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Abstract

We put forward a new model for understanding the security of symmetric-key primitives,
such as block ciphers. The model captures the fact that many such primitives often consist of
iterating simpler constructs for a number of rounds, and may provide insight into the security
of such designs.

We completely characterize the security of four-round Luby-Rackoff ciphers in our model,
and show that the ciphers remain secure even if the adversary is given black-box access to the
middle two round functions. A similar result can be obtained for message authentication codes
based on universal hash functions.

1 Introduction

1.1 Block Ciphers

A block cipher is a family of permutations on a message space indexed by a secret key. Each
permutation in the family deterministically maps plaintext blocks of some fixed length to ciphertext
blocks of the same length; both the permutation and its inverse are efficiently computable given
the key.

Motivated originally by the study of security of the block cipher DES [16], Luby and Rackoff
provided a formal model for the security of block ciphers in their seminal paper [14]. They con-
sider a block cipher to be secure (“super pseudorandom,” or secure under both “chosen plaintext”
and “chosen ciphertext” attacks) if, without knowing the key, a polynomial-time adversary with
oracle access to both directions of the permutation is unable to distinguish it from a truly random
permutation on the same message space. This definition is an extension of the definition of a pseu-
dorandom function generator from [12], where the adversary has oracle access only to the forward
direction of the function.1

1.2 The Natural Round Structure of Symmetric-Key Primitives

In addition to defining security of block ciphers, Luby and Rackoff also provided a construction of
a secure block cipher based on a pseudorandom function generator. Their block cipher consists of
four rounds of Feistel [11] permutations, each of which consists of an application of a pseudorandom
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function and an exclusive-or operation. Each round’s output is used for the next round’s input,
except for the last round, whose output is the output of the block cipher.

Much of the theoretical research that followed the work of [14] focused on efficiency improve-
ments to this construction (e.g., see [15], [18] and references therein). All of these variations can
also be naturally broken up into rounds.

This theme of an inherent round structure in block ciphers is also seen extensively in practice.
For example, a number of ciphers, including DES [16] and many of the AES submissions [17] have
an inherent round structure (though not necessarily involving Feistel permutations), where the
output of one round is used as input to the next.

In addition to block ciphers, constructions of other cryptographic primitives often also proceed
in rounds. For example, universal-hash-function-based message authentication codes (UHF MACs)
[6], [22], [9] can be viewed as consisting of two rounds. Moreover, cryptographic hash functions
(e.g., MD-5 [19]), and the various message authentication schemes that are built on top of them
(e.g., HMAC [1]), have an induced round structure as well.

Consequently, it should come as little surprise that cryptanalysts have often considered looking
at individual rounds in order to better understand the security properties of a given design; for
example, a large number of papers have been written analyzing reduced-round variants of block
ciphers and hash functions (see [5], [21], and the references therein).

It thus seems that a theoretical framework incorporating the notion of rounds would be desirable.
This paper proposes such a framework. Although our model is a simple extension of the classical
models of security for symmetric primitives ([14], [12], [2]), it allows one to obtain a number of
interesting results not captured by the traditional models. In particular, we analyze the security of
the original Luby-Rackoff construction, some of its variants, and UHF MACs within our framework.

1.3 Our Contributions

1.3.1 A New Model

The definition of a secure block cipher from [14], or of a secure MAC from [3], allows the adversary
only black-box access to the primitive. We develop the notion round security, which considers what
happens when the adversary has additional access to some of the internal rounds of the computation
of the primitive. We focus on block ciphers, but our techniques can be extended to other primitives
such as MACs.

For example, in the case of block ciphers, we study what happens when the adversary is allowed,
in addition to its chosen-plaintext and chosen-ciphertext queries, to input a value directly to some
round i of the block cipher and view the output after some round j, with restrictions on i and
j. The adversary’s job is still the same: to distinguish whether the chosen-ciphertext and chosen-
plaintext queries are being answered by the block cipher or by a random permutation. The queries
to internal rounds are always answered by the block cipher.

As discussed below, this model allows us gain a better understanding of what makes symmetric
constructions secure, and enables us to make statements about security that are not captured by
the traditional model.

1.3.2 Round Security of Luby-Rackoff Ciphers

We completely characterize the round security of the Luby-Rackoff construction and its more effi-
cient variants from [15] and [18]. That is, we precisely specify the sets of rounds that the adversary
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can access for the cipher to remain secure, and show that access to other sets of rounds will make
the cipher insecure.

The cipher proposed by Luby and Rackoff [14] operates on a 2n-bit string (L,R) and can be
described simply as follows:

S = L⊕ h1(R)
T = R⊕ f1(S)
V = S ⊕ f2(T )
W = T ⊕ h2(V ),

where h1, h2, f1, f2 are pseudorandom functions, ⊕ represents the exclusive-or, and the output is
(V,W ).

Naor and Reingold [15] demonstrated that pseudorandom functions h1 and h2 can be replaced
by XOR-universal hash functions, thus suggesting that strong randomness is important only in the
middle two rounds. We extend their observation by showing that, in fact, secrecy is important in
the first and last rounds, while randomness (but no secrecy) is needed in the middle two rounds.
Specifically, we show that:

• The cipher remains secure even if the adversary has oracle access to both f1 and f2.

• The cipher becomes insecure if the adversary is allowed access to any other round oracles.

Moreover, we demonstrate that instantiating h1 and h2 as hash functions instead of as pseudoran-
dom functions does not significantly lower the round security of the block cipher, thus supporting
the observation that strong randomness is not needed in the first and last rounds of the Luby-
Rackoff construction.

1.3.3 Round Security of Universal Hash Function MACs

Using techniques in our paper, one can also characterize the round security of a class of Universal-
Hash Function-based Message Authentication Codes (UHF MACs). In the first round, these UHF
MACs apply a universal hash function h to a relatively large message, to get a shorter intermediary
string. Then, in the second round, they use a pseudorandom function f on the shorter string to
get a final tag. It turns out that:

• A UHF MAC remains secure if the adversary has oracle access to f .

• A UHF MAC is, in general, insecure if the adversary has oracle to h.

1.3.4 Implications for the Random Oracle Model

Our work has interesting implications for Luby-Rackoff ciphers and UHF MACs in the random
oracle model. One can easily define security of block ciphers and MACs in this model given the
work of [4]: one simply allows all parties (including the adversary) access to the same oracle, and
the adversary has to succeed for a random choice of the oracle.

Our results imply that the Luby-Rackoff cipher remains secure in the random oracle model if
one replaces the functions f1 and f2 with random oracles. That is, in the random oracle model,
keying material will only be necessary for h1 and h2, which, as shown in [15] and [18], can be just
(variants of) universal hash functions.
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Similarly, the UHF MAC remains secure if the pseudorandom function, used in the second
round, is replaced with a random oracle. Thus, again, in the random oracle model, keying material
is needed only for the hash function.

Block ciphers have been analyzed in the random-oracle model before. For example, Even and
Mansour [10] construct a cipher using a public random permutation oracle P (essentially, the
construction is y = P (k1 ⊕ x)⊕ k2, where k1 and k2 constitute the key, x is the plaintext, and y is
the resulting ciphertext). They show their construction is hard to invert and to existentially forge.
We can recast their construction in our model, as a three-round cipher, where the adversary has
access to the second round. Using the techniques in our paper, we can, in fact, obtain a stronger
result; namely, that their cipher is super pseudorandom.

Of course, whether a scheme in the random oracle model can be instantiated securely in the real
world (that is, with polynomial-time computable functions in place of random oracles) is uncertain,
particularly in light of the results of Canetti, Goldreich and Halevi [7]. However, our results open
up an interesting direction: is it possible to replace pseudorandom functions with unkeyed functions
in any of the constructions we discuss?

2 Prior Definitions and Constructions

Below we describe the relevant definitions and prior constructions. Our presentation is in the
“concrete” (or “exact”) security model as opposed to the asymptotic model (though our results
can be made to hold for either). Our treatment follows that of Bellare, Kilian, and Rogaway [3],
and Bellare, Canetti, Krawczyk [2].

2.1 Definitions

2.1.1 Notation

For a bit string x, we let |x| denote its length. If x has even length, then xL and xR denote the left
and right halves of the bits respectively; we sometimes write x = (xL, xR). If x and y are two bit
strings of the same length, x⊕y denotes their bitwise exclusive OR. If S is a probability space, then
x

R← S denotes the process of picking an element from S according to the underlying probability
distribution. Unless otherwise specified, the underlying distribution is assumed to be uniform. We
let In denote the set of bit strings of length n: {0, 1}n.

By a finite function (or permutation) family F , we denote a set of functions with common
domain and common range. Let Randk→l be the set of all functions going from Ik to Il, and let
Permm be the set of all permutations on Im. We call a finite function (or permutation) family
keyed if every function in it can be specified (not necessarily uniquely) by a key a. We denote the
function given by a as fa. We assume that given a, it is possible to efficiently evaluate fa at any
point (as well as f−1

a in case of a keyed permutation family). For a given keyed function family,
a key can be any string from Is, where s is known as “key length.” (Sometimes it is convenient
to have keys from a set other than Is; we do not consider such function families simply for clarity
of exposition—our results do not change in such a case.) For functions f and g, g ◦ f denotes the
function x 7→ g(f(x)).

2.1.2 Model of Computation

The adversary A is modeled as a program for a Random Access Machine (RAM) that has black-box
access to some number k of oracles, each of which computes some specified function. If (f1, . . . , fk)
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is a k-tuple of functions, then Af1,...,fk denotes a k-oracle adversary who is given black-box oracle
access to each of the functions f1, . . . , fk. We define A’s “running time” to be the number of time
steps it takes plus the length of its description (to prevent one from embedding arbitrarily large
lookup tables in A’s description).

2.1.3 Pseudorandom Functions and Block Ciphers

The pseudorandomness of a keyed function family F with domain Ik and range Il captures its
computational indistinguishability from Randk→l. This definition is a slightly modified version of
the one given by Goldreich, Goldwasser and Micali [12].

Definition 1 A pseudorandom function family F is a keyed function family with domain Ik, range
Il, and key length s. Let A be a 1-oracle adversary. Then we define A’s advantage as

Advprf
F (A) =

∣∣∣Pr[a R← Is : Afa = 1]− Pr[f R← Randk→l : Af = 1]
∣∣∣ .

For any integers q, t ≥ 0, we define an insecurity function Advprf
F (q, t):

Advprf
F (q, t) = max

A
{Advprf

F (A)}.

The above maximum is taken over choices of adversary A such that:

• A makes at most q oracle queries, and

• the running time of A, plus the time necessary to select a R← Is and answer A’s queries, is at
most t.

We are now ready to define a secure block cipher, or what Luby and Rackoff [14] call a super
pseudorandom permutation. The notion captures the pseudorandomness of a permutation family
on Il in terms of its indistinguishability from Perml, where the adversary is given access to both
directions of the permutation. In other words, it measures security of a block cipher against chosen
plaintext and ciphertext attacks.

Definition 2 A block cipher F is a keyed permutation family with domain and range Il and key
length s. Let A be a 2-oracle adversary. Then we define A’s advantage as

Advsprp
F (A) =

∣∣∣Pr[a R← Is : Afa,f
−1
a = 1]− Pr[f R← Perml : Af,f−1

= 1]
∣∣∣ .

For any integers q, t ≥ 0, we define an insecurity function Advsprp
F (q, t) similarly to Definition 1.

2.1.4 Hash Functions

Our definitions of hash functions follow those given in [8], [18], [22], [13], [20].

Definition 3 Let H be a keyed function family with domain Ik, range Il, and key length s. Let
ε1, ε2, ε3, ε4 ≥ 2−l. H is an ε1-uniform family of hash functions if for all x ∈ Ik, z ∈ Il, Pr[a R← Is :
ha(x) = z] ≤ ε1. H is ε2-XOR-universal if for all x 6= y ∈ Ik, z ∈ Il, Pr[a R← Is : ha(x) ⊕ ha(y) =
z] ≤ ε2. It is ε3-bisymmetric if for all x, y ∈ Ik (here we allow x = y), z ∈ Il, Pr[a1

R← Is, a2
R← Is :

ha1(x)⊕ ha2(y) = z] ≤ ε3. It is ε4-universal if for all x 6= y ∈ Ik, Pr[a R← Is : ha(x) = ha(y)] ≤ ε4.
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We note that in some of the past literature, hash functions are assumed to be uniform by default.
We prefer to separate uniformity from other properties.

An example of a family that has all four properties for ε1 = ε2 = ε3 = ε4 = 2−l is a family keyed
by a random l × k matrix A over GF (2) and a random l-bit vector v, with hA,v(x) = Ax+ v [8].

Remark 1 We will use the phrase “h is a uniform (XOR-universal, bisymmetric, universal) hash
function” to mean “h is drawn from a uniform (XOR-universal, bisymmetric, universal) family of
hash functions.”

2.2 Constructions of Luby-Rackoff Ciphers

We now define Feistel structures, which are the main tool for constructing pseudorandom permu-
tations on 2n bits from functions on n bits.

Definition 4 (Basic Feistel Permutation) Let f be a mapping from In to In. Let x = (xL, xR)
with xL, xR ∈ In. We denote by f the permutation on I2n defined as f(x) = (xR, xL⊕ f(xR)). Note
that it is a permutation because f−1(y) = (yR ⊕ f(yL), yL).

Definition 5 (Feistel Network) If f1, . . . , fs are mappings with domain and range In, then we
denote by Ψ(f1, . . . , fs) the permutation on I2n defined as Ψ(f1, . . . , fs) = fs ◦ . . . ◦ f1

Luby and Rackoff [14] were the first to construct pseudorandom permutations. They did so using
four independently-keyed pseudorandom functions. The main theorem in their paper is:

Theorem 1 (Luby-Rackoff) Let h1, f1, f2, h2 be independently-keyed functions from a keyed func-
tion family F with domain and range In and key space Is. Let P be the family of permutations on
I2n with key space I4s defined by P = Ψ(h1, f1, f2, h2) (the key for an element of P is simply the
concatenation of keys for h1, f1, f2, h2). Then

Advsprp
P (q, t) ≤ Advprf

F (q, t) +

(
q

2

)(
2−n+1 + 2−2n+1

)
.

Naor and Reingold [15] optimized the above construction by enabling the use of XOR-universal
hash functions in the first and last rounds.

Theorem 2 (Naor-Reingold) Let f1 and f2 be independently-keyed functions from a keyed func-
tion family F with domain and range In and key space Is1. Let h1, h2 be ε-XOR-universal hash
functions, keyed independently of each other and of f1, f2, from a keyed function family H with
domain and range In and key space Is2. Let P be the family of permutations on I2n with key space
I2s1+2s2 defined by p = Ψ(h1, f1, f2, h2). Then

Advsprp
P (q, t) ≤ Advprf

F (q, t) +

(
q

2

)(
2ε+ 2−2n+1

)
.

Patel, Ramzan, and Sundaram [18], following a suggestion in [15], optimized the construction
further by allowing the same pseudorandom function to be used in the middle rounds, thus reducing
the key size. This required an additional condition on the hash function.
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Theorem 3 (Patel-Ramzan-Sundaram) Let f be a function from a keyed function family F
with domain and range In and key space Is1. Let h1, h2 be ε1-bisymmetric ε2-XOR-universal hash
functions, keyed independently of each other and of f , from a keyed function family H with domain
and range In and key space Is2. Let P be the family of permutations on I2n with key space Is1+2s2

defined by P = Ψ(h1, f, f, h2). Then

Advsprp
P (q, t) ≤ Advprf

F (2q, t) + q2ε1 +

(
q

2

)(
2ε2 + 2−2n+1

)

3 New Model: Round Security

Having presented the classical definitions and constructions of block ciphers, we are now ready to
define the new model of round security. The definitions can be easily extended to other symmetric
primitives, such as MACs.

Let P,F1,F2, . . . ,Fr be keyed permutation families, each with domain and range Il and key
length s, such that for any key a ∈ Is, pa = f ra ◦ . . . ◦ f1

a . Then F1, . . . ,Fr is called an r-round
decomposition for P. For i ≤ j, denote by (i→ j)a the permutation f ja ◦ . . . ◦ f ia, and by (i← j)a
the permutation

(
f ja ◦ . . . ◦ f ia

)−1. Denote by i → j and i ← j the corresponding keyed function
families.

Note that having oracle access to a member of i→ j means being able to give inputs to round
i of the forward direction of a block cipher and view outputs after round j. Likewise, having oracle
access to i ← j corresponds to being able to give inputs to round j of the reverse direction of the
block cipher and view outputs after round i. Thus, the oracle for 1 → r = P corresponds to the
oracle for chosen plaintext attack, and the oracle for 1 ← r corresponds to the oracle for chosen
ciphertext attack.

We are now ready to define security in this round-based model. This definition closely mimics
Definition 2. The difference is that the adversary is allowed oracle access to some subset K of the
set {i→ j, i← j : 1 ≤ i ≤ j ≤ r}, and the insecurity function additionally depends on K.

Definition 6 Let P be a block cipher with domain and range Il, key length s and some r-round
decomposition F1, . . . ,Fr. Fix some subset K = {π1, . . . , πk} of the set {i→ j, i← j : 1 ≤ i ≤ j ≤
r}, and let A be a k + 2-oracle adversary. Then we define A’s advantage as

Advsprp
P,F1,...,Fr,K(A) =∣∣∣Pr[a R← Is : Apa,p

−1
a ,π1

a,...,π
k
a = 1]− Pr[p R← Perml, a

R← Is : Ap,p−1,π1
a,...,π

k
a = 1]

∣∣∣
For any integers q, t ≥ 0 and set K, we define an insecurity function

Advsprp
P,F1,...,Fr(q, t,K)

similarly to Definition 2.

4 Round Security of Luby-Rackoff Ciphers

Having developed a round security framework for block ciphers, we examine the specific case of
a four-round cipher described in Section 2.2. Our goal is to characterize the insecurity function
defined above depending on the set K of oracles.
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We are able to do so completely, in the following sense. We place every set K in one of
two categories: either the insecurity function is unacceptably high, or it is almost as low as in
the standard model. That is, we completely characterize the acceptable sets of oracles for the
construction to remain secure in our model.

Moreover, we do so for all three ciphers presented in Section 2.2 (although we need to add an
ε-uniformity condition on the hash functions in the second and third constructions in order for
them to remain secure; this is a mild condition, often already achieved by a hash function family).
As it turns out, the round security of the three constructions is the same. Specifically, all three
ciphers remain secure if the adversary is given access to the second and third rounds. These results
suggest, in some sense, that the so-called “whitening” steps, performed in the first and last rounds,
require secrecy but only weak randomness, whereas the middle rounds require strong randomness
but no secrecy.

We present our results in two parts. First, in Section 4.1, we examine what combinations of
oracles make the cipher insecure. Then, in Section 4.2, we show that any other combination leaves
it secure.

4.1 Negative Results

In this section we demonstrate which oracles make the cipher insecure. Our negative results are
strong, in the sense that they hold regardless of what internal functions h1, h2, f1, f2 are used. That
is, the cipher can be distinguished from a random permutation even if each of these functions is
chosen truly at random. Thus, our results hold for all three ciphers presented in Section 2.2.

Theorem 4 Regardless of how the functions h1, f1, f2, h2 are chosen from the set of all functions
with domain and range In, let P = Ψ(h1, f1, f2, h2). Let t be the time required to compute 17 n-bit
XOR operations, a comparison of two n-bit strings, and 9 oracle queries.2 Then

Advsprp

P,h1,f1,f2,h2
(9, t,K) ≥ 1− 2−n,

as long as K is not a subset of {2→ 2, 2← 2, 3→ 3, 3← 3, 2→ 3, 2← 3}. That is, P is insecure
as long as the adversary has access to an oracle that includes the first or fourth rounds.

We will prove the theorem by eliminating oracles that allow the adversary to distinguish the
cipher from a random permutation. This involves using the attack against a three-round cipher
from [14]. The complete proof is given in Appendix A.

4.2 Positive Results

In this section, we prove what is essentially the converse of the results of the previous section.
Namely, we show that if K is the set given in Theorem 4, then the cipher is secure. Of course, if
K is a subset of it, then the cipher is also secure.

Theorem 5 Suppose K ⊆ {2→ 2, 2← 2, 3→ 3, 3← 3, 2→ 3, 2← 3}.
Let h1, f1, f2, h2 and P be as in Theorem 1. Then

Advsprp

P,h1,f1,f2,h2
(q, t,K) ≤ Advprf

F (q, t) +

(
q

2

)(
2−n+1 + 2−2n+1

)
+ q2

(
2−n−1

)
.

2The values 17 and 9 can be reduced by more careful counting; it is unclear, however, if there is any reason to
expend effort finding the minimal numbers that work.
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If h1, f1, f2, h2 and P are as in Theorem 2, with the additional condition that h1 and h2 be ε3-
uniform, then

Advsprp

P,h1,f1,f2,h2
(q, t,K) ≤ Advprf

F (q, t) +

(
q

2

)(
2ε+ 2−2n+1

)
+ q2ε3/2.

Finally, if h1, f, h2 and P are as in Theorem 3, with the additional condition that h1 and h2 be
ε3-uniform, then

Advsprp

P,h1,f ,f ,h2
(q, t) ≤ Advprf

F (2q, t) + q2(ε1 + ε3) +

(
q

2

)(
2ε2 + 2−2n+1

)
.

We focus our proof on the last part of the theorem. The proofs of other cases are very similar.
Our proof technique is a generalization of the techniques of Naor and Reingold [15] designed to
deal with the extra queries. Moreover, we analyze concrete, rather than asymptotic, security.

First, in the following simple claim, we reduce the statement to the case when f is a truly
random function.

Claim 1 Suppose
Advsprp

P,h1,f ,f ,h2
(q, t) ≤ δ

when f is picked from Randn→n, rather than from a pseudorandom family. Then

Advsprp

P,h1,f ,f ,h2
(q, t) ≤ δ + Advprf

F (2q, t)

when is f picked from F .

Proof. Indeed, suppose A is an adversary for the block cipher P, with advantage γ. Build an
adversary A′ for pseudorandom function family F as follows: A′ selects at random h1 and h2 from
a suitable family, and runs A on the cipher Ψ(h1, f, f, h2). In order to answer the queries of A, A′
simply queries f where appropriate and computes the answer according to the Feistel structure.
A′ then outputs the same result as A.

Note that A has advantage at least γ if f is from F , and at most δ for a truly random f . By a
standard application of the triangle inequality, Advprf

F (A′) ≥ γ − δ.

We note that access to the oracles of K is equivalent to access to the oracle for f (although
one query to 2→ 3 or 3→ 2 can be simulated by two queries to f). Thus, it suffices to prove the
following theorem.

Theorem 6 Let f be a random function, and let h1, h2 be ε1-bisymmetric ε2-XOR-universal ε3-
uniform hash functions with domain and range In, Ψ = Ψ(h1, f, f, h2), and R be a random permu-
tation on I2n. Then, for any 3-oracle adversary A (we do not restrict the running time of A) that
makes at most qc queries to its first two oracles and at most qo queries to its third oracle,∣∣∣Pr[AΨ(h1,f,f,h2),Ψ−1(h1,f,f,h2),f = 1]− Pr[AR,R

−1,f = 1]
∣∣∣

≤ q2
c ε1 + 2qoqcε3 +

(
qc
2

)(
2ε2 + 2−2n+1

)
.

The remainder of this section gives the proof of this theorem. To summarize, the first part of the
proof focuses on the transcript (a.k.a. the “view”) of the adversary, and shows that each possible
transcript is about as likely to occur whenA is given Ψ as when A is given R. The second part uses a
probability argument to show that this implies that A will have a small advantage in distinguishing
Ψ from R.
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4.2.1 Proof of Theorem 6

To start with, let P denote the permutation oracle (either Ψ(h1, f, f, h2) or R) that A accesses. Let
Of denote the oracle that computes the function f (note that when A gets Ψ as its permutation
oracle, f is actually used as the round function in the computation of the oracle P = Ψ; when
A gets R as its permutation oracle, f is completely independent of P = R). The machine A has
two possibilities for queries to the oracle P : (+, x) which asks to obtain the value of P (x), or
(−, y) which asks to obtain the value of P−1(y) – where both x and y are in I2n. We call these
cipher queries. We define the query-answer pair for the ith cipher query as 〈xi, yi〉 ∈ I2n × I2n

if A’s query was (+, x) and y is the answer it received from P or its query was (−, y) and x is
the answer it received. We assume that A makes exactly qc queries and we call the sequence
{〈x1, y1〉, . . . , 〈xqc , yqc〉}P the cipher-transcript of A.

In addition, A can make queries to Of . We call these oracle queries. We denote these queries
as: (Of , x′) which asks to obtain f(x′). We define the query-answer pair for the ith oracle query
as 〈x′i, y′i〉 ∈ In× In if A’s query was (Of , x′) and the answer it received was y′. We assume that A
makes qo queries to this oracle. We call the sequence {〈x′1, y′1〉, . . . , 〈x′qo , y

′
qo〉}Of the oracle-transcript

of A.
Note that since A is computationally unbounded, we can make the standard assumption that

A is a deterministic machine. Under this assumption, the exact next query made by A can be
determined by the previous queries and the answers received. We formalize this as follows:

Definition 7 Let CA[{〈x1, y1〉, . . . , 〈xi, yi〉}P , {〈x′1, y′1〉, . . . , 〈x′j , y′j〉}Of ], where either i < qc or j <
qo, denote the i+ j + 1st query A makes as a function of the first i+ j query-answer pairs in A’s
cipher and oracle transcripts. Let CA[{〈x1, y1〉, . . . , 〈xqc , yqc〉}P , {〈x′1, y′1〉, . . . , 〈x′qo , y

′
qo〉}Of ] denote

the output A gives as a function of its cipher and oracle transcripts.

Definition 8 Let σ be the pair of sequences

({〈x1, y1〉, . . . , 〈xqc , yqc〉}P , {〈x′1, y′1〉, . . . , 〈x′qo , y
′
qo〉}Of ),

where for 1 ≤ i ≤ qc we have that 〈x1, y1〉 ∈ I2n×I2n, and for 1 ≤ j ≤ qo, we have that 〈x′, y′〉 ∈ In.
Then, σ is a consistent A-transcript if for every 1 ≤ i ≤ qc :

CA[{〈x1, y1〉, . . . , 〈xi, yi〉}P , {〈x′1, y′1〉, . . . , 〈x′j , y′j〉}Of ] ∈
{(+, xi+1), (−, yi+1), (Of , x′j+1)}.

We now consider another process for answering A’s cipher queries that will be useful to us.

Definition 9 The random process R̃ answers the ith cipher query of A as follows:

1. If A’s query is (+, xi) and for some 1 ≤ j < i the jth query-answer pair is 〈xi, yi〉, then R̃
answers with yi.

2. If A’s query is (−, yi) and for some 1 ≤ j < i the jth query-answer pair is 〈xi, yi〉, then R̃
answers with xi.

3. If neither of the above happens, then R̃ answers with a uniformly chosen element in I2n.

Note that R̃’s answers may not be consistent with any function, let alone any permutation. We
formalize this concept.

10



Definition 10 Let σ = {〈x1, y1〉, . . . , 〈xqc , yqc〉}P be any possible A-cipher transcript. We say that
σ is inconsistent if for some 1 ≤ j < i ≤ qc the corresponding query-answer pairs satisfy xi = xj
but yi 6= yj, or xi 6= xj but yi = yj.

Note 1 If σ = ({〈x1, y1〉, . . . , 〈xqc , yqc〉}P , {〈x′1, y′1〉, . . . , 〈x′qo , y
′
qo〉}Of ) is a possible A-transcript, we

assume from now on that if σ is consistent and if i 6= j then xi 6= xj, yi 6= yj, and x′i 6= x′j. This
formalizes the concept that A never repeats a query if it can determine the answer from a previous
query-answer pair.

Fortunately, we can show that the process R̃ often “behaves” exactly like a permutation. It turns out
that if A is given oracle access to either R̃ or R to answer its cipher queries, it will have a negligible
advantage in distinguishing between the two. We prove this more formally in proposition 1. Before
doing so, we first consider the distributions on the various transcripts seen by A as a function of
the different distributions on answers it can get.

Definition 11 The random variables TΨ, TR, TR̃ denote the cipher-transcript / oracle transcript
pair seen by A when its cipher queries are answered by Ψ, R, R̃ respectively, and its oracle queries
are all answered by Of .

Remark 2 Observe that according to our definitions and assumptions, AΨ,Ψ−1,f and CA(TΨ) de-
note the same random variable. The same is true for AR,R−1,f and CA(TR).

Proposition 1
∣∣PrR̃[CA(TR̃) = 1]− PrR[CA(TR) = 1]

∣∣ ≤ (qc2 ) · 2−2n

Proof.
For any possible and consistent A-transcript σ we have that:

Pr
R

[TR = σ] =
(22n − qc)!

22n!
· 2−qon = Pr

R̃
[TR̃ = σ | TR̃ is consistent].

Thus TR and TR̃ have the same distribution conditioned on TR̃ being consistent. We now bound
the probability that TR̃ is inconsistent. Recall that TR̃ is inconsistent if there exists an i and j with
1 ≤ j < i ≤ qc for which xi = xj but yi 6= yj , or xi 6= xj but yi = yj . For a particular i and j this
event happens with probability 2−2n. So,

Pr
R̃

[TR̃ is inconsistent] ≤
(
qc
2

)
· 2−2n.

We complete the proof via a standard argument:

∣∣∣∣Pr
R̃

[CM (TR̃) = 1]− Pr
R

[CM (TR) = 1]
∣∣∣∣

≤
∣∣∣∣Pr
R̃

[TR̃ = σ | TR̃ is consistent]− Pr
R

[CM (TR) = 1]
∣∣∣∣ · Pr

R̃
[TR̃ is consistent]

+
∣∣∣∣Pr
R̃

[TR̃ = σ | TR̃ is inconsistent]− Pr
R

[CM (TR) = 1]
∣∣∣∣ · Pr

R̃
[TR̃ is inconsistent]

≤ Pr
R̃

[TR̃ is inconsistent] ≤
(
qc
2

)
· 2−2n.

11



This completes the proof of the proposition.

We now proceed to obtain a bound on the advantage that A will have in distinguishing between
TΨ and TR̃. It turns out that TΨ and TR̃ are identically distributed unless the same value is input
to f on two different occasions (we show this in Lemma 1). This depends only on the choice of h1

and h2. We call this event “BAD” (in the next definition) and obtain a bound on the probability
that it actually occurs (in Proposition 2).

Definition 12 For every specific pair of functions h1, h2 define BAD(h1, h2) to be the set of all
possible and consistent transcripts

σ = ({〈x1, y1〉, . . . , 〈xqc , yqc〉}P , {〈x′1, y′1〉, . . . , 〈x′qo , y
′
qo〉}Of )

satisfying at least one of the following events:

• B1: there exists 1 ≤ i < j ≤ qc such that h1(xRi )⊕ xLi = h1(xRj )⊕ xLj , or

• B2: there exists 1 ≤ i < j ≤ qc such that yRi ⊕ h2(yLi ) = yRj ⊕ h2(yLj ), or

• B3: there exists 1 ≤ i, j ≤ qc such that h1(xRi )⊕ xLi = yRj ⊕ h2(yLj ), or

• B4: there exists 1 ≤ i ≤ qc, 1 ≤ j ≤ qo such that h1(xRi )⊕ xLi = x′j, or

• B5: there exists 1 ≤ i ≤ qc, 1 ≤ j ≤ qo such that yRi ⊕ h2(yLi ) = x′j .

Proposition 2 Let h1, h2 be ε1-bisymmetric ε2-XOR-universal ε3-uniform hash functions. Then,
for any possible and consistent A− transcript σ, we have that

Pr
h1,h2

[σ ∈ BAD(h1, h2)] ≤ q2
c ε1 + 2qoqcε3 +

(
qc
2

)
· 2ε2

Proof. Recall that a transcript σ ∈ BAD(h1, h2) if one of the events Bi occur. It is straightforward
to determine the individual probabilities of each of these events separately by using the properties
of h, and apply the union bound to add up the probabilities for each event.

Lemma 1 Let σ = ({〈x1, y1〉, . . . , 〈xqc , yqc〉}P , {〈x′1, y′1〉, . . . , 〈x′qo , y
′
qo〉}Of ) be any possible and con-

sistent M − transcript, then

Pr
Ψ

[TΨ = σ|σ /∈ BAD(h1, h2)] = Pr
R̃

[TR̃ = σ].

Proof. It is not hard to see that PrR̃[TR̃ = σ] = 2−(2qc+qo)n (see [15] for more details).
Now, fix h1, h2 to be such that σ /∈ BAD(h1, h2). We will now compute Prf [TΨ = σ] (note that

the probability is now only over the choice of f). Since σ is a possible A-transcript, it follows that
TΨ(h1,f,f,h2) = σ iff yi = Ψ(h1, f, f, h2)(xi) for all 1 ≤ i ≤ qc and y′j = f(x′j) for all 1 ≤ j ≤ qo. If
we define

Si = xLi ⊕ h1(xRi )
Ti = yRi ⊕ h2(yLi ),

12



then
(yLi , y

R
i ) = Ψ(xLi , x

R
i )⇔ f(Si) = Ti ⊕ xRi and f(Ti) = yLi ⊕ Si.

Now observe that for all 1 ≤ i < j ≤ qc, Si 6= Sj and Ti 6= Tj (otherwise σ ∈ BAD(h1, h2)).
Similarly, for all 1 < i, j < qc, Si 6= Tj . In addition, it follows again from the fact that σ /∈
BAD(h1, h2) that for all 1 ≤ i ≤ qc and 1 ≤ j ≤ qo, x′i 6= Sj and x′i 6= Tj . So, if σ /∈ BAD(h1, h2)
all the inputs to f are distinct. Since f is a random function, Prf [TΨ = σ] = 2−(2qc+qo)n (The
cipher transcript contributes 2−2nqc and the oracle transcript contributes 2−qon to the probability).

Thus, for every choice of h1, h2 such that σ /∈ BAD(h1, h2), the probability that TΨ = σ is
exactly the same: 2−(2qc+qo)n. Therefore:

Pr
Ψ

[TΨ = σ|σ /∈ BAD(h1, h2)] = 2−(2qc+qo)n.

which completes the proof of the lemma.

The rest of the proof consists of using the above lemma and Propositions 1 and 2 in a probability
argument.

Let Γ be the set of all possible and consistent transcripts σ such that CA(σ) = 1. Then∣∣∣∣Pr
Ψ

[AΨ,Ψ−1,f = 1]− Pr
R

[AR,R−1,f = 1]
∣∣∣∣

=
∣∣∣∣Pr

Ψ
[CA(TΨ) = 1]− Pr

R
[CA(TR) = 1]

∣∣∣∣
≤
∣∣∣∣Pr

Ψ
[CA(TΨ) = 1]− Pr

R̃
[CA(TR̃) = 1]

∣∣∣∣+
(
qc
2

)
· 2−2n

The last inequality follows from the previous by proposition 1. Now, let T denote the set of all
possible transcripts (whether or not they are consistent), and let ∆ denote the set of all possible
inconsistent transcripts σ such that CA(σ) = 1. Notice that Γ ∪ ∆ contains all the possible
transcripts such that CA(σ) = 1, and T − (Γ ∪∆) contains all the possible transcripts such that
CA(σ) = 0. Then: ∣∣∣∣Pr

Ψ
[CA(TΨ) = 1]− Pr

R̃
[CA(TR̃) = 1]

∣∣∣∣
=

∣∣∣∣∣∑
σ∈T

Pr
Ψ

[CA(σ) = 1] · Pr
Ψ

[TΨ = σ]−
∑
σ∈T

Pr
R̃

[CA(σ) = 1] · Pr
R̃

[TR̃ = σ]

∣∣∣∣∣
≤
∣∣∣∣∣∑
σ∈Γ

(Pr
Ψ

[TΨ = σ]− Pr
R̃

[TR̃ = σ])

∣∣∣∣∣+
∣∣∣∣∣∑
σ∈∆

(Pr
Ψ

[TΨ = σ]− Pr
R̃

[TR̃ = σ])

∣∣∣∣∣
≤
∣∣∣∣∣∑
σ∈Γ

(Pr
Ψ

[TΨ = σ]− Pr
R̃

[TR̃ = σ])

∣∣∣∣∣+ Pr
R̃

[TR̃ is inconsistent].

Recall (from the proof of Proposition 1) that PrR̃[TR̃ is inconsistent] ≤
(qc

2

)
· 2−2n. We now want

to bound the first term of the above expression. ∣∣∣∣∣∑
σ∈Γ

(Pr
Ψ

[TΨ = σ]− Pr
R̃

[TR̃ = σ])

∣∣∣∣∣
≤
∣∣∣∣∣∑
σ∈Γ

(Pr
Ψ

[TΨ = σ|σ ∈ BAD(h1, h2)]− PrR̃[TR̃ = σ]) · Pr
Ψ

[σ ∈ BAD(h1, h2)]

∣∣∣∣∣
13



+

∣∣∣∣∣∑
σ∈Γ

(Pr
Ψ

[TΨ = σ|σ /∈ BAD(h1, h2)]− Pr
R̃

[TR̃ = σ]) · Pr
Ψ

[σ /∈ BAD(h1, h2)]

∣∣∣∣∣
Now, we can apply Lemma 1 to get that the last term of the above expression is equal to 0. All
that remains is to find a bound for the first term:∣∣∣∣∣∑

σ∈Γ

(Pr
Ψ

[TΨ = σ|σ ∈ BAD(h1, h2)]− Pr
R̃

[TR̃ = σ]) · Pr
Ψ

[σ ∈ BAD(h1, h2)]

∣∣∣∣∣
≤ max

σ
Pr
Ψ

[σ ∈ BAD(h1, h2)]×

max

{∑
σ∈Γ

(Pr
Ψ

[TΨ = σ|σ ∈ BAD(h1, h2)],
∑
σ∈Γ

Pr
R̃

[TR̃ = σ])

}
.

Note that the last two sums of probabilities are both between 0 and 1, so the above expression is
bounded by maxσ PrΨ[σ ∈ BAD(h1, h2)], which is, by Proposition 2, bounded by q2

c ε1 + 2qoqcε3 +(qc
2

)
· 2ε2.
Finally, combining the above computations, we get:∣∣∣∣Pr

Ψ
[AΨ,Ψ−1,f = 1]− Pr

R
[AR,R−1,f = 1]

∣∣∣∣ ≤ q2
c ε1 + 2qoqcε3 +

(
qc
2

)
(2ε2 + 2−2n+1),

which completes the proof of Theorem 6.
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A Proof of Theorem 4

First, we note the following fact.

Lemma 2 If we give the adversary A a way to compute the values of h1 on arbitrary inputs, then
there exists A that asks three queries to h1, two queries to the chosen-plaintext oracle p, and one
query to the chosen-ciphertext oracle p−1, performs 8 XOR operations, and has an advantage of
1− 2−n.

Proof. This is so because access to h1 allows the adversary to “peel off” the first round of the
cipher, and then use the attack of [14] against a three-round cipher.

Consider an adversary who performs the following steps:

1. pick three arbitrary n-bit strings L1, R1, R2;

2. query the plaintext oracle on (L1, R1) to get (V1,W1)

3. query the plaintext oracle on (L1 ⊕ h1(R1)⊕ h1(R2), R2) to get (V2,W2)

4. query the ciphertext oracle on (V2,W2 ⊕R1 ⊕R2)

5. output 1 if h1(R3)⊕ L3 = V1 ⊕ V2 ⊕ L1 ⊕ h1(R1)

Recall the the goal of the adversary is to output 1 when given the plaintext and ciphertext
oracles for a random permutation with noticeably different probability than when given oracles for
the block cipher.

Clearly, if the plaintext and ciphertext oracles are truly random, then the adversary will output
1 with probability 2−n, because V1 and L3 are then random and independent of the rest of the
terms. However, if the plaintext and ciphertext oracles are for the block cipher, then the adversary
would output 1 with probability 1. Here is why.

Let Si, Ti (1 ≤ i ≤ 3) be the intermediate values computed in rounds 1 and 2 of the block cipher
for the three queries. Let L2 = L1 ⊕ h1(R1) ⊕ h1(R2), V3 = V2 and W3 = W2 ⊕ R1 ⊕ R2. Note
that S1 = L1 ⊕ h1(R1) = L2 ⊕ h1(R2) = S2. Then T3 = W3 ⊕ h2(V3) = W2 ⊕ R1 ⊕ R2 ⊕ h2(V2) =
T2⊕R1⊕R2 = f2(S2)⊕R2⊕R1⊕R2 = f2(S1)⊕R1 = T1. Finally, h1(R3)⊕L3 = S3 = V3⊕f3(T3) =
V2 ⊕ f3(T1) = V2 ⊕ V1 ⊕ S1 = V2 ⊕ V1 ⊕ L1 ⊕ h1(R1).

Note that this fact can be similarly shown for h2. The lemma above allows us to easily prove
the following result.

Lemma 3 If K contains at least one of the following oracles: 1 → 4, 1 ← 4, 2 → 4, 2 ← 4,
1 → 3, 1 ← 3, 1 → 1, 1 → 2, 1 ← 1, 1 ← 2, 4 ← 4, 3 ← 4, 4 → 4 or 3 ← 4, then there exists
A making no more than 9 queries to the oracles and performing no more than 17 XOR operations
whose advantage is 1− 2−n.

Proof. If K contains 1 → 4 or 1 → 3, then A can input an arbitrary pair (L,R) to either of
these and receive (V,W ) or (T, V ). A then inputs (L,R) to the chosen plaintext oracle p to receive
(V ′,W ′), and checks if V = V ′.

Similarly for 1← 4 or 2← 4.
If K contains 2→ 4, then A can input an arbitrary pair (R, S) to it to receive (V,W ). A then

inputs (V,W ) to the chosen ciphertext oracle p−1 to receive (L,R′) and checks if R = R′. Similarly
for 1← 3.
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If K contains 1→ 1 or 1→ 2, then A can input (L,R) and receive, in particular, S = L⊕h1(R).
A can then compute h1(R) = S ⊕ L, and use the procedure of Lemma 2.

Access to 1← 1 allows A to input (R, S) and receive (L = S ⊕ h1(R), R). A can then compute
h1(R) = L⊕ S.

Access to 1← 2 allows A to compute h1(R) as follows:

1. query the 1← 2 oracle on an arbitrary pair (S1, T1) to get (L1, R1);

2. let T2 = T1 ⊕R1 ⊕R and S2 = S1;

3. query the 1← 2 oracle on (S2, T2) to get (L2, R2); then R2 = T2 ⊕ f1(S2) = (T1 ⊕R1 ⊕R)⊕
(R1 ⊕ T1) = R;

4. compute h1(R) = L2 ⊕ S2.

Thus, any of the oracles 1 → 1, 1 → 2, 1 ← 1, 1 ← 2 gives A access to h1 and thus makes the
cipher insecure.

Similarly for 4← 4, 3← 4, 4→ 4 and 3→ 4.

Finally, to prove Theorem 4, note that there are 20 possible oracles. Of those, 14 are ruled out
by the above lemma, leaving only 6 possible oracles to choose from.
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