The Internet is ...

HUGE

- So HUGE that no one really knows how big
- But, rough estimates:
 - Users ~ 1.8B in 2009 (source: eTForecasts)
 - Web sites > 182M active in Oct 2008 (source: netcraft)
 - Web pages ~ 150B (source: Internet archive)

The Internet is ...

DYNAMIC

- Users log in and out
- New services get added
- Routing policies change
- Denial-of-Service (DoS) attacks
Motivation

- How to manage such a huge and highly dynamic structure like the Internet?
- How can we build Future networks?
 - Can’t build and hope they work
 - Understand the steady-state and dynamics of what we are building
- Need methodologies
 - Optimization Theory
 - Control Theory

Focus

- Congestion Control
- Adopt techniques from
 - Optimization Theory
 - Control Theory
- With emphasis on “Modeling”
- Prices
 - Congestion Prices
 - Exogenous Prices
 - non-load related, e.g. random wireless losses

An Optimization Theoretical Framework
Life ... involves daily decisions
Gas Prices are affecting these decisions

- Drivers will observe prices, decide
 - Drive
 - Walk
 - Bike
 - Stay home
 - Take the subway

Can still go to the movies 😊
If it is raining
Utility
- How much driving means to me compared to other things in life?
- Unknown to the gas stations
- Each driver has his/her own utility

Drivers, observe the gas price and drive the total demand
Market (OPEC + Government + Oil companies), based on demand, sets the prices

- System is in equilibrium if demand is balanced with supply

Users drive the demand on the network
Have different Utilities
- Download music, play games, make phone calls, deny service,...

Network, observes the demand, sets prices
Price as real money
- Smart Market [MV95], Paris metro [O97]

Price as a congestion measure
- Queuing Delay, packet loss or marking, additional resources to be allocated

What is the goal of Network Design? [S95]
Make users happy
Maximize the sum of Utilities for all users
Network users’ Utilities

- Users have different utilities, however
 - Higher the rate, the better
 - Decreasing marginal utility

- Formally: Elastic traffic [S95]
 - User r has utility $U(x_r)$ when allocated $x_r > 0$ rate
 - $U(x_r)$ is an increasing function, strictly concave function of x_r
 - $U'(x_r)$ goes to ∞ as x_r goes to 0
 - $U''(x_r)$ goes to 0 as x_r goes to ∞

Network Model

- Consider a network of J resources
- Consider R the set of all possible routes
- Associate a route r with each user
- Define a 0-1 routing matrix A s.t.
 - $a_{jr} = 1$ if resource j is on route r
 - $a_{jr} = 0$ otherwise
An Optimization Problem [K97]

\[
\begin{align*}
\text{SYSTEM}(U, A, C): \\
&\max \sum_{i=1}^{n} U_i(x_i) \\
\text{subject to} & \quad Ax < C \\
\text{over} & \quad x > 0.
\end{align*}
\]

- A (unique) solution exists
- However, utilities are unknown to the network

Introducing prices ...

- Break the problem into:
 - \(R \) different problems, a problem for each user
 - 1 Network problem

- Prices act as a mediator between the network and the users
 - Prices can be used to measure utilities
 - Users choose an amount to pay for the service
 - Network, based on the load, charges a price

User Maximization Problem

- Let user \(r \) pays \(w_r \) per unit time, to receive \(x_r \) proportional to \(w_r \):

\[
\lambda_r = \frac{w_r}{x_r} \left(\frac{\$/t}{b/t} = \$/b \right)
\]

- \(\lambda_r \) is the charge per unit flow

\[
\text{USER}_r(U_r; \lambda_r) : \\
\max U_r \left(\frac{w_r}{x_r} \right) - w_r \\
\text{over} & \quad w_r \geq 0.
\]
Let the network knows the vector W
Then the Network Maximization problem:

$$\text{NETWORK}(A, C; w):$$

$$\max x \sum_{r \in R} f(x_r, w_r)$$

subject to

$$Ax \leq C$$

over

$$x \geq 0.$$

A Greedy network choice

Indeed, for $w=1$, maximizes overall throughput
But, lacks traditional fairness concepts
Here is a simple example:

Fairness criterion depends on the function that
the network is optimizing for

Max-Min Fairness

Fair
- all sources get an equal share on every link
 provided they can use it

Efficient
- each link is utilized to the maximum load possible

150
150
150
(50, 50, 50, 100)
Fairness criterion (1/3)

- **Max-min Fairness**
 - No rate can increase, no matter how large, while decreasing another rate that is less than it, no matter how small
 - Absolute priority to small-rate users
- **X is proportionally fair if [K97]:**
 - Feasible $x \geq 0$ and $Ax \leq C$
 - For any other feasible vector x^*, the aggregate of proportional changes is zero or negative:
 $$\sum_{r \in R} \frac{x_r^* - x_r}{x_r} \leq 0.$$

Fairness criterion (2/3)

- **X is weighted proportional fair if**
 $$\sum_{r \in R} w_r \frac{x_r^* - x_r}{x_r} \leq 0.$$
 - A flow of $w=2$, is treated like 2 flows of $w=1$
 - Network would choose one of these
 - $\max_{r \in R} \min x_r \quad \Rightarrow \quad$ Max-min Fairness
 - $\max_{r \in R} \sum \log x_r \quad \Rightarrow \quad$ Rates are proportionally fair
 - $\max_{r \in R} \sum w_r \log x_r \quad \Rightarrow \quad$ Rates are weighted proportionally fair

Fairness criterion (3/3)

- **In our previous example**

 Maximizing total throughput
 - $0 \quad 6 \quad 6$
 - Proportional allocation ($w=1$)
 - $2 \quad 4 \quad 4$
 - Max-min allocation
 - $3 \quad 3 \quad 3$

 General Parameterized Utility [MW00]
 $$U(x) = \frac{x^{1-\alpha}}{1-\alpha}$$
 - $\alpha \rightarrow 0$ (linear utility)
 - $\alpha \rightarrow 1$ (log utility)
 - $\alpha \rightarrow \infty$ (min utility)
Kelly [K97,K99,KMT98]

\[
\text{NETWORK}(d, C; x) : \\
\max \sum_{r \in d} w_r \log x_r \\
\text{subject to} \\
\sum_{r \in d} x_r = \mu' (C - d) \\
\text{over} \\
x_r \geq 0.
\]

- Proof outline: Theory of constrained convex optimization and using Lagrange multipliers
 - \(\mu' \) = cost incurred or shadow price of additional capacity
 - \(\lambda \)'s in earlier slides
- A solution exists
 - \(x \) = weighted proportionally fair
 - Solves Network, User and System for log utility functions

Discussion

- Just to recap
 - Interested in maximizing the aggregate utilities
 - Network wouldn’t know the utilities
 - Broke the problem into users and one network problem
 - So, we introduced the vector \(W \) as a mediator
 - Shown that a solution exists
 - Fairness criterion depends on the network maximization function

Discussion

- But, we need to address few issues:
 - Network does not know \(W \)
 - Network implicitly determines \(W \) from the user’s behavior along its path, which is chosen by the network on behalf of the user
 - Or, Network puts an implicit weighting for relative utilities of different users
 - No central controller to know \(W \) and allocate rates

Look into individual controllers for the users and for the resources
Network Dynamics & Control Theory Preliminaries

System Modeling and Feedback Control
- TCP
- AQM
- TCP + RED

Control Problem
- The basic control problem: Control the output (results) for a given input

 ![Control System Diagram](image)

- Examples:
 - Price → User → Rate
 - Rates (Demand) → Resource → Prices

Questions to ask
- Steady state
 - What is the long range value of the output?
 - How far is it from the reference value?
- Transient Response
 - How does the system react to perturbations?
- Stability
 - Is this system stable?
- Stability Margins
 - How far is the system from being unstable?
Open-loop Control

- There is no feedback
 - Controlled directly by an input signal
- Simple
- Example: Microwave
 - Food will be heated for the duration specified
- Not as common as closed-loop control

Feedback (Closed-loop) Control

- Feedback control is more interesting ...
- Multiple controllers may be present in the same control loop

Feedback control makes it possible to control well even if
- We don’t know everything
- We make errors in estimation/modeling
- Things change
- Flow/congestion control example:
 - No need to EXACTLY know
 - Number of users
 - Connections’ arrival rate
 - Resource’s service rate
 - Continually measure & correct
Feedback (Closed-loop) Control

- Feedback delay is usually associated with feedback control.

- Feedback delay: Time taken from the generation of a control signal until the process reacts to it and this reaction takes effect at the resource and effect is observed by the user/controller.

- Feedback delay can compromise stability!!
 - The process may be reacting to some past condition that is no longer true.

System Models

- Deterministic vs. Stochastic
 - Are stochastic effects (noise, uncertainties) taken into account?

- Time-invariant vs. Time-varying
 - Do system parameters change over time?

- Continuous-time vs. Discrete-time
 - Is time divided into discrete-time steps?

- Linear vs. Non-linear
 - Do dynamic equations contain non-linear terms?

System Modeling

- Characterize the relationships among system variables as a function of time.

\[
\begin{align*}
 u(t) & \rightarrow \text{System} (x) \rightarrow y(t) \\
 \dot{x} & = f(x, u) \\
 y & = h(x, u)
\end{align*}
\]

- In general, f and h are nonlinear functions.
Instatations

TCP & RED
- One of the instantiations that received a lot of attention
 - Neither TCP nor RED [FJ93] was introduced from a control theoretic framework

TCP Modeling [K99]
- Think about an aggregate of m TCP flows, MuTCP [CO98]
- Congestion window changes:
 \[
 \frac{m \frac{(1-p)}{p} - \frac{cwnd}{2m} \frac{p}{p}}{T/cwnd} \times = \frac{cwnd}{T} \\
 \frac{d}{dt} x_r(t) = \frac{m_r}{T_r} - \left(\frac{m_r}{T_r^2} + \frac{x_r(t)^2}{2m_r} \right) p_r(t)
 \]
TCP Modeling [K99]

- Depending on the total traffic passing through a resource, a congestion signal is generated with probability:
 \[p_r(t) = p_j \left(\sum_{i \in R} x_i(t) \right) \]

\[\frac{d}{dt} x_r(t) = \frac{m_r}{T_r^2} - \left(\frac{m_r}{T_r^2} + \frac{x_r(t)^2}{2m_r} \right) p_r(t) \]

TCP-Reno Utility Function

\[\frac{d}{dt} x_r(t) = \frac{m_r}{T_r^2} - \left(\frac{m_r}{T_r^2} + \frac{x_r(t)^2}{2m_r} \right) p_r(t) \]

- For \(m=1 \) and small \(p \), we have:
 \[\frac{d}{dt} x(t) = \frac{1}{T} - \frac{x(t)^2}{2} - p \]
 \[\frac{d}{dt} x(t) = x(t)^2 \left(\frac{2}{T^2 x(t)} - p \right) \]
 \[U(x) = \frac{2}{T^2 x(t)} \quad U(x) = \frac{-2}{T^2} \]

E2E Congestion Avoidance

TCP Vegas

- End-to-end, dynamic window, implicit
- Expected throughput = \(\text{transmission_window_size/propagation_delay} \)
- Numerator: known
- Denominator: measure smallest RTT
- Also know actual throughput, measure it every RTT
- Difference = how much to reduce/increase rate
- New Congestion Avoidance Algorithm
 - \((\text{expected} - \text{actual}) \times \text{RTT packets in bottleneck buffer}\)
 - adjust sending rate linearly if this is too large or too small

- Generally loses to TCP Reno!
TCP-Vegas Utility Function

- At steady state:
 \[x = \frac{\alpha D}{T_q} \]
 \[T_q = \frac{b}{C}, \quad \hat{T}_q(t) = \frac{\dot{b}(t)}{C} = \frac{1}{C} (y(t) - C), T_q = \text{price} \]
 \[\dot{x} = \frac{\alpha D}{x}, \quad U = \alpha D \log(x) \quad \text{WPF allocation} \]

RED Modeling

- Buffer evolution
 \[\frac{d}{dt} b(t) = \sum x(t) - C \]
 - RED averaging
 \[\dot{v}(t) = -3C(v(t) - b(t)) \]
 - RED marking
 \[p_v(t) = \begin{cases}
 6 & \text{if } v(t) - C \leq B_{\text{min}} \\
 0 & \text{if } B_{\text{min}} < v(t) - C < B_{\text{max}} \\
 1 & \text{if } v(t) - C \geq B_{\text{max}}
 \end{cases} \]

RED Pricing Function

- Assume linear function of instantaneous queue length: \(p(t) = K q(t) \)
 \[\dot{p}(t) = K \dot{q}(t) \]
 \[\dot{q}(t) = y(t) - C \]
 \[\dot{p}(t) = K (y(t) - C) \]
 - \(p = \text{Lagrangian multiplier (price)} \)
Nonlinear Models

- **Sources of nonlinearity**
 - Nonlinear components
 - Example: Rate Controlled MulTCP
 \[\frac{d}{dt} p_c(t) = \frac{m_r}{2} - \left(\frac{m_l}{2} + \frac{s_c(t)}{2m_c} \right) p_c(t) \]
 - Different operating regions
 - Example: RED
 \[p_c(t) = \begin{cases} \frac{a}{\rho(0) - c} \quad & v(t) \leq B_{max} \\ \frac{a}{B_{max} - v(t)} \quad & v(t) > B_{max} \end{cases} \]

- Hard Nonlinearities
- Soft Nonlinearities

Nonlinear Models

- Nonlinear control theory deals directly with nonlinear differential equations
 - Stability: Lyapunov functions
 - Transient Response: Numerical solutions

- Sometimes it gets very complicated

- Linearization: Process of transforming a nonlinear set of equations into a linear set of equations around a single point of operation

Linearization

- Concerned with local stability
- Assumes a single operating point
- Studies perturbations around this point
- Expands the nonlinear DE into Taylor series, then ignores high-order terms

\[x = f(x, u) \quad \text{Linearization around } x_0 \]
\[y = h(x, u) \]
\[\dot{x} = Ax + Bu \quad y = Cx + Du \]
Linear Models

- Once we have a Linear Model
 - Apply classical (first-course) control theory
- See Control Theory Primer slides & notes

Linear vs. Nonlinear

- **Linear Control**
 - Rely on “small range of operation” assumption
 - Simple to use
 - Has a unique equilibrium point (if stable)
 - Satisfies the superposition property
- **Nonlinear Control**
 - Wide range of operation
 - Could be more complex to use
 - Multiple equilibrium points may exist
 - Most control systems are nonlinear

Nonlinear Model of Sources’ and Network’s Adaptations

- **Kelly’s optimization framework**
 - Maximize users’ utilities subject to the network’s capacity constraints [K99]

\[
\frac{d}{dt} x_r(t) = \kappa \left(w_r - x_r(t) \sum_{I \in \mathcal{P}} p_I \left(\sum_{I \in \mathcal{P}} x_s(t) \right) \right)
\]

Additive Increase
Multiplicative Decrease
Steady-state and stability

- **Steady state**
 - Set the derivatives to 0, we get the steady-state point(s)
 - We have a single equilibrium point here

\[
\frac{dx(t)}{dt} = x(t) - \sum_{j \in C} \sum_{i \in S} p_{ji} x_i(t) \\
x_f = \frac{w_x}{\sum_{j \in C} p_{ji}}
\]

- **Stability**
 - Provided through a Lyapunov function

\[
\dot{u}(x) = \sum_{i \in S} w_{xi} \log x_i - \sum_{j \in C} C_j \left(\sum_{x_i \in S} x_i \right)
\]

Lyapunov

- Scalar function, strictly convergent
- Finding a function guarantees stability
- Not finding a function, doesn’t say anything
- Art to find one

\[
\frac{d}{dt} \dot{u}(x(t)) = \sum_{i \in S} \frac{d}{dt} \left(w_{xi} \log x_i - \sum_{j \in C} C_j \left(\sum_{x_i \in S} x_i \right) \right) \\
= \sum_{i \in S} \left(w_{xi} x_i(t) \right) - \sum_{j \in C} \sum_{x_i \in S} C_j \left(\sum_{x_i \in S} x_i \right) ^2 > 0
\]

(difficult road ahead…)

Difficult road ahead...

- Coming up with Lyapunov functions, even for simple models, is not easy
- As we move towards
 - More sophisticated models
 - Feedback delay
 - Different regions/aspects of TCP
 - Timeouts
 - Slow-start
 - Self-clocking
- Challenging environments
 - High bandwidth-delay product networks
 - Effect of exogenous losses (e.g., wireless)
- Accounting for different AQM at the resources
- Interference processes as in DoS attacks
- It gets harder very quickly
Linear Models

- Many sources of nonlinearity
 - Nonlinear components
 - Example:
 \[\frac{d}{dt} x_i(t) = \frac{m_x}{2} \left(\frac{m_x}{2} + x_i(t) \right) \beta_i(t) \]
 - Different operating regions
 - Example: RED
 \[p_i(t) = \begin{cases}
 0 & s(t) < c \\
 \text{sgn}(s(t) - c) & B_{min} < s(t) < B_{max} \\
 1 & s(t) > B_{max}
 \end{cases} \]
 - Need to study every point/region separately

Linearization

- Concerned with local stability
- Assumes a single operating point
 - Studies perturbations around this point
- Expands the nonlinear DE into Taylor series, then ignores high-order terms
 - Example: aggregating all sources and assuming one resource
 \[\frac{d}{dt} x_i(t) = \left(\psi_i - x_i(t) \sum_{i=0}^{n} \sum_{j=0}^{m} x_j(t) \right) \]
 \[\frac{d}{dt} s(t) = s(t) - x(t) \]
 \[\frac{d}{dt} f(t) = -s(p + p') f(t), \quad f(t) = s(t) - x \]

Control Theoretic Analysis

- Linearized Model
 \[\frac{d}{dt} f(t) = -s(p + p') f(t), \quad f(t) = s(t) - x \]
- Taking the Laplace Transform
 \[sF(s) - f(0) = -s(p + p') F(s) \]
 \[F(s) = \frac{f(0)}{s + s(p + p')} \]
- Stable if \(s = -s(p + p') < 0 \) (overdamped)
- For impulse perturbation, steady-state error = \(\lim_{s \to 0^+} sF(s) = 0 \)
How about feedback delay?

- What if the system has feedback delay \(T \) ?
- Use Nyquist stability criterion ...

Cauchy’s Principle

- \(Z \): number of zeros of \(F(s) \)
- \(P \): number of poles of \(F(s) \)
- \(N \): number of encirclements of origin
- For \(G(s)H(s) \), and contour around right-hand s-plane,
 - \(N \): encirclements around -1
 - \(P \): number of unstable poles of \(GH \)
 - \(Z \): number of unstable zeros of \(F \) = closed-loop poles
 - If \(P=0 \), and \(N=0 \), then \(Z=0 \) and system is stable

Nyquist Test

- What if the system has feedback delay \(T \) ?
- If the plot of the open-loop \(G(j\omega)H(j\omega) \) does not encircle the point -1 as \(\omega \) is varied from -inf to +inf, then the system is stable
- The number of unstable closed-loop poles \((Z) \) is equal to the number of unstable open-loop poles \((P) \) plus the number of encirclements \((N) \) of the point \((-1, j0)\) of the Nyquist plot of \(GH \), that is: \(Z = P + N \)
Nyquist Test

- What if the system has feedback delay T?
- If the plot of the open-loop \(G(j\omega)H(j\omega) \) does not encircle the point -1 as \(\omega \) is varied from -\(\infty \) to +\(\infty \), then the system is stable
- Thus, we need to study the behavior of:
 \[e^{-j\omega T} \]
 as \(\omega \) is varied
- Sufficient condition for stability:
 \[\kappa T(p + p'x) < \pi / 2 \]

Routing is also a dynamical system!

- Link price functions reflect prices fed back to routing as the load on the links varies
- Convergence and stability can be proved using Lyapunov functions

Lyapunov for Routing

- Need to show that mapping function is contractive, i.e., range of function reduces
- Consider an adaptive routing system over two paths, with “N” total traffic, and fraction \(\alpha \) being re-routed based on path prices
- Find necessary condition for stability
- Show it is also sufficient
References (1/2)

- [AL00] S. Athuraliya and S. Low Optimization Flow Control: II Implementation 2000
- [ALLY01] S. Athuraliya, S. Low, V. Li and Q. Yin REM: Active Queue Management IEEE Networks 2001
- [BB95] I-TCP: A. Bakre and B. Badrinath Indirect TCP for Mobile Hosts ICDCS 1995
- [BM02] D. Barman and I. Matta Effectiveness of Loss Labeling in Improving TCP Performance in Wired/Wireless Networks ICNP 2002
- [BV99] S. Biaz and N. Vaidya Distinguishing Congestion Losses from Wireless Losses using Inter-Arrival Times at the Receiver APL 1999
- [GBM03] M. Guirguis, A. Bestavros and I. Matta XQM: eXogenous-loss aware Queue Management ICNP 2003 Poster
- [GBM04] M. Guirguis, A. Bestavros and I. Matta Exploiting the Transients of Adaptation for RoQ Attacks on Internet Resources BU-TR 2004
- [K97] F. Kelly Charging and rate control for elastic traffic EToT 1997
- [KK03] A. Kuzmanovic and E. Knightly Low-Rate TCP-Targeted Denial of Service Attacks (The Shrew vs. the Mice and Elephants) SIGCOMM 2003
- [LPWAD02] S. Low, F. Paganini, J. Wang, S. Adlakha and J. Doyle Dynamics of TCP/RED and Scalable Control INFOCOM 2002
- [MGT00] V. Misra, W. Gong and D. Towsley Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED SIGCOMM 2000
- [MW00] J. Mo and J. Walrand Fair End-to-End Window Based Congestion Control ToN 2000
- [RFD01] K. Ramakrishnan, S. Floyd and D. Black The addition of Explicit Congestion Notification (ECN) to IP 2001
- [S95] S. Shenker Fundamental design issues for the future Internet IEEE JSAC 1995
- [SP91] Applied Nonlinear Control J. Slotine and W. Li Prentice Hall

References (2/2)

- [K97] F. Kelly Charging and rate control for elastic traffic EToT 1997
- [KK03] A. Kuzmanovic and E. Knightly Low-Rate TCP-Targeted Denial of Service Attacks (The Shrew vs. the Mice and Elephants) SIGCOMM 2003
- [LPWAD02] S. Low, F. Paganini, J. Wang, S. Adlakha and J. Doyle Dynamics of TCP/RED and Scalable Control INFOCOM 2002
- [MGT00] V. Misra, W. Gong and D. Towsley Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED SIGCOMM 2000
- [MW00] J. Mo and J. Walrand Fair End-to-End Window Based Congestion Control ToN 2000
- [RFD01] K. Ramakrishnan, S. Floyd and D. Black The addition of Explicit Congestion Notification (ECN) to IP 2001
- [S95] S. Shenker Fundamental design issues for the future Internet IEEE JSAC 1995
- [SP91] Applied Nonlinear Control J. Slotine and W. Li Prentice Hall