
1

Advanced Computer Networks

Ibrahim Matta

Management of Protocol State

References: some slides courtsey of Richard Yang and Jim Kurose,
 work in Belsnes’76, Delta-t’78,
 Ji et al. SIGCOMM’03, and Lui et al. ICNP’04

Maintaining protocol/network state

❒  updated when network / transfer “conditions” change
❒  stored in multiple nodes
❒  often associated with end-system generated call or session
❒  examples:

❍  RSVP routers maintain lists of upstream sender IDs,
downstream receiver reservations

❍  ATM switches maintain lists of VCs: bandwidth allocations,
interface/VCI input-output mappings

❍  TCP: Sequence numbers, timer values, RTT estimates

state: information stored in network
nodes by network protocols

Soft-state
❒  state installed by receiver on receipt of setup (trigger)

msg from sender (typically, an endpoint)
❍  sender also sends periodic refresh msg: indicating

receiver should continue to maintain state
❒  state removed by receiver via timeout, in absence of

refresh msg from sender
❒  default assumption: state becomes invalid unless

refreshed
❍  in practice: explicit state removal (teardown) msgs

also used
❒  examples:

❍  RSVP, RTP, IGMP, Delta-t

2

Hard-state
❒  state installed by receiver on receipt of setup msg from

sender
❒  state removed by receiver on receipt of teardown msg

from sender
❒  default assumption: state valid unless told otherwise

❍  in practice: failsafe-mechanisms (to remove orphaned
state) in case of sender failure, e.g., receiver-to-
sender “heartbeat”: is this state still valid?

❒  examples:
❍  Q.2931 (ATM Signaling)
❍  ST-II (Internet hard-state signaling)
❍  TCP (explicit handshaking for opening/closing connections)

State: senders, receivers

❒  sender: network node that (re)generates
signaling (control) msgs to install, keep-alive,
remove state from other nodes

❒  receiver: node that creates, maintains,
removes state based on signaling msgs
received from sender

Let’s build signaling protocol

❒ S: state Sender (state installer)
❒  R: state Receiver (state holder)
❒  desired functionality:

❍ S: set values in R to 1 when “installed”, set to 0
when not installed

❍  if other side is down, state is not installed (0)
❍  initial condition: state not installed

S R
0

installed state value
0

S’s local view of
installed state at R

network

3

Let’s build signaling protocol
Now: design and specification

Later: performance model

Hard-state signaling

Signaling
plane

Communication
plane

Sender Receiver Install

ack

❒  reliable signaling
❒  state removal by request
❒  requires additional error handling

❍  e.g., sender failure

removal

error

Soft-state signaling

Signaling
plane

Communication
plane

Install

Sender Receiver

❒  best effort signaling

4

Soft-state signaling

Signaling
plane

Communication
plane

Sender Receiver

❒  best effort signaling
❒  refresh timer, periodic refresh

Soft-state signaling

Signaling
plane

Communication
plane

Sender Receiver

❒  best effort signaling
❒  refresh timer, periodic refresh
❒  state time-out timer, state removal only by

time-out

Soft-state: claims

❒  “Systems built on soft-state are
robust” [Raman 99]

❒  “Soft-state protocols provide .. greater
robustness to changes in the underlying network
conditions…” [Sharma 97]

❒  “obviates the need for complex error handling
software” [Balakrishnan 99]

What does this mean?

5

Soft-state: “easy” handling of changes
❒  Periodic refresh: if network “conditions” change,

refresh will re-establish state under new conditions
❒  example: RSVP/routing interaction: if routes change

(nodes fail) RSVP PATH refresh will re-establish
state along new path

in
out

H2

H5

H3

H4
H1

R1 R2 R3
L1

L2 L3

L4
L5

L6 L7

L5 L7
L6

in
out

L1
L2 L6

in
out L3

L7
L4

unused by
multicast routing

L8

What happens if L6 fails?

in
out L3

L7
L4

in
out L3

L8
L4 L7

in
out

L1
L2 L6

Soft-state: “easy” handling of changes
❒  L6 goes down, multicast routing reconfigures but…
❒  H1 data no longer reaches H3, H4, H5 (no sender or receiver

state for L8)
❒  H1 refreshes PATH, establishes new state for L8 in R1, R3
❒  H4 refreshes RESV, propagates upstream to H1, establishes new

receiver state for H4 in R1, R3

H2

H5

H3

H4
H1

R1 R2 R3
L1

L2 L3

L4
L5

L6 L7

in
out

L1
L2 L8

L8

really, L7 state stays in R7
 until it times out.

H5

❒  “recovery” performed transparently to end-
system by normal refresh procedures

❒  no need for network to signal failure/change to
end system, or end system to respond to specific
error

❒  less signaling (volume, types of messages) than
hard-state from network to end-system but…

❒  more signaling (volume) than hard-state from end-
system to network for refreshes

Soft-state: “easy” handling of changes

6

❒  refresh msgs serve many purposes:
❍  trigger: first time state-installation
❍  refresh: refresh state known to exist (“I am

still here”)
❍  <lack of refresh>: remove state (“I am gone”)

❒  challenge: all refresh msgs unreliable
❍ would like triggers to result in state-installation

asap
❍  enhancement: add receiver-to-sender

refresh_ACK for triggers
❍  e.g., see “Staged Refresh Timers for RSVP”

Soft-state: refreshes

Soft-state Hard-state

Signaling spectrum

•  best-effort periodic state
 installation/refresh
•  state removal by time out
•  RSVP, IGMPv1

•  reliable signaling
•  explicit state removal
•  requires additional mechanism to
 remove orphan state
•  Q2931b

SS + explicit removal
IGMPv2/v3

SS + reliable trigger
RSVP new version

SS + reliable
trigger/removal
ST-II

periodic refresh

Reliable Transport

❒ Goal: keep states, e.g. sequence numbers
sent & received, consistent to ensure
correctness
❍ No data loss
❍ No duplication
❍  In-order delivery

7

19

Question: What is Initial Seq#?
sender receiver

ACK for 0
accept

data 0

20

Question: What is Initial Seq#?

❒  To distinguish new data, a sender should not reuse a seq#
before it is sure the packet has left the network

sender receiver

ACK for 0 (n)
accept

data 0 (transfer $1000 to B)

data 0 (transfer $1000 to B)

accept?

21

Connection Management: Objective
❒ Agree on initial sequence numbers

❍  a sender will not reuse a seq# before it is sure that all
packets with the seq# are purged from the network

•  the network guarantees that a packet too old will be purged
from the network: network bounds the life time of each packet
(MPL = Max Packet Lifetime)

❍ To avoid waiting for the seq# to start a session, use a
larger seq# space

•  needs connection setup so that the sender tells the receiver
initial seq#

❒ Agree on other initial parameters

8

22

Three Way Handshake (TWH) [Tomlinson 1975]
Host A

SYN(seq=x)

Host B

ACK(seq=x), SYN(seq=y)

ACK(seq=y)

DATA(seq=x+1)

SYN: indicates connection setup

accept data only
after verified x is the
(new) init. seq

accept?

23

Scenarios with Duplicate Request

Host A Host B

ACK(seq=x), SYN(seq=y)

REJECT(seq=y)

SYN(seq=x)

accept?

no such
request

reject

24

Three Way Handshake (TWH) [Tomlinson 1975]
❒  To ensure that the other side does want to send a

request
Host A

SYN(seq=x)

Host B

ACK(seq=x), SYN(seq=y)

ACK(seq=y)

DATA(seq=x+1)

accept?

Host A Host B

ACK(seq=x), SYN(seq=y)

REJECT(seq=y)

SYN(seq=x)

no such
request

reject
ACK(seq=z)

9

25

Connection Close

❒ Objective of
closure handshake:
❍  each side can

release resources
and remove state
about the
connection

client

I am done. Are you done too?

server

I am done too. Goodbye!

init. close

close

close

remove
conn. state ?

remove
conn. state ?

remove
conn. state ?

26

General Case: The Two-Army Problem

The two blue armies need to agree on whether or not they will attack the white army. They achieve
agreement by sending messengers to the other side. If they both agree, attack; otherwise, no. Note
that a messenger can be captured!

27

Four Way Teardown

Host A

FIN

Host B

ACK

ACK

FIN

close

close

closed
 all states removed

ti
m

ed
 w

ai
t

-  can retransmit the
ACK if its ACK is lost closed

A->B closed

A->B closed

all states removed

propose close
A->B

propose close
B->A

10

28

A Summary of Questions

❒ What if there are duplication and reordering?
➼ network guarantee: max packet life time (MPL)
➼ transport guarantee: not reuse a seq# before life

time
➼ seq# / connection management

❒ How to determine the “right” parameters,
e.g., for “timed wait”?

❒ What if we want to reliably send one message?
(worst-case)

Reliable One-Message Delivery
using five-packet handshaking

Host A

SYN x

Host B

SYN y, ACK x

ACK y, Data x+1

CLOSE

sync, accept data

ACK x+1

A->B closed

A->B closed
knows B accepted data

Two-packet exchange [Belsnes 76]

Host A

Data 0

Host B

ACK 0

A->B closed

A->B closed

•  Premature timeout results in duplicate
•  Duplicate ACK may (falsely) ACK a lost “new Data 0”

11

Two-packet exchange [Belsnes 76]
Host A

Data 0

Host B

ACK 0

A->B closed

A->B closed

• Solution to lost data:
 use a new seq # that does NOT wrap
 around for at least 2 * MPL (Max Packet Lifetime)
•  Duplicates still possible if ACK is lost,
 even with RTO > 2 * MPL

Data 0

ACK 0

Data x

discard, old seq #

Three-packet exchange [Belsnes 76]
Host A

Data x

Host B

ACK x

A->B closed

A->B closed

•  What if retransmitted “Data x” comes in late?
 If B accepts it, duplicate; if B rejects it, might be new data
•  Solution? B does not accept data until it gets ACK(ACK)

Data x

ACK x

ACK(ACK x) = CLOSE

discard, old seq #

discard duplicate

Three-packet exchange [Belsnes 76]
Host A

Data x

Host B

ACK x

A->B closed

•  Data lost (not yet accepted by B) if ACK(ACK) is lost
•  Problem: state inconsistency, A closed while B still open

ACK(ACK x) = CLOSE

discard, old seq #
ACK x

REJECT

12

Four-packet exchange [Belsnes 76]
Host A

SYN x

Host B

SYN y, ACK x

A->B closed A->B closed

• Solution: sync both sides before accepting data
•  Problem: sender does not know whether Data got
accepted if last ACK is lost

ACK x+1

ACK y, DATA x+1

accept data

Four-packet exchange [Belsnes 76]
Host A

SYN x

Host B

SYN y, ACK x

A->B closed
ACK x+1

ACK y, DATA x+1

accept data

REJECT

ACK y, DATA x+1

Not SYN, reject

Five-packet exchange [Belsnes 76]
Host A

SYN x

Host B

SYN y, ACK x

ACK y, Data x+1

CLOSE

sync, accept data

ACK x+1

A->B closed

A->B closed
knows B accepted data

13

Moral of the story

❒ Two-packet exchange suffices if we can
leave it to applications to detect duplicates

❒ Delta-t solves the duplicate problem of
two-packet using appropriate timers for
keeping conn. state

TCP: Conn. Open
Host A

SYN x, DATA

Host B

SYN y

ACK y

sync, accept data

ACK x

•  Conn. Opening Problem: Old duplicates causes conn.
 to re-open & duplicates delivered

new init seq # assumes
knowledge of MPL

Delta-t: Conn. Open [Watson 78]
Host A Host B

Last retransmission of Pi

•  Delta-t receiver does not delete state for at least
 Rtime = R+MPL
 enough for duplicates to die out
•  R = max time for retransmission attempts
•  Rtime reset at every reception of new in-seq packet

R

MPL

ACKs lost

First Pi

14

TCP: Conn. Close
Host A

FIN

Host B

ACK

ACK

•  Conn. Closing Problem: sender has to make sure that
receiver got its data, including last ACK

- does not close immediately
- assumes knowledge of
MPL + B’s time for
retransmission attempts

FIN

Delta-t: Conn. Close [Watson 78]

•  Delta-t sender does not delete state for at least
 Stime = Rtime+MPL
•  Stime reset at every transmission

Host A Host B

Rtime

MPL

Delta-t: Timers [Watson 78]
Host A

Last Pi

Host B

ACK Pi

Last Pi+1

•  Rtime >= R + MPL = (MPL + G) + MPL ~ 2MPL, if MPL>>G

•  Stime >= Rtime+MPL ~ 3MPL

MPL

G = n*RTO = n*RTT

MPL

resume G for Pi+1

- G for Pi expires
- suspend G for Pi+1

R
Pi+1 attempts lost

First Pi+1
ACK(Pi+1) lost

Recv timer set to Rtime

Recv timer set to Rtime First Pi+2 Worst-case pattern
repeats

15

Moral of the Story
❒ TCP is really hybrid HS+SS

❍ Explicit handshaking to open/close conn.
❍ We need to know something about MPL for sender to

choose init seq # and to remove conn. state

❒ Delta-t is SS

❍ No need for explicit signaling to open/close conn.
❍ No need to worry about init seq # since conn. state

at both sender & receiver is not removed until all its
packets have died out

•  If receiver has state then conn. is not new; no need to
verify with sender

Performance & Robustness Analysis

❒ We looked at keeping states consistent to
ensure data correctness

❒ Next consider a general signaling (state
management) model

❒  Evaluate HS vs. SS analytically

Evaluation metrics

❒  inconsistency ratio - fraction time participating

nodes disagree

❒  signaling overhead – average # of messages
during session lifetime

❒  robustness? (resilience to changing conditions)
❒  complexity?

16

2),(−∗

1),(−∗
),(−− =

),(∗−

1≠

2≠

Performance Model for SS (Ji03)

2),(−∗

1),(−∗
),(−− =

),(∗−

1≠

2≠

 : signaling state generated
at sdr, not installed at rcvr
),(−∗

Performance Model for SS

2),(−∗

1),(−∗
),(−− =

),(∗−

1≠

2≠

 : signaling state generated
at sdr, not installed at rcvr
),(−∗

 : signaling state
consistent at sdr/rcvr
=

Performance Model for SS

17

2),(−∗

1),(−∗
),(−− =

),(∗−

1≠

2≠

 : signaling state generated
at sdr, not installed at rcvr
),(−∗

 : signaling state
inconsistent at sdr/rcvr
≠

 : signaling state
consistent at sdr/rcvr
=

Performance Model for SS

2),(−∗

1),(−∗
),(−− =

),(∗−

1≠

2≠

 : signaling state generated
at sdr, not installed at rcvr
),(−∗

 : signaling state removed at
sender, present at receiver

),(∗−

 : signaling state
inconsistent at sdr/rcvr
≠

 : signaling state
consistent at sdr/rcvr
=

Performance Model for SS

2),(−∗

1),(−∗
),(−− =

),(∗−

1≠

2≠

 : signaling state generated
at sdr, not installed at rcvr
),(−∗

 : signaling state
inconsistent at sdr/rcvr
≠

 : signaling state
removed at sdr/rcvr

),(−−

 : signaling state
consistent at sdr/rcvr
=

Performance Model for SS

 : signaling state removed at
sender, present at receiver

),(∗−

18

2),(−∗

1),(−∗
),(−− =

),(∗−

1≠

2≠

Performance
Model for SS

 : signaling state generated
at sdr, not installed at rcvr
),(−∗

 : signaling state
consistent at sdr/rcvr
=

 : signaling state
inconsistent at sdr/rcvr
≠

 : signaling state removed at
sender, present at receiver

),(∗−

 : signaling state
removed at sdr/rcvr

),(−−

2),(−∗

1),(−∗
=

),(∗−

1≠

2≠

 : signaling state generated
at sdr, not installed at rcvr
),(−∗

 : signaling state
consistent at sdr/rcvr
=

 : signaling state
inconsistent at sdr/rcvr
≠

 : signaling state removed at
sender, present at receiver

),(∗−

 : signaling state
removed at sdr/rcvr

),(−−

Performance
Model for SS

Assume new session starts
once previous one ends

❒  sender, receiver, single state variable
❒  events:

❍  state removal: sender wants to remove state,
mean state lifetime: 1/µ

❍  state update: sender wants to change state,
meantime between updates: 1/λ

❍  timeouts:
•  refresh timeout at S – mean T
•  Soft state timeout at R – mean X

❍ message arrival/loss: mean delay D, loss prob. p

S R
0 0 network

Performance
Model for SS

19

2),(−∗

1),(−∗
=

),(∗−

1≠

2≠

 : signaling state generated
at sdr, not installed at rcvr

),(−∗

 : signaling state
consistent at sdr/rcvr
=

 : signaling state
inconsistent at sdr/rcvr
≠

 : signaling state removed at
sender, present at receiver

),(∗−

 : signaling state
removed at sdr/rcvr

),(−−

msg
arrival

msg loss

refresh timeout,
msg arrival

state
removal

soft state
timeout

state
update

msg loss

msg
arrival

refresh timeout,
msg arrival

state removal

state
removal

Performance
Model for SS

state
update

state
update

2),(−∗

1),(−∗
=

),(∗− 2≠

 : signaling state generated
at sdr, not installed at rcvr

),(−∗

 : signaling state
consistent at sdr/rcvr
=

 : signaling state
inconsistent at sdr/rcvr
≠

 : signaling state removed at
sender, present at receiver

),(∗−

 : signaling state
removed at sdr/rcvr

),(−−

msg
arrival

msg loss

refresh timeout,
msg arrival

state
removal

soft state
timeout

state
update

msg loss

msg
arrival

refresh timeout,
msg arrival

state removal

state
removal

(1-p)/D

p/D

(1-p)/T

µ

µ

µ

λ

p/D
(1-p)/D

(1-p)/T

1/X

Performance
Model for SS

1≠

state
update

λ

state
update

λ

λf

λf λf = rate of false soft-state
removal at receiver
= p(X/T) /X

❒  states: X1, X2 …. X6 (six states from previous slide)

❒  transition rates: state Xi to state Xj: λi,j
❍  assumption: time between transitions exponentially

distributed, mean given by rates from previous slide
❒  goal: compute steady-state probability of being in

state, πi = limt→∞ P(X(t)=i), i= 1,..6
❒  solve system of linear equations:

❍  rate of transitions out of state = rate of
transitions into state: Σj≠iλi,j πi = Σj≠iλj,i πj, i =1,..6

❍  normalization: Σi πi = 1

Performance Model for SS: analysis

20

1≠Π

 : signaling state generated
at sdr, not installed at rcvr

),(−∗

 : signaling state
consistent at sdr/rcvr
=

 : signaling state
inconsistent at sdr/rcvr
≠

 : signaling state removed at
sender, present at receiver

),(∗−

 : signaling state
removed at sdr/rcvr

),(−−

(1-p)/D

p/D

(1-p)/T

µ

µ

µ

λ

p/D

(1-p)/D

(1-p)/T 1/X

Performance
Model for SS

1),(−∗Π

2),(−∗Π

=Π

,*)(−Π 2≠Π

λ

λ

λf

λf

❒ inconsistency: fraction of time S, R,
have different states:
 δ = 1 – π=

❒ signaling overhead =

Performance
Model for SS: metrics

Σ	

Πi
 signaling rate in state i .

all states, i

= (Π(*, -)1
+ Π ≠1)/D + (Π(*, -)2

+ Π = + Π ≠2)/T

Parameter settings

❒ mean lifetime – 30 min.
❒  refresh timer, T=5sec
❒  state timer, X = 15 sec
❒  update rate: 1/20sec
❒  loss rate: p = 0.02

Motivated by Kazaa

21

Q: How to set refresh/timeout timers
❒  state-timeout interval = n * refresh-interval-

timeout
❍  what value of n to choose?

❒  will determine amount of signaling traffic,
responsiveness to change
❍  small timers: fast response to changes, more signaling
❍  long timers: slow response to changes, less signaling

❒  ultimately: consequence of slow/fast response,
msg loss probability will dictate appropriate timer
values

Soft-state: setting timer values

Impact of state lifetime

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

10 100 1000 10000 100000

Mean lifetime of a signaling state at sender (s)

Av
er

ag
e

si
gn

al
in

g
m

es
sa

ge
 ra

te

SS

HS

SS+ER

SS+RT

SS+RTR

❒  inconsistency, overhead decrease as state life-
time increases

❒  explicit removal improves consistency with little
additional overhead

0.001

0.01

0.1

1

10 100 1000 10000 100000

Mean lifetime of a signaling state at sender (s)

In
co

ns
is

te
nc

y
ra

tio

SS

HS

SS+ER

SS+RT

SS+RTR

Impact of state timeout timer

0.001

0.01

0.1

1

0.1 1 10 100 1000 10000 100000
State timeout timer (s): X

In
co

ns
is

te
nc

y
ra

tio

SS
HS
SS+ER
SS+RT
SS+RTR

❒  X < T : inconsistency high (premature state removal)
❒  X > 2T: increasing X ⇒ increasing inconsistency for

SS, SS+ER, SS+RT (due to orphan state)
❒  X = 2T: sweet spot

T=5s

22

Hard-state versus soft-state:
discussion

hard state:
❍  better if message OH really high
❍  potentially greater

consistency

❍  system wide coupling ->
difficult to analyze

soft state:
❍  robustness
❍  easily decomposed ->

simpler analysis

Q: which is preferable and why?

Robustness [Lui et al. 2004]

❒  Which one, A or B, is
more robust?

❒  A is more robust since
it’s more resilient to
unpredictable load,
attacks, etc.

❒  Tradeoff: slightly worse
performance under
normal conditions

Model: impact of refresh timer

❒  Refresh timer = R (T in the previous model)
❒  State lifetime = L (1/µ in the previous model)	

❒  State re-initialized if refresh msg is lost
❒  State stale (orphaned) if teardown msg is lost
❒  Small loss probability “p”

23

Costs

a >> b: hard state protocol – min/no refresh cost
b >> a: soft state protocol – min orphaned state cost
Optimal R* is large for HS & small for SS

Cost per refresh msg
Cost of inconsistent state per unit time

Cost of re-initializing state
Cost of stale state
Per unit time

)

Soft state more resilient

❒  Soft state is more resilient to increasing “p” and “L”
❒  SS able to overcome high loss with small R, i.e. more

refreshes reduce cost by reducing stale state cost

