CAS CS 538. Problem Set 2

Due via websubmit on Thursday, September 17, 2015, at 11:59pm

Optional Reading: Shoup’s A Computational Introduction to Number Theory and Algebra from sections 6.1, 6.2, and 6.5, as needed, to get comfortable with cyclic groups.

Problem 1. (49 points, at 7 each) Let $p > 2$ be a prime. Recall that \mathbb{Z}_p is a field of integers modulo p, and \mathbb{Z}_p^* is the multiplicative group of that field. Recall Fermat’s little theorem: for all $a \in \mathbb{Z}_p^*$, $a^{p-1} \equiv 1 \pmod{p}$. You may also use the following fact (without proof—see any number theory textbook or me if you’d like to see the proof): there exists a generator g such that $g, g^2, g^3, \ldots, g^{p-1}$ (all modulo p) are all distinct and, therefore, cover all of \mathbb{Z}_p^*. In other words, there exists $g \in \mathbb{Z}_p^*$ such that the map $\mathbb{Z}_p^* \rightarrow \mathbb{Z}_p^*$ given by $x \mapsto g^x \pmod{p}$ is a bijection.

(a) Show that exponents work modulo $p - 1$: in other words, if $x \equiv y \pmod{p - 1}$ then, for any a, $a^x \equiv a^y \pmod{p}$ (hint: write x as $(p - 1)k_x + r$ and y as $(p - 1)k_y + r$).

(b) Show that if g is a generator, then $g^x \equiv 1$ if and only if $(p - 1)|x$ (Hint: let r be the remainder of x modulo $p - 1$. Consider g^r.)

(c) Show that if g is a generator, then the converse of part (a) also holds: if $g^x \equiv g^y \pmod{p}$, then $x \equiv y \pmod{p - 1}$. (Hint: use the previous part.)

(d) Let $a = g^x \pmod{p}$, where g is again a generator. Show that if x is even, then a has a square root modulo p. Now show the converse: if a has a square root modulo p, then x is even. (Hint: suppose x is odd. Represent r as g^y. Then $g^{2y} \equiv g^x \pmod{p}$.) Now use the previous part to show that x is even.) Thus, we can tell from the exponent whether or not the value is a square.

(e) We’d also like to be able to tell if a value is a square modulo p without having to know its discrete logarithm. Show that if a is a square, then $a^{(p-1)/2} \equiv 1 \pmod{p}$. Now show that if a is a non-square, then $a^{(p-1)/2} \not\equiv 1 \pmod{p}$. (Hint: first write a as g^x; then use the previous part.)

We have thus shown that exactly half the values in \mathbb{Z}_p^* have square roots, and we know how to identify them: by raising to $(p - 1)/2$. Note also that values that do have square roots have exactly two of them: if r is a square root of a, then, trivially, so is $-r$ (each square cannot have more than two square roots by a simple counting argument: there wouldn’t be enough squares otherwise).

(f) Show that if $(g^r)^2 \equiv a \pmod{p}$, then $(g^{x+(p-1)/2})^2 \equiv a \pmod{p}$, as well. Fact (you don’t need to prove it): these are two distinct square roots of a (because $x \not\equiv x + (p - 1)/2 \pmod{p - 1}$). Another fact (you don’t need to prove it): if g^x is a square root of a, then so is $-g^x$ (verified by squaring); hence $g^x \equiv -g^{x+(p-1)/2} \pmod{p}$ (because as explained above, there are at most two roots, so we must have $-g^x \equiv g^{x+(p-1)/2}$). Now show from here that $g^{(p-1)/2} \equiv -1 \pmod{p}$, and, in fact, if b is a non-square, then $b^{(p-1)/2} \equiv -1 \pmod{p}$.

This refines our previous test for squares: to test if something is a square, you raise it to $(p - 1)/2$ and check if the result is 1 or −1. By the way, the value of $a^{(p-1)/2}$ is called the Legendre symbol of a and is often written as $\left(\frac{a}{p}\right)$.
(g) Show that if \(p \equiv 3 \pmod{4} \), and \(a \) has a square root, then the value \(a^{(p+1)/4} \) is a square root of \(a \). (We thus have a simple algorithm to compute square roots for half the primes. The algorithm to compute square roots in other case, if \(p \equiv 1 \pmod{4} \), is a little bit more complex, but still very efficient.)

Problem 2. (25 points) Suppose a lottery is designed with a security parameter \(k \) (the designers can choose \(k \); we are interested in what happens as \(k \) grows). The chances of winning by playing once are \(f(k) \), where \(f \) is a negligible function in \(k \). You decide to play \(p(k) \) times, where \(p \) is a positive polynomial. Show that your chances of winning at least one of those games are still negligible in \(k \).

Problem 3. (26 points) Prove that if the discrete logarithm assumption (formally described in Section 2.3 of the notes) holds, then it is hard to compute \(x \) given \(g^{xy} \) and \(g^y \). Formally, prove (via a reduction) that for any poly-time algorithm \(A \), there exists a negligible function \(\eta \) such that, if you generate random \(k \)-bit \(p \) and its generator \(g \) and select a random \(x, y \in \mathbb{Z}_p^* \), \(\Pr[A(p, g, g^{xy} \mod p, g^y \mod p) = x] \leq \eta(k) \).