The Linux Kernel:
Debugging

L]

.

L

. -
y a
-

I

;.

ORI CS591 (Spring 2001) BEETEH N

f y
S ez

- i 7 ‘ CGCQ
Accessing the “Black Box ,/&C\/\\

m Kernel code: i \

m Not always executed in context of a process.

m Not easily traced or executed under a
conventional debugger.

= Hard to step through (& set breakpoints in) a
kernel that must be run to keep the system
alive.

v
[N

(]
-
m
= How, then, can we debug kernel code? i'
_|
.
L

BRI CS501 (Spring 2001) HER OO 00

Debugqging by Printing

m printf’sareacommon way of monitoring values of
variables in application programs.

m Cannotuse printf inthe kernel as it’s part of the
standard C library.

m printk is the kernel equivalent:
B Messages can be classified according to their

(]

loglevel. -

meg printk(KERN DEBUG “1 have an 1 Q of
6000.\n"); -

m Details found in kernel /printk.c. :

.

SOSNO ©S591 (Spring 2001) REROS3 AN

Using /proc Filesystem

m See Rubini page 74.
m Can use/ pr oc virtual filesystem to create file nodes
for reading kernel data.

m Entries in/ pr oc can be configured like any file and
can refer to devices too!

m Reading a/ pr oc entry causes data to be
generated. This is different than reading a file whose
contents existed before the read call.

(]
-
m
mTrydoing‘ls —| /proc’ tosee the file sizes. il
_|
.
L

BRI CS501 (Spring 2001) HER OO 00

Debugging System Faults

m Oops Messages:

m Usually generated by kernel when dereferencing invalid
address.

m \What about other hardware detected faults?

B Processor status is dumped to screen, including CPU
register values.

= Generated by arch/*/ kernel /traps. c.
m Cancheck/var/| og/ nessages to see fn before oops
message.

(]
-
m
m Can‘cat /proc/ksyns’' tosee address of function N
where PC was (value in El P register) at time of fault. N
-
.
L

CS591 (Spring 2001) REEROD N

Other Debugging Methods

m Using a debugger:
m e.g.gdb vm i nux /proc/ kcore enables symbols to be
examined in the uncompressed kernel image.

B Assumes kernel built with symbols not stripped (-g option).
Will be huge!

m kcor e is a core file representing the “executing kernel”. It is
as large as all physical memory.

= You cannot run the kernel image being debugged — it will
seg fault! Hence this method is only good for symbol
examination.

(]
-
m
m Other methods: kgdb, remote debugging. il
_|
.
L

CS591 (Spring 2001) REEROD N

Message Logging

m <l 1 nux/ kernel . h> defines the loglevels.

m 8 loglevels available.

m If priority of message is less than
consol e | ogl evel priority, printk message is

displayed.
m If kl ogd and sysl ogd are running, messages are
logged in/ var /| og/ nessages.

(]
-
m /etc/sysl og. conf tells sysl ogd how to handle u
messages. -
.
_|
.
L

BRI CS501 (Spring 2001) HER OO 00

The Linux Kernel:
The Flow of Time

L]

.

L

. -
y a
-

I

;.

ORI CS591 (Spring 2001) BEETEH N

“What time 1s 1t?”

= Need timing measurements to:

m Keep track of current time and date for use by e.qg.
getti meof day().

m Maintain timers that notify the kernel or a user
program that an interval of time has elapsed.

= Timing measurements are performed by several
hardware circuits, based on fixed frequency
oscillators and counters.

L]
.
L
-
I
-
I
;.

BRI CS501 (Spring 2001) HER OO 00

Hardware Clocks

m Real-Time Clock (RTC):

m Often integrated with CMOS RAM on separate
chip from CPU: e.g., Motorola 146818.

m Issues periodic interrupts on IRQ line (IRQ 8) at
programmed frequency (e.g., 2-8192 Hz).

m In Linux, used to derive time and date.

m Kernel accesses RTC through 0x70 and 0x71 1/O
ports.

L]
.
L
-
I
-
I
;.

BRI CS501 (Spring 2001) HER OO 00

Timestamp Counter (TSC)

= Intel Pentium (and up), AMD K6 etc incorporate a
TSC.

m Processor’s CLK pin receives a signal from an
external oscillator e.g., 400 MHz crystal.

m TSC register is incremented at each clock signal.

m Using r dt sc assembly instruction can obtain 64-bit
timing value.

(]

-
m Most accurate timing method on above platforms. .
_|
.
_|
.
L

BRI CS501 (Spring 2001) HER OO 00

The “PIT"s

m Programmable Interrupt Timers (PITS):
m e.g., 8254 chip.
m PIT issues timer interrupts at programmed frequency.

® In Linux, PC-based 8254 is programmed to interrupt
Hz (=100) times per second on IRQ 0.

m Hz defined in <l i nux/ param h>
m PIT is accessed on ports 0x40- 0x43.

(]

-
m Provides the system “heartbeat” or “clock tick”. :
.
_|
.
L

BRI CS501 (Spring 2001) HER OO 00

“This’ll only take a jiffy”

m 1 ffiesisincremented every timer interrupt.

m Number of clock ticks since OS was booted.

m Scheduling and preemption done at granularities of
time-slices calculated in units of jiffies.

D
\//,
kS

[
.
m
|
.
|
.
ESENON CS501 (Spring 2001) BEE OO 3

Timer Interrupt Handler

m Every timer interrupt:
m Update jiffies.
m Update time and date (in secs & nsecs since
1970).

m Determine how long a process has been
executing and preempt it, if it finishes its allocated

: i (]
timeslice. -

m Update resource usage statistics. o

. . . _|

m Invoke functions for elapsed interval timers. -

_|

.

EREIONl 5501 (Spring 2001) RERO@ 3N

PIT Interrupt Service Routine

Signal on IRQ 0 is generated:

timer _interrupt() isinvoked w/ interrupts
disabled (SA | NTERRUPT flag is set to denote this).
do_ti mer () is ultimately executed:

m Simply increments | i f f1 es & allocates other
tasks to “bottom half handlers”.

m Bottom half (bh) handlers update time and date,

statistics, execute fns after specific elapsed
Intervals and invoke schedul e() if necessary, for

rescheduling processes.

SNl CS591 (Spring 2001) REE S 8

Updating Time and Date

m |lost ticks (lost _ticks system store total
(system) “ticks” since update to xt i ne, which stores
approximate current time. This is needed since bh
handlers run at convenient time and we need to keep
track of when exactly they run to accurately update
date & time.

m Tl MER BHrefers to the queue of bottom halves
iInvoked as a consequence of do_tiner().

L]
.
L
-
I
-
I
;.

BRI CS501 (Spring 2001) HER OO 00

Task Queues

m Often necessary to schedule kernel tasks at a later
time without using interrupts.

m Solution: Task Queues and kernel timers.

m A task queue is a list of bottom half handlers, each
represented by a function pointer and argument.

m From <| i nux/t queue. h>:
struct tq_struct {
struct tqg_struct *next;
int sync; /* always O initially. */
void (*routine)(void *);
voi d *dat a;

}

[
.
m
|
.
|
.
CS591 (Spring 2001) BEE OO 3

Predefined Task Queues

m t g _schedul er: bottom half tasks in this queue are
executed whenever the scheduler runs.

m Both scheduler and bottom halves run in context
of process being scheduled out.

m tqg _tinmer:executed every timer tick at “interrupt
time”.

m tqg I nmedi at e: executed either on return from
syscall or when scheduler is run.

L]
.
L
-
I
-
I
;.

BRI CS501 (Spring 2001) HER OO 00

Useful Task Queue Functions

m void queue task (struct tg struct
*task, task queue *list);

m Each queued task is removed from its queue after
It IS executed.

m A task must be re-queued if needed repeatedly.
m void run_task queue (task queue *list);
m Not needed unless custom task queues are
Implemented.

(]
-
m
m Fniscalled by do bottom hal f() for il
predefined task queues. F

.

L

BRI CS501 (Spring 2001) HER OO 00

Task Queue Example

struct wait_queue *waitqg=null;

voi d wakeup function(void *data) {
wakeup i nterruptibl e(&waitq);

}
void foo() {
struct tqg_struct bh;
bh. next =nul | ; Oy
bh. sync=0; -
bh. rout i ne=wakeup_functi on;
bh. dat a=(voi d *)sone_dat a; -
queue_t ask(&h, & g_schedul er); S
Interrupti ble_sleep _on(&waitq); .
} -
.
ESON| cS591 (Spring 2001) RERO@ 3N

UNIVERSITY

Kernel Timers

m Like task queues but timer bottom halves execute at
predefined times.

m From<!|inux/tinmer. h>:

struct timer_list {
struct timer _|ist *next;
struct timer_list *prev;
unsigned long expires; /* timeout in jiffies. */
unsi gned | ong dat a;
void (*function)(unsigned | ong);

(]
I
|
} o
M
_|
I
M

M CS591 (Spring 2001) mEE . a8

Useful Kernel Timer Functions

mvoid init _tinmer(struct tinmer _|ist

*timer),;
m Zeroes prev & next pointers in doubly-linked
timer queue.
m void add tiner(struct tiner _|i st
*timer),;
m Adds timer bottom half to kernel timer queue. :
mint del _tinmer(struct tinmer_|ist u
*timer), -
B Removes timer before it expires. :
.
ESON| cS591 (Spring 2001) REROS3 AN

Kernel Timer Example

struct wait_queue *waitqg=null;

voi d wakeup_ function(unsigned | ong data) {
wakeup i nterruptibl e(&waitq);

}
void foo() {
struct tinmer _list bh;
init_timer(&bh); o
bh. functi on=wakeup_functi on; -
bh. dat a=(unsi gned | ong) sone_dat a;
bh.expires=jiffies+l10*HZ; /* in 10 seconds. */ -
add_ti mer (&bh): S
Interrupti ble_sleep _on(&waitq); .
} -
.
ESHER CS591 (Spring 2001) aEaRoB am

UNIVERSITY

