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Abstract

This paper is centered around the design of a thread-
and memory-safe language, primarily for the compilation
of application-specific services for extensible operating sys-
tems. We describe various issues that have influenced the
design of our language, called Cuckoo, that guarantees
safety of programs with potentially asynchronous flows of
control. Comparisons are drawn between Cuckoo and re-
lated software safety techniques, including Cyclone and
software-based fault isolation (SFI), and performance re-
sults suggest our prototype compiler is capable of gener-
ating safe code that executes with low runtime overheads,
even without potential code optimizations. Compared to
Cyclone, Cuckoo is able to safely guard accesses to mem-
ory when programs are multithreaded. Similarly, Cuckoo
is capable of enforcing memory safety in situations that are
potentially troublesome for techniques such as SFI.

1 Introduction

In recent times, there has been a trend to employ
commercial-off-the-shelf (COTS) systems for diverse appli-
cations having specific needs (e.g., in terms of real-time re-
quirements). For this reason, extensible systems have been
proposed [1, 13, 14], to allow the underlying system to be
customized with services that are tailored to individual ap-
plication demands. However, various techniques to enforce
system safety have proven necessary, to prevent untrusted
users from deploying potentially dangerous extension code
in traditionally trusted protection domains such as the ker-
nel. Such techniques includesandboxing[15, 12, 13], type-
safe languages [5, 2, 10], proof-carrying codes [8], and
hardware-support [3, 7]. While hardware approaches are
generally less expensive than software safety techniques,
they require features such as paging and segmentation that

are not common to all architectures, or may be too coarse-
grained for memory protection of small objects. In con-
trast, software techniques have largely focused on memory
protection without considering other needs of service ex-
tensions (e.g., safe management of asynchronous threads
of control, fine-grained memory allocation, and predictable
real-time performance).

This paper, therefore, focuses on a novel language that
provides memory safety, while ensuring controlled access
to code and data in the presence of asynchronous threads of
control. As with languages such as Cyclone [5], our lan-
guage called “Cuckoo” is both syntactically and semanti-
cally similar to C. This has the advantage that legacy code
can easily be translated, and new programs may be written
in a manner familiar to many existing application and sys-
tem developers.

The significant contributions of this paper include a de-
scription of the key design issues of Cuckoo with attention
given to issues not easily supported by other software safety
techniques. Specifically, we focus on the ability to: (1) en-
sure safe access to memory even when code may be exe-
cuted by multiple threads, (2) provide fine-grained control
over memory usage (not easily achieved by languages such
as Java), and (3) achieve run-time performance close to that
of untrusted C binaries.

The rest of the paper is organized as follows: Section 2
focuses on the design issues of Cuckoo with respect to
memory safety, while thread safety issues are discussed in
Section 3. Section 4 describes the performance of our pro-
totype Cuckoo compiler for a series of applications, some
of which employ multiple threads. For applications that are
single-threaded, we compare the performance of Cuckoo to
other approaches including Cyclone, software-based fault
isolation [12] and C. Related work is described in Section 5
while conclusions and future work are covered in Section 6.



2 Memory safety

We describe a program asmemory safeif it fulfills the
following two conditions:
• It cannot write to nor read from any memory location

which is not reserved for its use by a trusted runtime
system (i.e., library or OS);

• It cannot jump to any location which does not contain
trusted code (where trusted code is either code which is
generated by a trusted compiler, or accessed via a des-
ignated entry point to the trusted runtime). Note that
instruction boundaries must be respected when jump-
ing to a location thatdoescontain trusted code.

These conditions are very similar to traditional definitions
of memory safety (such as those assumed by [4]), except for
their dependence on a trusted runtime system. We claim that
a correct compiler for the language we describe, in combi-
nation with such a trusted runtime, will produce only mem-
ory safe programs. In the remainder of this section we dis-
cuss various challenges that have affected the design of our
memory safe language, called Cuckoo.
Dynamic memory allocation. For dynamic memory allo-
cation, we do not allowmalloc -style operations. Instead,
we introduce the C++-stylenew operator to allocate mem-
ory large enough for an object of a specific type. The return
value will be a pointer to an object of the specified type.
The new operator declares a particular space on the heap
to be available for reallocation to objects of either: (1) the
same type, or (2) compatible types with the same or smaller
storage requirements. Observe that (2) implies a matching
delete operator may allow heap memory to be reassigned
from one harmless type to another, thereby avoiding unnec-
essary growth in heap usage. Further details about harmless
types are described in the Appendix. At this point the reader
should simply note these semantics do not guard against in-
correct program behavior but will ensure memory and type
safety.
Stack safety. Stack safety concerns the potential problem
arising from dereferencing pointers to automatic variables
after returning from the function in which they were al-
located. Additionally, overflow errors arise when a stack
extends into a region beyond some defined limit. Nor-
mally, stack overruns are detected by the underlying hard-
ware (e.g., using page-based virtual memory). However,
a key design issue of Cuckoo is to detect stack overflow
within memory regions where hardware protection is not
available. One such example includes support for multiple
thread stackswithin a super-page (e.g., 4MB memory area)
on a platform such as the Intel x86 [15, 11].

The stack overrun problem is, in general, undecidable.
Hence, the Cuckoo approach involves runtime checks to
throw an exception if stack overflow occurs. Unlike other
memory-safe languages, such as Cyclone, which compile

source code to another high-level language, Cuckoo gen-
erates native machine code. This enables Cuckoo to accu-
rately track stack usage, based upon its knowledge of reg-
ister versus stack allocation at code generation time. In
Cyclone runtime checks for stack overruns are not possi-
ble, because secondary compilation (e.g., usinggcc ) on the
compiler’s output may use stack space in an unknown way.

In some cases, Cuckoo allows compile-time verification
of stack usage when the maximum stack depth can be deter-
mined. In general, we have the potential to push up the call
stack run-time checks to determine stack overruns, to points
where all ensuing control-flow’s stack usage can be verified,
thereby reducing the number of runtime checks necessary.
Note, however, that conditional branches that may affect
stack usage ideally require runtime stack checks to avoid
prematurely throwing stack overflow exceptions when in
fact there is enough space available.

extern int a(...) { // suppose stack
// usage is small
// in this block

char a_local;

if (...)
b();

}
static void b (...) { // again, have

// minimal stack usage
if (...)

c();
}
static int c() {

char c_local[65536]; // stack-allocate
// lots of memory

...
}

Figure 1. Example to illustrate where stack
checks must be performed

Further details can be found in the example shown in
Figure 1. In this figure there is a limit on how far up the
call stack we can place runtime checks for stack overflows.
For example, placing a runtime check before the conditional
(if statement) in functionb() may incorrectly presume the
following code will use as much as 64KB of stack space
(given functionc() is called) but this may not be the case,
depending on the value of the conditional expression. Also,
because functiona() has anextern storage class speci-
fier it must perform its own stack checking as it is generally
unknown which control path has invoked functiona() . In
contrast, because functionsb() andc() arestatic , it
is possible to track where they are called from, thereby re-
ducing runtime stack overflow checks to locations in calling
functions, rather than the static functions themselves. How-
ever, to deal with general and mutual recursion, we must



perform a runtime stack check every iteration, as it is usu-
ally undecidable how many times the function will be in-
voked.

Pointers and array bounds checks.Cuckoo performs ar-
ray bounds checks at compile-time for cases where the array
size and index are both compile-time constants. All other
cases involve runtime bounds checks. Our prototype imple-
mentation stores the array size in a memory location imme-
diately preceding the first element of each dimension of the
array stored in row major format. This ensures that the size
of an array is always known at runtime. By comparison, in
C, it may be the case that an array is used when its size is
unknown. This has impact on the way Cuckoo treats arrays.
Specifically, the name of an array in Cuckoo is a pointer to
an array of some known number of objects of a given type,
whereas in C an array name is a pointer to the first object
in the array. This means that, whereas in C a variable of
type “array of T” can be used interchangeably with a type
“pointer to T”, in Cuckoo the same variable can be used
interchangeably with a “pointer to an array of T”. This is
discussed further in the Appendix with respect to “Pointer
Generation”. Figure 2 shows the similarities and differences
between C and Cuckoo for array types.

In Cuckoo, any pointer object,P , is either NULL or
points to storage which can be safely treated as having a
type of ∗P , while P exists. In order to make automatic
pointer validity tracking easier, Cuckoo differs from C with
respect to the lifetime of local variables. In Cuckoo, the
lifetime of locals is extended from the scope of a block to
the scope of a function. With respect to stack safety dis-
cussed earlier, this approach also has the advantage that
stack checks are simplified; only one check at the begin-
ning of a function is necessary, to establish space for all
automatic variables encountered in that function.

Dangling pointers. Dangling pointers are problematic in
two situations: (1) dereferencing pointers to deallocated
heap memory, and (2) dereferencing pointers into stack
space on return from a function. In the latter case, the
Cuckoo type system prevents assignment of an automatic
object address,α, to a pointer whose lifetime is longer than
α (see Appendix, Section A7.17).

Given the above similarities and differences between C
and Cuckoo, Figure 3 compares the two languages in terms
of legal casts. Further information can be found in the Ap-
pendix under “Pointers and Integers”.

Exception handling. Currently all runtime exceptions trap
to a default handler. A simple extension to this is to allow a
generic signal (e.g.,SIGUSR1) to be raised, thereby allow-
ing application-code to customize the exception handling
for specific cases. In future work, we plan to extend Cuckoo
with exception-handling capabilities similar to those in C++
and Java.

Type homogeneity of dynamically allocated memory ob-
jects. As with the LLVM approach [4] to deal with pool-
based dynamic memory allocation, Cuckoo allows heap
memory to be reallocated (after adelete ) to objects of
compatible type. By “compatible” we mean that any aliases
created by such an allocation cannot violate type-safety
(thereby leading to potential memory protection problems).
For example, Figure 4 shows how a freed heap memory area
is reallocated to an object of a different type, thereby allow-
ing an arbitrary memory location to be dereferenced. In
Cuckoo, the statementq=new(char *) is guaranteed to
return an address on the heap that is not incompatible with
a char * , so it is impossible for the return value to be the
same as previously assigned top.

3 Thread safety

Many system services rely on execution models which
are considerably more complicated than the traditional
model of a single synchronous thread of control. The ex-
ecution of concurrent threads and the processing of asyn-
chronous signals and kernel upcalls mean that correctness
guarantees are significantly more difficult to achieve. We
do not (and cannot) prove the correctness of user code with
respect to concurrency, but it is vital to ensure that the
memory safety checks described in the previous section still
hold.

We cope with null pointer checks by evaluating all
pointer values in registers, so that the value checked is iden-
tical to the value dereferenced. Even if the code does not ex-
ecute atomically, the register is guaranteed to be restored, so
there cannot be a null pointer dereference. This does mean
that we might dereference a pointer whose value is stale,
as opposed to a dangling pointer. Observe that Cuckoo im-
poses no restrictions on pointer aliases, and non-atomic ma-
nipulation of pointers may lead to violations in program cor-
rectness but, nonetheless, will not violate memory safety as
defined in Section 2.

The key issue here is that languages such as Cyclone
support the use of fat pointers (i.e., pointers that maintain
size information about the object they reference), but con-
current updates to such pointers can lead to race conditions
and, hence, out-of-bounds memory accesses. In Cyclone,
updates to pointer addresses are not made atomically with
respect to changes (and checks) on the corresponding size
field. For example, a fat pointerp shared by two threads
may initially refer to an arraya[20] and later be updated to
refer to a different array,b[10]. While the pointer may refer
to the address ofb its size field may be inconsistent, hav-
ing the old value of20, thereby enabling a potential array
overflow onb. This situation is not possible with Cuckoo.
Moreover, array bounds checks (as stated earlier) are trivial
given that size information is embedded in the array objects



char a[5];

char c1 = *a; // valid in C but not Cuckoo
char c2 = a[0]; // valid in Cuckoo, s.t. c2 is the same as c1 in C
char c3 = (*a)[0]; // also valid in Cuckoo: c3 is the same as c2

Figure 2. Array types in C versus Cuckoo

struct foo {
int a[5];
char *s;

}

struct foo *p;
int x = *((int *)p); // legal in C but not in Cuckoo...
int y = *((int (*)[5])p); // this is also illegal in Cuckoo,

// since we cannot assign an array to an int, but...
int z = ((int (*)[5])p)[0];// is legal in Cuckoo, as this assigns z

// the first element of an array

Figure 3. Example casts in C and Cuckoo

int *p;
char **q;

p = new(int); // heap-allocate an integer
...
delete(p); // release memory referenced by p
q = new(char *); // reuse heap memory freed at address p with

// incompatible typed object;
*p = 123; // after freeing p, continue to assign values to its

// heap memory area

**q = 45; // this results in writing the value 45 in address 123,
// potentially violating memory safety

Figure 4. Potentially unsafe reallocation of freed heap memory

themselves, rather than carried along with pointers that ref-
erence them.

4 Experimental Results

The implementation details of Cuckoo are outside the
scope of this paper. Currently, we have a version of the
compiler that leverages thegcc preprocessor, linker and
assembler. After preprocessing a source file, the cuckoo
compiler performs compile-time checks on types, lifetimes
of objects referenced by pointers, and certain array bound
and NULL pointer checks, where the values are compile-
time constants. Run-time checks are inserted for array and
pointer accesses, where array indices cannot be determined
within bounds at compile time, and pointers cannot be guar-
anteed valid. By valid we mean that a pointer is non-NULL
and references an object of compatible type (considering
type information includes the lifetime of objects). Observe

that determining whether or not a pointer references a com-
patible type does not require run-time checks.

To date, we have a Cuckoo compiler that generates target
assembly code for the 80386 architecture. While we cur-
rently use the GNU linker, it is quite possible for Cuckoo
source files to be compiled and linked with untrusted ob-
jects, whose symbols may be referenced from Cuckoo code.
While typing rules must be adhered in Cuckoo code that ref-
erences external symbols in untrusted code, there is no guar-
antee of safety within the body of an external object. Future
work includes the development of a trusted linker, which
checks type-safety across separately compiled objects and
detects attempts to link with untrusted code. Right now,
Cyclone suffers from these same limitations.

Table 1 shows the performance of our prototype (com-
pared togcc 3.2.2 and Cyclone 0.7 running on a 2.8 GHz
Pentium 4 CPU). The first benchmark, SUBSET-SUM,
is a naive parallel solution to the well-known (and NP-



Compiler Time (user) Time (system) Size (code) Size (data) Size (BSS)
SUBSET-SUM

Cuckoo 30.96 n/a 2377 288 152
gcc -O2 17.86 n/a 1833 280 192
gcc 24.75 n/a 1945 280 192

PRODUCER-CONSUMER
Cuckoo 2.50 5.13 2527 308 428
gcc -O2 2.46 5.10 2001 300 480
gcc 2.50 5.14 2093 300 480

FIND-PRIMES
Cuckoo 10.17 n/a 1301 260 10016
Optimized Cuckoo 6.78 n/a 1285 260 10016
gcc 9.56 n/a 874 252 10032
gcc -O2 3.57 n/a 814 252 10032
Cyclone 12.43 n/a 91721 3340 59996
Cyclone-O2 5.51 n/a 91669 3340 59996
Cyclone-noregions -nogc 12.43 n/a 51619 2020 11140
Cyclone-noregions -nogc -O2 5.50 n/a 51567 2020 11140
SFI 10.79 n/a 970 252 10032
SFI -O2 4.31 n/a 858 252 10032
SFI protection 11.10 n/a 1058 252 10032
SFI protection-O2 4.32 n/a 870 252 10032

Table 1. Comparison of execution time and storage requirements

complete) decision problem of whether a given set of inte-
gers contains a subset which sums to zero. The results listed
indicate the times (in seconds) and program size (in bytes)
required to compute the SUBSET-SUM decision for a set
of 27 random integers (the set was kept identical for each
run and the numbers were in the range [−106,+106]), us-
ing 4 threads. The PRODUCER-CONSUMER test consists
of one producer thread and one consumer thread, sharing a
single memory buffer which is filled by the producer and
emptied by the consumer.

The FIND-PRIMES benchmark uses a single-threaded
implementation of the Sieve of Eratosthenes algorithm to
compute a list of prime numbers (in our case,105 iterations
of the algorithm finding all primes below104). Note that
an “Optimized Cuckoo” entry has been added to this last
result, which simulates the performance of a slightly more
sophisticated compiler which honors theregister key-
word by keeping certain variables in CPU registers instead
of main memory. Since our prototype compiler does not
yet implement this optimization, the “Optimized Cuckoo”
results were obtained by modifying Cuckoo assembly lan-
guage output by hand to keep the values of index variables
in the innermost loop in spare registers. The significant im-
provement in runtime from this small change seems to in-
dicate that there is substantial room for improvement if an
optimizing compiler were written for our language. Since
the FIND-PRIMES benchmark is single-threaded, it is also
compatible with the Cyclone 0.7 compiler. We have listed
the results of four tests with Cyclone, with various compiler
options: -O2 invokes the optimizer in thegcc back-end,
and-noregions -nogc disable Cyclone’s region anal-

ysis and garbage collector (which are not required in this
benchmark, as no runtime dynamic memory allocation is
performed).

Lastly, the SFI results show the performance of software-
based fault isolation [12], that inserts run-time checks on
jumps and stores to memory addresses unknown at compile-
time (e.g., those stored in registers). Since no SFI imple-
mentation exists for the x86 architecture, these benchmarks
were compiled withgcc 3.2.2 and the assembly output of
the compiler was modified by hand to insert the SFI-style
address bound restrictions. The compiler’s register alloca-
tions were modified by hand where necessary to preserve
a sufficient number of reserved registers, and then extra in-
structions were added to memory accesses according to the
SFI “address sandboxing” procedure. The-O2 rows are
the results when the original compiler wasgcc -O2 , and
the other two rows were compiled with plaingcc . The
“protection” rows implement full protection (by modifying
both memory read and write operations), while the other
two rows implement fault isolation only (where writes are
sandboxed but no attempt is made to prevent illegal reads).

The results using SFI are slightly better than with
Cuckoo. We conjecture the performance with SFI is partly
due memory access time being the bottleneck, as opposed to
CPU speed. The deep pipelining allows SFI memory checks
to be performed (to some degree) in parallel with memory
loads and stores. However, it should be noted that the hand-
modifications used in the SFI tests do not deal with all safety
issues, such as potential jumps to misaligned addresses in
code segments, or preventing constant data within code seg-
ments from being executed. In contrast, Cuckoo prevents



pointer arithmetic and aliasing of pointers to incompatible
types (e.g., aliasing to different members of unions). This
eliminates the potential unsolved problems with SFI. Also
observe that while SFI performs well for this example, it is
quite possible that for many register-intensive applications,
an architecture which is register-limited (e.g., the x86) may
prove problematic. We plan to study more application ex-
amples in the future.

For the two CPU-intensive benchmarks (SUBSET-SUM
and FIND-PRIMES), it appears that Cuckoo is on the order
of 15% more expensive (in time and space) than unopti-
mized gcc . Some of this cost can be attributed to array
bound and null pointer checks, which must be performed
at runtime, and therefore contribute to both the execution
time and code size, and part of the expense can be blamed
on poor compiler implementation, since so far very little ef-
fort has been spent attempting to make our prototype com-
piler generate efficient code. However, note that in the
second (PRODUCER-CONSUMER) benchmark, which is
data- rather than CPU-intensive, the execution time for
the Cuckoo code is comparable to that produced bygcc .
Therefore, while we admit that for CPU-intensive or gen-
eral purpose code we cannot realistically expect a Cuckoo
compiler to match the efficiency of C, we hope that for the
type of code in our target domain (low-level, data-intensive
system services), the overheads we require will be minimal,
and, depending on the environment, worth sacrificing for
the safety guarantees we can provide.

To finish this section, we compared Cuckoo versusgcc
for a parallel implementation of the subset-sum problem on
a 4x2.2GHz AMD Opteron machine. Table 2 shows the
real-time results. As expected,gcc -O2 is the fastest but
Cuckoo is slightly slower than unoptimizedgcc . The dif-
ference is performance is arguably outweighed by the ben-
efits of extra safety checks being performed by the com-
piler and, as stated earlier, there is room for improvement
in the Cuckoo compiler’s generated code. Notwithstanding,
we believe this is evidence that a type-safe language can
efficiently generate safe code with concurrent execution re-
quirements.

Compiler Parallel time (real)
Cuckoo 9.45
gcc -O2 4.59
gcc 7.40

Table 2. Execution times for parallel subset-
sum problem

5 Related work

Table 3 compares Cuckoo to several notable soft-
ware safety techniques. While other approaches include
CCured [9], and Modula-3 [10], we feel characteristics of
these languages are largely captured by those illustrated in
the table. With Cuckoo: (1) there is no need for garbage
collection, (2) correctness is not enforced (only safety), (3)
runtime checks are allowed, (4) strict compatibility with C
is sacrificed for ease of enforcing safety checks, and (5)
thread safety is integral to the design of the language. Of
the other related works, no other language or compiler pro-
vides this set of characteristics, which we feel is important
for our target domain, namely, extensible system services.
For example, Cyclone does not ensure multithreaded mem-
ory safety, and although Java provides this, it requires re-
stricted memory management and corresponding garbage
collection.

Of the techniques listed in Table 3, SFI appears to have
the most similarities. However, SFI provides only partial
memory safety compared to Cuckoo. To illustrate this, Fig-
ure 5 shows a situation that SFI cannot easily detect. In this
example, there is a jump to an address that is10 bytes from
the beginning of functionbad and this may not be the start
of the instruction. Observe that this problem only exists on
CISC architectures, that allow for variable-length instruc-
tions. SFI was originally designed for RISC architectures
that have fixed-length instructions aligned on word bound-
aries.

static void bad( void ) {
volatile int x = 0x0BADC0DE;

}

extern int main( void ) {
union foo {

char *data;
void ( *code )( void );

} bar;

bar.code = bad;
bar.data += 10; // whatever the offset is

// to 0x0BADC0DE
bar.code();
return 0;

}

Figure 5. Example jump to a potentially un-
aligned address

Finally, while there has been work on purely static anal-
ysis of program safety [4], such approaches are made more
complicated when there are asynchronous execution paths,
and have thus far applied control-flow analysis techniques
to programs with single threads of execution.



System C Cyclone Java SFI Cuckoo
Efficient memory use � � � �

Memory safe � � partially �

Stack overflow checking � � �

Multithreaded memory safety � � �

Can operate without garbage collection � � � �

Unrestricted allocation without garbage
collection

� � �

Table 3. Features offered by various languages and approaches

6 Conclusions and Future Work

This paper presents an overview of the Cuckoo com-
piler and its design considerations with respect to support-
ing thread and memory safe programs. The specific ap-
plication domain of this compiler is in support of system
service extensions, where asynchronous control-flow (e.g.,
using threads and signals) is commonplace. Our insights
gained from research on extensible operating systems [14]
using type-safe languages such as Cyclone led us to believe
that multithreaded memory safety was a key issue in ex-
tension code. Results show that Cuckoo provides program
safety for both single- and multi-threaded applications with
relatively low runtime overheads compared to comparable
code compiled using unsafe C compilers, such asgcc .

Results show that, while techniques such as SFI have the
potential to perform with low runtime overheads, it is ar-
guably difficult to check for references to misaligned ad-
dresses and jumps to instructions embedded in data con-
stants within program text segments. Cuckoo has the ability
to check for these issues, using its typing rules at compile
time.

Future work involves studying the costs of dynamic
memory allocation, and its safe usage in the presence of
asynchronous control-flow. Specifically, dynamic memory
allocation within a signal handler requires mutually exclu-
sive access to heap data structures, that maintain pools of
free and allocated memory. Using traditional locking mech-
anisms to allocate and update the state of heap memory can
potentially lead to deadlocks between signal handlers and a
program’s main thread of control holding a lock at the time
a signal handler is invoked.

A Language Definition

The Cuckoo language is exactly the same as C as de-
fined in the 2nd edition of K&R [6] Appendix A, with some

notable exceptions. Below, we outline the differences be-
tween Cuckoo and C, labelling each of the following sub-
sections with the corresponding appendix labels in the K&R
book [6]:

A4.1 Storage Class

Automatic objects are local to a function, not to a block;
they retain their values across exit from and reentry to
blocks, and are not discarded until exit from the function.

The main reason for this change is to ensure that local stor-
age is never deallocated within a function (which prevents
dangling pointers when one local points to another). Sec-
ondary benefits are that harmful objects (those which require
initialized values for safety) need only be initialized once per
function instead of once per allocation, and that stack growth
within a function is reduced or eliminated, which reduces
stack space checking overhead.

A4.5 Harmless Types(new section)

A type is “harmless” if it is a numeric (integral or float-
ing) or void type, or if it is a structure or union which con-
tains only harmless members.

Conversely, “harmful” types are arrays, pointers, and any
structure or union which (recursively) contains an array or
pointer. Intrinsically, these types are only harmful when refer-
enced by pointers that are cast to other types that could violate
memory safety. Specifically, casting a pointer to a harmful
type into a pointer to a harmless type can lead to: (a) derefer-
ences of values used as addresses to invalid memory locations,
and (b) overwriting values stored at the base addresses of ar-
rays which are used for maintaining array size information.
For example, the following code shows the potentially harm-
ful effects casting&p which is a pointer to a harmful type, by
assigning an arbitrary memory location,x, some value :

int *p = some_address; // p is a harmful type
int *q; // q points to a harmless type
q = (int *) &p; // aliases a harmful type
*q = x; // p = x
*p = some_value; // memory[x] = some_value



A5. Objects and Lvalues

An lvalue also has a storage class; the permissible stor-
age classes for lvalues are the two storage classes defined
for objects (automatic and static) and also the class “un-
specified”. The discussion of each lvalue operator speci-
fies which storage classes are permissible and which stor-
age class is yielded. Expressions which are not lvalues do
not have storage classes defined (except that expressions of
array type do have storage classes, even though array types
are not lvalues).

Storage classes for lvalues are important because they allow us
to detect potential references to deallocated automatic objects
at compile time; see Section A7.17.

A6.6 Pointers and Integers

Addition and subtraction expressions involving pointer
operands are prohibited.

In K&R C, addition and subtraction expressions are not de-
fined on pointers to objects which are not array elements; how-
ever, statically determining that a given pointer points to an
array object is undecidable. We therefore forbid pointer arith-
metic entirely. Similar results can be achieved in cases where
the array object itself is known, by taking the address of an
indexed array element.

Casts to or from pointers to functions are prohibited.

This is required to ensure that the types of arguments match
the types of function parameters when calling through func-
tion pointers.

Casts of other pointers are permitted only when casting:
(1) to a numeric or void type, (2) to a pointer to void, (3)
from a pointerpi to a pointerpj , wherepi andpj point to
harmless typeshi andhj , respectively, and the size ofhj

is no larger than the size ofhi, or (4) from a “pointer to
struct S” to a “pointer toT ”, whereT is the type of the
first member ofstruct S.

The result of case (1) is implementation-dependent (as in
K&R C) but harmless. Case (2) is safe, because pointers to
void may never be dereferenced, nor cast to any type which
can be dereferenced. Case (3) can violate type safety only
for harmless types, which are known not to violate memory
safety. Case (4) is safe, being identical to K&R C as described
in Appendix8.3 (although it effectively forces the compiler
to place the first member of astruct at the address of the
struct ).

Casts from integral types to pointers are prohibited, ex-
cept that the constant zero may be cast to any pointer type
to obtain a null pointer.

When combined with the above restrictions, this limits the val-
ues that a pointer may hold to: (1) the null pointer, (2) the ad-
dress of a compatible object obtained with the& operator, or
(3) a value copied from a compatible pointer. All three cases
are safe.

All pointers belong to one of two types: static pointers
or automatic pointers. (The name refers to properties of
objects the pointer may point to; it is unrelated to the storage
class of the pointer itself.)

This requirement allows us to determine the storage class of
the lvalue obtained when the pointer is dereferenced.

Casts from automatic pointers to static pointers are pro-
hibited.

We must enforce the invariant that static pointers point only to
objects with static storage class (see Section A7.17).

A6.8 Pointers to Void

Pointers to void may not be assigned to any other pointer
nor cast to any other pointer type, although they are permit-
ted in pointer equality comparisons.

A7.1 Pointer Generation

The value of an array expression is a pointer to the array,
not a pointer to the first element of the array. If the storage
class of “array ofT ” is static, then the type of the array
expression is “static pointer to array ofT ”, otherwise it is
“automatic pointer to array ofT ”.

A7.2 Primary Expressions

An identifier is an lvalue if it refers to an object and its
type is arithmetic, structure, union or pointer; the lvalue
storage class is the same as the object storage class.

The storage class of string literals is static.
The presence of parentheses does not affect the storage

class of an expression.

A7.3.1 Array References

The first expression in an array reference must be of type
pointer to array of typeT , and the second must be integral.

Array subscripting is no longer a commutative operation.
Specifically,E1[E2] is not equivalent toE2[E1] for expres-
sionsE1 andE2.

The type of the result isT , and is an lvalue if typeT
is an arithmetic type, or a structure, union or pointer. The
storage class of an array reference of type “static pointer to
array” is static; the storage class of all other array references
is unspecified (i.e., they could be static or automatic).

A7.3.2 Function Calls

Calls to undeclared functions are prohibited.

This is because there is no way to check for type compatibil-
ity between arguments and function parameters for functions
without prototypes.



A7.3.3 Structure References

The storage class of all structure and union member ref-
erences is the same as the storage class of the structure or
union expression.

A7.4.2 Address Operator

When applied to an object with static storage class, the
‘&’ operator yields a static pointer; otherwise it yields an
automatic pointer.

A7.4.3 Indirection Operator

When applied to an expression of type “static pointer to
T ”, the storage class of the ‘*’ operator is static; otherwise
the storage class is unspecified.

A7.7 Additive Operators

Additive operations on pointers are prohibited.

See Section A6.6.

A7.9 Relational Operators

Relational operations on pointers are prohibited.

A7.10 Equality Operators

Storage class is irrelevant when applying equality oper-
ators to pointers; that is, an automatic pointer to objectO is
considered equal to a static pointer to objectO.

A7.16 Conditional Operator

If one of the second and third operands of the condi-
tional operator is an automatic pointer and the other is a
static pointer, then the result is an automatic pointer.

A7.17 Assignment Expressions

It is illegal to assign a automatic pointer to a static
pointer. If the left hand side of an assignment expression
has storage class unspecified, or static, and is not a harm-
less type, then the right hand side may not have automatic
pointer type, nor be an aggregate type which (recursively)
contains any automatic pointer type.

These rules are fundamental in ruling out dangling pointers to
automatic storage. Together, they enforce the invariant that no
static object may hold the address of an automatic object.

A7.19 Constant Expressions

Initializers must evaluate either to a constant or to the
address of a previously declared external or static object.

K&R C allows initializers to evaluate to the address of an ob-
ject plus or minus a constant, but in the general case such an
initializer would violate type safety.

A8.3 Structure and Union Declarations

All members of unions must be of harmless type. Incom-
plete types are permissible, but any type which is used must
be completely defined in the same translation unit.

A8.5 Declarators

The “pointer” syntax for declarators is extended to:

pointer:
* type-qualifier-listopt

* type-qualifier-listopt pointer
@type-qualifier-listopt

@type-qualifier-listopt pointer

Note that this is the primary difference insyntaxbetween
K&R C and Cuckoo; the only other differences are the ad-
dition of two keywords,new anddelete .

A8.6.1 Pointer Declarators

A pointer declarator with ‘* ’ declares an automatic
pointer; a declarator with ‘@’ declares a static pointer. It is
prohibited to declare a static pointer to an automatic pointer,
or any aggregate type which (recursively) contains any au-
tomatic pointer type.

For example, the first of the following declarations is prohib-
ited but the second is allowed:

char *@* p;
char *@@ q;

A8.6.3 Function Declarators

Old-style function declarations are prohibited. If no pa-
rameter type list appears in a function declaration, it is in-
terpreted as an explicit declaration that a function accepts
no parameters.

Variadic functions are prohibited.

This is because we cannot check the types of arguments
against function parameters in variadic functions.

Functions returning automatic pointers to objects are
prohibited.

This is to avoid returning addresses of objects whose lifetimes
are confined to the scope of the returning function. However,
returning static pointers to objects is allowed. This means the
first of the following prototypes is illegal but the second is not:



int *myfunc( ... );
int @myfunc( ... );

The types of parameters that are arrays are altered to au-
tomatic pointers to arrays.

For example, the following declarations are equivalent:

int myfunc( int array[] );
int myfunc( int (*array)[] );

To explicitly declare a static pointer to an array, the following
is allowed:

int myfunc( int (@array)[] );

A8.7 Initialization

Automatic pointer objects which are not explicitly ini-
tialized are initialized to the same value that a static object
of the same type would receive. Pointer members of ag-
gregate objects are likewise initialized. This initialization
occurs each time the enclosing function is called.

Of course, an optimizing compiler would still be free to elide
the implicit initialization if it could determine that the pointer
is always initialized before being accessed.

A9.6 Jump Statements

It is illegal to return an expression of automatic pointer
type.

This restriction makes sure that the address of an automatic
object is never accessible outside the function it is declared
in (or that function’s children): it cannot be returned (by this
rule); it cannot be stored in a static object (see Section A7.17);
and it cannot be stored in an automatic object in a calling func-
tion’s context through a pointer parameter* (since the storage
class of such an lvalue would be “unspecified”; see Section
A7.4.3).

*As an example of the latter case, the following code would
generate an error, as variablea cannot store the address of
variablex :

int f2 (int **p) {
int x;
*p = &x;
...
return 0;

}

int f1 (void) {
int *a;
f2(&a);
...

}

It is illegal to have an undefined return value in functions
returning a harmful type.

A10.2 External Declarations

Incomplete arrays are forbidden in external declarations.
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