
BU CAS CS 112. Fall 2011. 1

CAS CS 112. Assignment 7
Due 11:59pm on Monday, December 12, 2011

In this assignment you will implement a program the solves the puzzle called “Doublets” proposed
by Lewis Carroll in the English weekly Vanity Fair 1 (no relation to modern American Vanity Fair).
The puzzle itself was announced in the paper as follows:

1Vanity Fair, vol. XXI, no. 543, 29 March 1879, pp. 185–186



BU CAS CS 112. Fall 2011. 2



BU CAS CS 112. Fall 2011. 3

During the first few weeks of the competition administered by Vanity Fair, there was much debate
on its pages about which words are acceptable—for instance, whether words such as “spank” and
“hell” were words that “might be used in good society.” Ultimately, Lewis Carroll published a
glossary of acceptable words. Unfortunately, I was unable to find a typed-up version of it; therefore,
we will stick to using the same Scrabble word list as for assignment 6 (you already have it). This
makes it easier to find links, as the word list is quite a bit larger than Carroll’s dictionary (and, in
particular, contains the words “spank” and “hell”).

We highly recommend debugging on much smaller dictionaries that you write yourself. It’s not a
bad idea to start with a 2-word dictionary, in fact.

The approach you will take is as follows. First, construct an (undirected) graph of all the words
in the dictionary, with an edge between two words if and only if they differ in exactly one character.
Do so by reading in one word at a time, and figuring out all of its edges to the previously read words,
and all of their edges to it.

After the graph is constructed, searching for the shortest chain given a doublet is a matter of
finding the vertices corresponding to two words in the doublet, and then running a breadth-first-
search. You will have to implement the breadth-first search method to do so; the method should
return the stack of nodes representing the chain.

You will be graded not only on correctness, but also on efficiency of your solution. In fact, if you
are not careful, your code will be too slow to be useful.

There are at least two possible approaches (feel free to use your own):

1. Have WordGraph.Vertex contain all the information that a Vertex logically contains. Specifi-
cally, have it store its word (as a char array), a linked list of its neighbors (which are themselves
also of type WordGraph.Vertex), and perhaps even a boolean flag indicating whether it has
been visited and a vertex indicating its predecessor in the breadth-first-search. Store a graph
as an array of such vertices, in alphabetical order. In this approach, you don’t use the number
of the vertex much, since vertices point to other vertices directly as their neighbors.

Use the fact that the words are already sorted in the dictionary: this makes it easy to search for
neighbors during graph construction by using binary search; moreover, you know that the word
you read in is alphabetically after all the words that have already been added to the graph,



BU CAS CS 112. Fall 2011. 4

which helps cut down the search.

If you store the visited flag inside each vertex, be sure to include proper clean-up at the end of
your breadth-first search to clear the “visited” flag of every vertex that had it set, in order to
prepare for the next breadth-first search.

In this approach, all your code would go into into a single file WordGraph.java.

2. Alternatively, you may use the more modular approach that the book advocates. In this
approach, you can use directly (with proper attribution, of course!) a lot of code from the
book — in fact, you would be able to reuse entire classes. Note that the book treats vertices
as integers. Since your vertices are words, your WordGraph would contain (a) a graph whose
vertices are integers, from the book; (b) an array that contains the word corresponding to each
integer, an alphabetical order (easy to do, since the dictionary already comes in alphabetical
order). In that case, WordGraph.Vertex needs to contain only the integer (however, its public
methods, such as toString, would need to find information corresponding to that integer).

This is likely your most complicated programming project so far. We provide two files:
DoubletsGUI.java (which you should not modify) and WordGraph.java (which is mostly a skeleton).
Read and understand them before proceeding.

Optional, not for credit, only if you have time. When you add each word, you will have to
perform a binary search for all of its one-letter-substituted variations. You can speed up that search
if you search for the variation in alphabetical order, make your binary search method return the
insertion point location whether or not the variation was found, and start off the search for the next
variation at that location rather than at the beginning of the array. To make binary search do this
and yet at the same time tell you whether the variation was found or not, the trick is to have it return
the usual index of the variation if the variation was found, and the value (−insertion point− 1) if
it wasn’t, where insertion point is the location where you would insert the variation in the array if
you were to place it there. In my implementation, this sped up graph construction by about a factor
of 2. I provide a javadoc for this optional binary search in BetterBinSearch.java.

You can also speed up loading by having separate instances of the graph class for each word
length, and adding each word to the appropriate instance.

You could also try to study the graph. Interesting questions to ask include the following. How
many connected components, and of what sizes, at each length? What is the average degree? What
is the maximum degree? How many words have no neighbors at all?


