

What this is (NOT) about

- NOT much about specific protocols, algorithms, interfaces, implementation
- □ It's about architecture, i.e., objects and how they relate to each other
- It's based on the IPC model, not a specific implementation
- "Networking is inter-process communication" --Robert Metcalfe ' 72

Questions?

- Is the Internet's architecture fundamentally broken that we need to "clean slate"? • Yes
- Can we find a new architecture that is complete, yet minimal? If so, what is it?

 Can we transition to it without requiring everyone to adopt it?
 Yes

- Our Solution: divide-and-conquer
 Application processes communicate over a Distributed IPC Facility (DIF)
 DIF management is hidden from applications

 → better security

 IPC processes are application processes of lower IPC facilities
 Recurse as needed

 → better management & scalability

 Well-defined service interfaces

 → predictable service quality
 Applications ask for a location-independent service
 - The underlying IPC layer maps it to a location-dependent node name, i.e. address

Port Scanning Attacks

Goal: first step for an attack, explore "open" ports

- In RINA, requesting applications never see addresses nor conn IDs
 - No well-known ports
 - \odot Ports, dynamically allocated, are not part of conn IDs \odot Service requested by application name
- Traditional port scanning attacks not possible
- Scanning application names is much more difficult
- Attacker has to join the DIF too

○ For the sake of comparison, we assume the attacker overcame this hurdle!

Data Transfer Attacks

TCP/IP

- Goal is to inject a legitimate packet, e.g. TCP "reset"
- Attacker has to guess source port and SN within transmission window
- Given 16-bit port numbers and 16-bit max window,
 2¹⁶ * 2⁽³²⁻¹⁶⁾⁼¹⁶=2³² guesses
- Right before data transfer starts

RINA

- Attacker has to guess conn IDs and QoS ID
- □ Given 8-bit QoS ID, 2⁽¹⁶⁺¹⁶⁺⁸⁾ = 2⁴⁰ guesses
- During data transfer
- Attacker has to also guess
- SN, so 2⁽⁴⁰⁺¹⁶⁾=2⁵⁶ guesses Note: RINA can change conn IDs on the fly 22

Attacking the reassembly of TCP segment

Attack by inserting malicious data into IP fragment carrying part of TCP payload

Not possible in RINA

- Transport and relaying are integrated in each DIF layer
- Fragmentation/reassembly is done once as data enters/leaves the DIF layer

Good Design leads to Better Security

- In RINA, requesting apps never see addresses nor conn IDs
 - → traditional port scanning attacks not possible
- Underlying IPC processes must be authenticated to join DIF
 - → only "insider" attacks possible
 - → a hurdle that is not present in TCP/IP networks

24

estination

RINA: Good Routing

Back to naming-addressing basics [Saltzer ' 82] ○ Service name (location-independent) → node name (location-dependent) \rightarrow PoA address (path-dependent)

We clearly distinguish the last 2 mappings Route: sequence of node names (addresses)

→ path

Late binding of next-hop's node name to PoA at lower DIF

source

level

LISP vs. RINA vs. ...

- Total Cost per loc / interface change = Cost of Loc / Routing Update +
 - ρ [P_{cons}*DeliveryCost + (1-P_{cons})*InconsistencyCost]
- ρ : expected packets per loc change
- $\mathsf{P}_{\mathsf{cons:}}$ probability of no loc change since last pkt delivery
- RINA's routing modeled over a binary tree of IPC Layers: update at top level involves route propagation over the whole network diameter D; update at leaf involves route propagation over D/2^h, h is tree height

Bottom Line: RINA is less costly

- RINA inherently limits the scope of location update & inconsistency
- RINA uses "direct" routing to destination node

Adoptability

- ISPs get into the IPC business and compete with host providers
- Provide transport services everywhere
- A user joins any IPC network she chooses
- □ All IPC networks are private
- □ We could still have a public network with weak security properties, i.e., the current Internet

43

Many IPC providers can join forces and compete with other groups

