

 

Soft-state 
❒  state installed by receiver on receipt of setup (trigger) 

msg from sender (typically, an endpoint) 
❍  sender also sends periodic refresh msg: indicating 

receiver should continue to maintain state 
❒  state removed by receiver via timeout, in absence of 

refresh msg from sender 
❒  default assumption: state becomes invalid unless 

refreshed 
❍  in practice: explicit state removal (teardown) msgs 

also used 
❒  examples:  

❍  RSVP, RTP, IGMP, Delta-t 
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Hard-state 
❒  state installed by receiver on receipt of setup msg from 

sender 
❒  state removed by receiver on receipt of teardown msg 

from sender 
❒  default assumption: state valid unless told otherwise 

❍  in practice: failsafe-mechanisms (to remove orphaned 
state) in case of sender failure, e.g., receiver-to-
sender “heartbeat”: is this state still valid? 

❒  examples:  
❍  Q.2931 (ATM Signaling) 
❍  ST-II (Internet hard-state signaling) 
❍  TCP (explicit handshaking for opening/closing connections) 

State: senders, receivers 

❒  sender: network node that (re)generates 
signaling (control) msgs to install, keep-alive, 
remove state from other nodes 

❒  receiver: node that creates, maintains, 
removes state based on signaling msgs 
received from sender 

Let’s build signaling protocol 

❒ S: state Sender (state installer) 
❒  R: state Receiver (state holder) 
❒  desired functionality: 

❍ S: set values in R to 1 when “installed”, set to 0 
when not installed 

❍  if other side is down, state is not installed (0) 
❍  initial condition: state not installed 

S R 
0 

installed state value 
0 

S’s local view of 
installed state at R 

network 
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Let’s build signaling protocol 
Now: design and specification 
 
Later: performance model 

Hard-state signaling 

Signaling  
plane 

Communication  
plane 

Sender Receiver Install 

ack 

❒  reliable signaling  
❒  state removal by request 
❒  requires additional error handling 

❍  e.g., sender failure 

removal 

error 

Soft-state signaling 

Signaling  
plane 

Communication  
plane 

Install 

Sender Receiver 

❒  best effort signaling 
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Soft-state signaling 

Signaling  
plane 

Communication  
plane 

Sender Receiver 

❒  best effort signaling 
❒  refresh timer, periodic refresh 

Soft-state signaling 

Signaling  
plane 

Communication  
plane 

Sender Receiver 

❒  best effort signaling 
❒  refresh timer, periodic refresh 
❒  state time-out timer, state removal only by 

time-out 

Soft-state: claims 

❒  “Systems built on soft-state are 
robust” [Raman 99] 

❒  “Soft-state protocols provide .. greater 
robustness to changes in the underlying network 
conditions…” [Sharma 97] 

❒  “obviates the need for complex error handling 
software” [Balakrishnan 99] 

What does this mean? 
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Soft-state: “easy” handling of changes  
❒  Periodic refresh: if network “conditions” change, 

refresh will re-establish state under new conditions 
❒  example: RSVP/routing interaction: if routes change 

(nodes fail) RSVP PATH refresh will re-establish 
state along new path 

in 
out 

H2 

H5 

H3 

H4 
H1 

R1 R2 R3 
L1 

L2 L3 

L4 
L5 

L6 L7 

L5 L7 
L6 

in 
out 

L1 
L2 L6 

in 
out L3 

L7 
L4 

unused by 
multicast routing 

L8 

What happens if L6 fails? 

in 
out L3 

L7 
L4 

in 
out L3 

L8 
L4 L7 

in 
out 

L1 
L2 L6 

Soft-state: “easy” handling of changes  
❒  L6 goes down, multicast routing reconfigures but… 
❒  H1 data no longer reaches H3, H4, H5 (no sender or receiver 

state for L8) 
❒  H1 refreshes PATH, establishes new state for L8 in R1, R3 
❒  H4 refreshes RESV, propagates upstream to H1, establishes new 

receiver state for H4 in R1, R3 

H2 

H5 

H3 

H4 
H1 

R1 R2 R3 
L1 

L2 L3 

L4 
L5 

L6 L7 

in 
out 

L1 
L2 L8 

L8 

really, L7 state stays in  R7 
 until it times out. 

H5 

❒  “recovery” performed transparently to end-
system by normal refresh procedures 

❒  no need for network to signal failure/change to 
end system, or end system to respond to specific 
error 

❒  less signaling (volume, types of messages) than 
hard-state from network to end-system but… 

❒  more signaling (volume) than hard-state from end-
system to network for refreshes 

Soft-state: “easy” handling of changes  
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❒  refresh msgs serve many purposes: 
❍  trigger: first time state-installation  
❍  refresh: refresh state known to exist (“I am 

still here”) 
❍  <lack of refresh>: remove state (“I am gone”) 

❒  challenge: all refresh msgs unreliable 
❍ would like triggers to result in state-installation 

asap 
❍  enhancement: add receiver-to-sender 

refresh_ACK for triggers 
❍  e.g., see “Staged Refresh Timers for RSVP” 

Soft-state: refreshes  

Soft-state Hard-state 

Signaling spectrum  

•  best-effort periodic state   
   installation/refresh 
•  state removal by time out 
•  RSVP, IGMPv1 

•  reliable signaling 
•  explicit state removal  
•  requires additional mechanism to  
  remove orphan state 
•  Q2931b 

SS + explicit removal 
IGMPv2/v3   

SS + reliable trigger 
RSVP new version 

SS + reliable 
trigger/removal 
ST-II 

periodic refresh 

Reliable Transport 

❒ Goal: keep states, e.g. sequence numbers 
sent & received, consistent to ensure 
correctness 
❍ No data loss 
❍ No duplication 
❍  In-order delivery 
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19 

Question: What is Initial Seq#?  
sender receiver 

ACK for 0 
accept 

data 0 

20 

Question: What is Initial Seq#?  

❒  To distinguish new data, a sender should not reuse a seq# 
before it is sure the packet has left the network 

sender receiver 

ACK for 0 (n) 
accept 

data 0 (transfer $1000 to B) 

data 0 (transfer $1000 to B) 

accept? 

21 

Connection Management: Objective 
❒ Agree on initial sequence numbers 

❍  a sender will not reuse a seq# before it is sure that all 
packets with the seq# are purged from the network 

•  the network guarantees that a packet too old will be purged 
from the network: network bounds the life time of each packet 
(MPL = Max Packet Lifetime) 

❍ To avoid waiting for the seq# to start a session, use a 
larger seq# space 

•  needs connection setup so that the sender tells the receiver 
initial seq# 

❒ Agree on other initial parameters 
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Three Way Handshake (TWH) [Tomlinson 1975] 
Host A 

SYN(seq=x) 

Host B 

ACK(seq=x), SYN(seq=y) 

ACK(seq=y) 

DATA(seq=x+1) 

SYN: indicates connection setup 

accept data only 
after verified x is the 
(new) init. seq 

accept? 

23 

Scenarios with Duplicate Request 

Host A Host B 

ACK(seq=x), SYN(seq=y) 

REJECT(seq=y) 

SYN(seq=x) 

accept? 

no such 
request 

reject 

24 

Three Way Handshake (TWH) [Tomlinson 1975] 
❒  To ensure that the other side does want to send a 

request 
Host A 

SYN(seq=x) 

Host B 

ACK(seq=x), SYN(seq=y) 

ACK(seq=y) 

DATA(seq=x+1) 

accept? 

Host A Host B 

ACK(seq=x), SYN(seq=y) 

REJECT(seq=y) 

SYN(seq=x) 

no such 
request 

reject 
ACK(seq=z) 
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Connection Close 

❒ Objective of 
closure handshake: 
❍  each side can 

release resources 
and remove state 
about the 
connection 

client 

I am done. Are you done too? 

server 

I am done too. Goodbye! 

init. close 

close 

close 

remove 
conn. state ? 

remove 
conn. state ? 

remove 
conn. state ? 

26 

General Case: The Two-Army Problem 

The two blue armies need to agree on whether or not they will attack the white army. They achieve 
agreement by sending messengers to the other side. If  they both agree, attack; otherwise, no. Note 
that a messenger can be captured!  

27 

Four Way Teardown 

Host A 

FIN 

Host B 

ACK 

ACK 

FIN 

close 

close 

closed 
  all states removed 

ti
m

ed
 w

ai
t 

-  can retransmit the  
ACK if its ACK is lost closed 

A->B closed 

A->B closed 

all states removed 

propose close 
A->B 

propose close 
B->A 
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A Summary of Questions 

❒ What if there are duplication and reordering? 
➼ network guarantee: max packet life time (MPL) 
➼ transport guarantee: not reuse a seq# before life 

time 
➼ seq# / connection management 

❒ How to determine the “right” parameters, 
e.g., for “timed wait”? 

❒ What if we want to reliably send one message? 
(worst-case) 

Reliable One-Message Delivery  
using five-packet handshaking 

Host A 

SYN x 

Host B 

SYN y, ACK x 

ACK y, Data x+1 

CLOSE 

sync, accept data 

ACK x+1 

A->B closed 

A->B closed 
knows B accepted data 

Two-packet exchange [Belsnes 76] 

Host A 

Data 0 

Host B 

ACK 0 

A->B closed 

A->B closed 

•  Premature timeout results in duplicate 
•  Duplicate ACK may (falsely) ACK a lost “new Data 0” 
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Two-packet exchange [Belsnes 76] 
Host A 

Data 0 

Host B 

ACK 0 

A->B closed 

A->B closed 

• Solution to lost data:  
       use a new seq # that does NOT wrap   
       around for at least 2 * MPL (Max Packet Lifetime) 
•  Duplicates still possible if ACK is lost,  
  even with RTO > 2 * MPL 

Data 0 

ACK 0 

Data x 

discard, old seq # 

Three-packet exchange [Belsnes 76] 
Host A 

Data x 

Host B 

ACK x 

A->B closed 

A->B closed 

•  What if retransmitted “Data x” comes in late?  
  If B accepts it, duplicate; if B rejects it, might be new data 
•  Solution? B does not accept data until it gets ACK(ACK) 

Data x 

ACK x 

ACK(ACK x) = CLOSE 

discard, old seq # 

discard duplicate 

Three-packet exchange [Belsnes 76] 
Host A 

Data x 

Host B 

ACK x 

A->B closed 

•  Data lost (not yet accepted by B) if ACK(ACK) is lost 
•  Problem: state inconsistency, A closed while B still open 

ACK(ACK x) = CLOSE 

discard, old seq # 
ACK x 

REJECT 
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Four-packet exchange [Belsnes 76] 
Host A 

SYN x 

Host B 

SYN y, ACK x 

A->B closed A->B closed 

• Solution: sync both sides before accepting data 
•  Problem: sender does not know whether Data got 
accepted if last ACK is lost 

ACK x+1 

ACK y, DATA x+1 

accept data 

Four-packet exchange [Belsnes 76] 
Host A 

SYN x 

Host B 

SYN y, ACK x 

A->B closed 
ACK x+1 

ACK y, DATA x+1 

accept data 

REJECT 

ACK y, DATA x+1 

Not SYN, reject 

Five-packet exchange [Belsnes 76] 
Host A 

SYN x 

Host B 

SYN y, ACK x 

ACK y, Data x+1 

CLOSE 

sync, accept data 

ACK x+1 

A->B closed 

A->B closed 
knows B accepted data 
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Moral of the story 

❒ Two-packet exchange suffices if we can 
leave it to applications to detect duplicates 

❒ Delta-t solves the duplicate problem of 
two-packet using appropriate timers for 
keeping conn. state 

TCP: Conn. Open 
Host A 

SYN x, DATA 

Host B 

SYN y 

ACK y 

sync, accept data 

ACK x 

•  Conn. Opening Problem: Old duplicates causes conn.  
  to re-open & duplicates delivered 

new init seq # assumes 
knowledge of MPL 

Delta-t: Conn. Open [Watson 78] 
Host A Host B 

Last retransmission of Pi 

•  Delta-t receiver does not delete state for at least  
                                 Rtime = R+MPL 
  enough for duplicates to die out 
•  R = max time for retransmission attempts 
•  Rtime reset at every reception of new in-seq packet 

R 

MPL 

ACKs lost 

First Pi 
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TCP: Conn. Close 
Host A 

FIN 

Host B 

ACK 

ACK 

•  Conn. Closing Problem: sender has to make sure that 
receiver got its data, including last ACK 

- does not close immediately 
- assumes knowledge of  
MPL + B’s time for  
retransmission attempts 

FIN 

Delta-t: Conn. Close [Watson 78] 

•  Delta-t sender does not delete state for at least 
                          Stime = Rtime+MPL 
•  Stime reset at every transmission 

Host A Host B 

Rtime 

MPL 

Delta-t: Timers [Watson 78] 
Host A 

Last Pi 

Host B 

ACK Pi 

Last Pi+1 

•  Rtime >= R + MPL = (MPL + G) + MPL  ~ 2MPL, if MPL>>G 
 
•  Stime >= Rtime+MPL ~ 3MPL  

MPL 

G = n*RTO = n*RTT 

MPL 

resume G for Pi+1 

- G for Pi expires 
- suspend G for Pi+1 

R 
Pi+1 attempts lost 

First Pi+1 
ACK(Pi+1) lost 

Recv timer set to Rtime 

Recv timer set to Rtime First Pi+2 Worst-case pattern  
repeats 
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Moral of the Story 
❒ TCP is really hybrid HS+SS   

❍ Explicit handshaking to open/close conn. 
❍ We need to know something about MPL for sender to 

choose init seq # and to remove conn. state 
 
❒ Delta-t is SS 

❍ No need for explicit signaling to open/close conn. 
❍ No need to worry about init seq # since conn. state 

at both sender & receiver is not removed until all its 
packets have died out 

•  If receiver has state then conn. is not new; no need to 
verify with sender 

Performance & Robustness Analysis 

❒ We looked at keeping states consistent to 
ensure data correctness 

❒ Next consider a general signaling (state 
management) model 

❒  Evaluate HS vs. SS analytically 

Evaluation metrics 

 
❒  inconsistency ratio - fraction time participating 

nodes disagree 

❒  signaling overhead – average # of messages 
during session lifetime 

❒  robustness? (resilience to changing conditions) 
❒  complexity? 
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Performance Model for SS (Ji03) 
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Performance Model for SS 
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      : signaling state 
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=

Performance Model for SS 
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at sdr, not installed at rcvr 
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Performance 
Model for SS 

Assume new session starts 
once previous one ends 

❒  sender, receiver, single state variable 
❒  events: 

❍  state removal: sender wants to remove state, 
mean state lifetime:  1/µ 

❍  state update: sender wants to change state, 
meantime between updates: 1/λ 

❍  timeouts: 
•  refresh timeout at S – mean T 
•  Soft state timeout at R –  mean X 

❍ message arrival/loss: mean delay D, loss prob. p 

S R 
0 0 network 

Performance 
Model for SS 
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1),( −∗
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at sdr, not installed at rcvr 
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msg 
arrival 

msg loss 

refresh timeout, 
msg arrival 

state 
removal 

soft state  
timeout 

state 
update 

msg loss 

msg 
arrival 

refresh timeout, 
msg arrival 

state removal 

state  
removal 

Performance 
Model for SS 

state 
update 

state 
update 

2),( −∗

1),( −∗
=

),( ∗− 2≠

        : signaling state generated 
at sdr, not installed at rcvr 

),( −∗

      : signaling state 
consistent at sdr/rcvr 
=

        : signaling state 
inconsistent at sdr/rcvr 
≠

        : signaling state removed at   
sender, present at receiver 

),( ∗−

        : signaling state 
removed at sdr/rcvr 

),( −−

msg 
arrival 

msg loss 

refresh timeout, 
msg arrival 

state 
removal 

soft state  
timeout 

state 
update 

msg loss 

msg 
arrival 

refresh timeout, 
msg arrival 

state removal 

state  
removal 

(1-p)/D 

p/D 

(1-p)/T 

µ 

µ 

µ 

λ 

p/D 
(1-p)/D 

(1-p)/T 

1/X 

Performance 
Model for SS 

1≠

state 
update 

λ 

state 
update 

λ 

λf 

λf λf  = rate of false soft-state  
removal at receiver 
= p(X/T) /X 

❒  states: X1, X2 …. X6 (six states from previous slide) 

❒  transition rates: state Xi to state Xj: λi,j 
❍  assumption: time between transitions exponentially 

distributed, mean given by rates from previous slide 
❒  goal: compute steady-state probability of being in 

state, πi = limt→∞ P(X(t)=i), i= 1,..6 
❒  solve system of linear equations: 

❍  rate of transitions out of state = rate of 
transitions into state: Σj≠iλi,j πi = Σj≠iλj,i πj, i =1,..6 

❍  normalization: Σi πi = 1 

  

Performance Model for SS: analysis 
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1≠Π

        : signaling state generated 
at sdr, not installed at rcvr 

),( −∗

      : signaling state 
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        : signaling state removed at   
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Performance 
Model for SS 

1),( −∗Π

2),( −∗Π

=Π

,*)(−Π 2≠Π

λ 

λ 

λf 

λf 

❒ inconsistency: fraction of time S, R, 
have different states:  
   δ = 1 – π= 

❒ signaling overhead =  
 

    

Performance 
Model for SS: metrics 

Σ	

Πi 
 signaling rate in state i  .  

all states, i 

= (Π(*, -)1
+ Π ≠1 )/D + (Π(*, -)2

+ Π = + Π ≠2 )/T  

Parameter settings 

❒ mean lifetime – 30 min. 
❒  refresh timer, T=5sec 
❒  state timer, X = 15 sec 
❒  update rate: 1/20sec 
❒  loss rate:  p = 0.02 

Motivated by Kazaa 
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Q: How to set refresh/timeout timers 
❒  state-timeout interval = n * refresh-interval-

timeout  
❍  what value of n to choose? 

❒  will determine amount of signaling traffic, 
responsiveness to change 
❍  small timers: fast response to changes, more signaling 
❍  long timers: slow response to changes, less signaling 

❒  ultimately: consequence of slow/fast response, 
msg loss probability will dictate appropriate timer 
values 

Soft-state: setting timer values  

Impact of state lifetime 
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❒  inconsistency, overhead decrease as state life-
time increases 

❒  explicit removal improves consistency with little 
additional overhead 
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Impact of state timeout timer 
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State timeout timer (s): X
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❒  X < T : inconsistency high (premature state removal)  
❒  X > 2T: increasing X  ⇒ increasing inconsistency for  

SS, SS+ER, SS+RT (due to orphan state) 
❒  X  = 2T: sweet spot 

T=5s 
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Hard-state versus soft-state: 
discussion 

hard state: 
❍  better if message OH really high 
❍  potentially greater          

consistency 

❍  system wide coupling ->                 
difficult to analyze 

 

soft state: 
❍  robustness 
❍  easily decomposed -> 

simpler analysis 

Q: which is preferable and why? 

Robustness [Lui et al. 2004] 

❒  Which one, A or B, is 
more robust? 

❒  A is more robust since 
it’s more resilient to 
unpredictable load, 
attacks, etc. 

❒  Tradeoff: slightly worse 
performance under 
normal conditions 

Model: impact of refresh timer 

❒  Refresh timer = R ( T in the previous model) 
❒  State lifetime = L (1/µ in the previous model)	


❒  State re-initialized if refresh msg is lost 
❒  State stale (orphaned) if teardown msg is lost 
❒  Small loss probability “p” 
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Costs 

a >> b: hard state protocol – min/no refresh cost 
b >> a: soft state protocol – min orphaned state cost 
Optimal R* is large for HS & small for SS 

Cost per refresh msg 
Cost of inconsistent state per unit time 

Cost of re-initializing state 
Cost of stale state 
Per unit time 

) 

Soft state more resilient 

❒  Soft state is more resilient to increasing “p” and “L” 
❒  SS able to overcome high loss with small R, i.e. more 

refreshes reduce cost by reducing stale state cost 


