
CS591 (Spring 2001)

The Linux Kernel: 
Debugging



CS591 (Spring 2001)

Accessing the “Black Box”

n Kernel code:
n Not always executed in context of a process.
n Not easily traced or executed under a 

conventional debugger.
n Hard to step through (& set breakpoints in) a 

kernel that must be run to keep the system 
alive.

n How, then, can we debug kernel code?



CS591 (Spring 2001)

Debugging by Printing

n printf’s are a common way of monitoring values of 
variables in application programs.

n Cannot use printf in the kernel as it’s part of the 
standard C library.

n printk is the kernel equivalent:

n Messages can be classified according to their 
loglevel.

n e.g. printk(KERN_DEBUG “I have an IQ of 
6000.\n”);

n Details found in kernel/printk.c.



CS591 (Spring 2001)

Using /proc Filesystem

n See Rubini page 74.
n Can use /proc virtual filesystem to create file nodes 

for reading kernel data.
n Entries in /proc can be configured like any file and 

can refer to devices too! 
n Reading a /proc entry causes data to be 

generated. This is different than reading a file whose 
contents existed before the read call.
n Try doing ‘ls –l /proc’ to see the file sizes.



CS591 (Spring 2001)

Debugging System Faults
n Oops Messages:

n Usually generated by kernel when dereferencing invalid 
address. 

n What about other hardware detected faults?

n Processor status is dumped to screen, including CPU 
register values.

n Generated by arch/*/kernel/traps.c.

n Can check /var/log/messages to see fn before oops 
message.

n Can ‘cat /proc/ksyms’ to see address of function 
where PC was (value in EIP register) at time of fault.



CS591 (Spring 2001)

Other Debugging Methods
n Using a debugger: 

n e.g. gdb vmlinux /proc/kcore enables symbols to be 
examined in the uncompressed kernel image.

n Assumes kernel built with symbols not stripped (-g option). 
Will be huge!

n kcore is a core file representing the “executing kernel”. It is 
as large as all physical memory.

n You cannot run the kernel image being debugged – it will 
seg fault! Hence this method is only good for symbol 
examination.

n Other methods: kgdb, remote debugging.



CS591 (Spring 2001)

Message Logging

n <linux/kernel.h> defines the loglevels.

n 8 loglevels available.
n If priority of message is less than 
console_loglevel priority, printk message is 
displayed.

n If klogd and syslogd are running, messages are 
logged in /var/log/messages.

n /etc/syslog.conf tells syslogd how to handle 
messages.



CS591 (Spring 2001)

The Linux Kernel: 
The Flow of Time



CS591 (Spring 2001)

“What time is it?”

n Need timing measurements to:
n Keep track of current time and date for use by e.g. 
gettimeofday().

n Maintain timers that notify the kernel or a user 
program that an interval of time has elapsed.

n Timing measurements are performed by several 
hardware circuits, based on fixed frequency 
oscillators and counters.



CS591 (Spring 2001)

Hardware Clocks

n Real-Time Clock (RTC):
n Often integrated with CMOS RAM on separate 

chip from CPU: e.g., Motorola 146818.
n Issues periodic interrupts on IRQ line (IRQ 8) at 

programmed frequency (e.g., 2-8192 Hz).
n In Linux, used to derive time and date.
n Kernel accesses RTC through 0x70 and 0x71 I/O 

ports.



CS591 (Spring 2001)

Timestamp Counter (TSC)

n Intel Pentium (and up), AMD K6 etc incorporate a 
TSC.

n Processor’s CLK pin receives a signal from an 
external oscillator e.g., 400 MHz crystal.

n TSC register is incremented at each clock signal. 
n Using rdtsc assembly instruction can obtain 64-bit 

timing value. 
n Most accurate timing method on above platforms.



CS591 (Spring 2001)

The “PIT”s

n Programmable Interrupt Timers (PITs):
n e.g., 8254 chip.

n PIT issues timer interrupts at programmed frequency.
n In Linux, PC-based 8254 is programmed to interrupt 
Hz (=100) times per second on IRQ 0.
n Hz defined in <linux/param.h>
n PIT is accessed on ports 0x40-0x43.

n Provides the system “heartbeat” or “clock tick”.



CS591 (Spring 2001)

“This’ll only take a jiffy”

n jiffies is incremented every timer interrupt.

n Number of clock ticks since OS was booted.
n Scheduling and preemption done at granularities of 

time-slices calculated in units of jiffies.



CS591 (Spring 2001)

Timer Interrupt Handler

n Every timer interrupt:
n Update jiffies.

n Update time and date (in secs & µsecs since 
1970).

n Determine how long a process has been 
executing and preempt it, if it finishes its allocated 
timeslice.

n Update resource usage statistics.
n Invoke functions for elapsed interval timers.



CS591 (Spring 2001)

PIT Interrupt Service Routine

n Signal on IRQ 0 is generated:
n timer_interrupt() is invoked w/ interrupts 

disabled (SA_INTERRUPT flag is set to denote this).
n do_timer() is ultimately executed:

n Simply increments jiffies & allocates other 
tasks to “bottom half handlers”.

n Bottom half (bh) handlers update time and date, 
statistics, execute fns after specific elapsed 
intervals and invoke schedule() if necessary, for 
rescheduling processes.



CS591 (Spring 2001)

Updating Time and Date

n lost_ticks (lost_ticks_system) store total 
(system) “ticks” since update to xtime, which stores 
approximate current time. This is needed since bh
handlers run at convenient time and we need to keep 
track of when exactly they run to accurately update 
date & time.

n TIMER_BH refers to the queue of bottom halves 
invoked as a consequence of do_timer().



CS591 (Spring 2001)

Task Queues

n Often necessary to schedule kernel tasks at a later 
time without using interrupts.
n Solution: Task Queues and kernel timers.

n A task queue is a list of bottom half handlers, each 
represented by a function pointer and argument.

n From <linux/tqueue.h>:
struct tq_struct {

struct tq_struct *next;

int sync; /* always 0 initially. */

void (*routine)(void *);

void *data;

}



CS591 (Spring 2001)

Predefined Task Queues

n tq_scheduler: bottom half tasks in this queue are 
executed whenever the scheduler runs.
n Both scheduler and bottom halves run in context 

of process being scheduled out.
n tq_timer: executed every timer tick at “interrupt 

time”.
n tq_immediate: executed either on return from 

syscall or when scheduler is run.



CS591 (Spring 2001)

Useful Task Queue Functions

n void queue_task (struct tq_struct
*task, task_queue *list);

n Each queued task is removed from its queue after 
it is executed. 

n A task must be re-queued if needed repeatedly.
n void run_task_queue (task_queue *list);

n Not needed unless custom task queues are 
implemented.

n Fn is called by do_bottom_half() for 
predefined task queues.



CS591 (Spring 2001)

Task Queue Example
struct wait_queue *waitq=null;

void wakeup_function(void *data) {

wakeup_interruptible(&waitq);

}

void foo() {

struct tq_struct bh;

bh.next=null;

bh.sync=0;

bh.routine=wakeup_function;

bh.data=(void *)some_data;

queue_task(&bh,&tq_scheduler);

interruptible_sleep_on(&waitq);

}



CS591 (Spring 2001)

Kernel Timers

n Like task queues but timer bottom halves execute at 
predefined times.

n From <linux/timer.h>:

struct timer_list {

struct timer_list *next; 

struct timer_list *prev;

unsigned long expires; /* timeout in jiffies. */

unsigned long data;

void (*function)(unsigned long);

}



CS591 (Spring 2001)

Useful Kernel Timer Functions

n void init_timer(struct timer_list 
*timer);

n Zeroes prev & next pointers in doubly-linked 
timer queue.

n void add_timer(struct timer_list 
*timer);

n Adds timer bottom half to kernel timer queue.
n int del_timer(struct timer_list 
*timer);

n Removes timer before it expires.



CS591 (Spring 2001)

Kernel Timer Example
struct wait_queue *waitq=null;

void wakeup_function(unsigned long data) {

wakeup_interruptible(&waitq);

}

void foo() {

struct timer_list bh;

init_timer(&bh);

bh.function=wakeup_function;

bh.data=(unsigned long)some_data;

bh.expires=jiffies+10*HZ; /* in 10 seconds. */

add_timer(&bh);

interruptible_sleep_on(&waitq);

}


