
Application-Specific Service Technologies for Commodity Operating Systems in
Real-Time Environments

Richard West and Gabriel Parmer

Computer Science Department
Boston University
Boston, MA 02215

{richwest,gabep1}@cs.bu.edu

Abstract

In order to eliminate the costs of proprietary systems
and special purpose hardware, many real-time and em-
bedded computing platforms are being built on commod-
ity operating systems and generic hardware. Unfortunately,
many such systems are ill-suited to the low-latency and
predictable timing requirements of real-time applications.
This paper, therefore, focuses on application-specific ser-
vice technologies for low-cost commodity operating sys-
tems and hardware, so that real-time service guarantees can
be met. We describe contrasting methods to deploy first-
class services on commodity systems, that are dispatched
with low latency and execute asynchronously according to
bounds on CPU, memory and I/O device usage. Specifically,
we present a “user-level sandboxing” (ULS) mechanism,
that relies on hardware protection to isolate application-
specific services from the core kernel. This approach is
compared with a hybrid language and run-time protection
scheme called “SafeX”, that allows untrusted services to
be dynamically linked and loaded into a base kernel. SafeX
and ULS have been implemented on commodity Linux sys-
tems. Experimental results show that both approaches are
capable of reducing service violations (and, hence, better
qualities of service) for real-time tasks, compared to tradi-
tional user-level methods of service deployment in process-
private address spaces. ULS imposes minimal additional
overheads on service dispatch latency compared to SafeX,
with the advantage that it does not require application-
specific services to execute in the trusted kernel domain.

1. Introduction

Recent trends have seen the use of commercial off-the-
shelf (COTS) systems and hardware being deployed in real-
time and embedded computing environments [9]. Not only

does this lead to reduction in development and operation
costs but also it enables a common code-base for systems
software to be used in both special- and general-purpose
computing. However, COTS systems (e.g. Linux) are typ-
ically ill-suited to the needs of specific applications, espe-
cially when they must operate with real-time requirements.

The protection afforded by commodity operating sys-
tems usually restricts applications to process-private ad-
dress spaces via which system calls can be made to ac-
cess more privileged services of the trusted kernel. While
the process model has many virtues, it incurs significant
overheads due to scheduling, context-switching and inter-
process communication. Similarly, there is often a “seman-
tic gap” between the requirements of code that executes at
user-level and the interface via which requests are made for
kernel-level services. For example, to implement a real-
time monitoring and control application may require one or
more processes to be executed periodically and/or may in-
volve various tasks to respond to asynchronous events (e.g.,
hardware interrupts) with bounded latency. Using tradi-
tional system calls to establish handlers for kernel events
(e.g., via signals) and to ensure processes execute within
specific deadlines is cumbersome at best, but more typi-
cally does not guarantee the necessary responsiveness of
real-time applications. For this reason, we have been devel-
oping various mechanisms to support application-specific
services on commodity operating systems that can be ac-
tivated with low latency and executed according to strict
timing requirements without the need for scheduling and
context-switching between process private address spaces.

In our original work on support for application-specific
service extensions of commodity operating systems, we de-
veloped “SafeX” [25]. SafeX is a hybrid language and run-
time approach, supporting kernel-level service extensions
with quality-of-service (QoS) requirements. Extensions are
written in a type-safe language and restricted on the range of
memory addresses they may access. By dynamically link-

ing them into a running kernel, they can be used to affect
service management decisions, by monitoring and adapting
resource usage on behalf of specific applications.

While SafeX enables applications to bridge the semantic
gap between their needs and the provisions of the underly-
ing system, it conflicts with one of the basic philosophies
of good system design. For many years, system designers
have considered the idea of a kernel to be the address space
in which only the most trusted and fundamental services
should reside. For this reason, we have taken the lessons
learned from SafeX to develop a new mechanism for de-
ploying “first-class” application-specific services and han-
dlers at user-level. The idea behind first-class user-level ser-
vices is to grant them (where possible) the same privileges
and capabilities of kernel services, with the exception that
the kernel may revoke access rights to any services abusing
their privileges.

With this vision in mind, this paper compares our “user-
level sandboxing” (ULS) scheme against SafeX for the
purpose of implementing real-time and asynchronous ser-
vices and handlers on commodity operating systems such as
Linux. We show how user-level services may be dispatched
with almost the same latency as kernel-level interrupt han-
dlers [24], while also being executed without scheduling
and context-switching overheads associated with processes.
In fact, both SafeX and ULS ensure that service extensions
are invoked (when necessary) without being at the mercy
of kernel-level scheduling policies that are inherently non-
real-time, or which may result in unbounded delays. For
example, in many traditional systems, user-level processes
may register signal handlers to be invoked when specific
kernel events occur, but these handlers only run when the
corresponding process is scheduled and that may be after
an arbitrary amount of time.

In contrast, our approaches enable an application pro-
cess, Pi to register a first-class handler that responds to e.g.,
timer interrupts without Pi having to execute. Given our
ability to bound the dispatch latency of application-specific
services, we show empirically the improved service guar-
antees and reduced violation rates of both ULS and SafeX
compared to alternative user-level methods of implement-
ing application-specific services. Specifically, we com-
pare user- and kernel-level implementations of a feedback-
control service, for managing the allocation of CPU cy-
cles to application processes according to their resource re-
quirements over finite windows of real-time. Such a ser-
vice might be beneficial to multimedia applications requir-
ing specific CPU shares at designated time intervals to en-
code/decode audio and video streams. Alternatively, a con-
trol application may wish to guarantee that the correct share
of CPU time is available to process sensor readings in a
timely fashion.

From experiments, we show that ULS and SafeX are

low-cost mechanisms for the timely and predictable exe-
cution of application-configurable services and handlers on
commodity operating systems. A series of adaptive CPU
service management tests on Linux shows that ULS han-
dlers and SafeX kernel extensions can reduce deadline miss
rates by a factor of four, compared to process/thread-based
methods of service execution. ULS and SafeX bridge the
gap between the agnostic services of general-purpose sys-
tems and the needs of individual applications, including
those with real-time requirements. Unlike SafeX, ULS does
not require the core kernel to be polluted with potentially
unsafe code that may jeopardize the integrity of the system
and, therefore, its ability to meet service guarantees.

In the next section we provide a brief overview of our
prior work on SafeX, followed by further details about the
ULS method to deploy first-class services in Section 3. The
performance benefits of ULS and SafeX are evaluated em-
pirically in Section 4. Related work is discussed in Sec-
tion 5, while conclusions and future work are outlined in
Section 6.

2 SafeX Support for First-Class Services

SafeX and ULS represent two disparate methods for
achieving some sense of isolation between first-class ser-
vices and the rest of the system, while providing a pre-
dictable and efficient execution mechanism. When striv-
ing for performance and predictability, both methods uti-
lize comparable strategies. Namely, both allow execution
in the context of a “bottom half” 1 for low-latency execu-
tion in response to events, and both mitigate the costs of
context-switches. Likewise, both approaches employ sim-
ilar run-time checks to ensure CPU isolation and fairness.
However, SafeX relies entirely on language-level software
techniques to provide memory protection while ULS iso-
lates its services outside the kernel. A brief summary of the
SafeX approach now follows, with further details available
in our earlier work [25].
Language Support – SafeX requires that service exten-
sions be written in the Popcorn [17] programming language.
Popcorn is designed for syntactic similarity to C, and is
compiled to TALx86, an extended version of the Intel IA-
32 assembly language. TALx86 is an instance of Typed
Assembly Language (TAL) [17] that, by adding typing an-
notations and typing rules to traditional assembly language
guarantees memory, control flow and type safety of TAL
programs. Popcorn is supported by a number of TALx86
tools that can verify internal type consistency of TALx86
source files and linked object code.

1A bottom half is functionality required in response to an interrupt that
may be processed at a convenient time, rather than immediately when the
interrupt occurs.

Memory Protection – Extensions running within the ker-
nel address space may potentially access and modify any
data within the kernel and violate the memory protections
enforced on user processes as well as the integrity of kernel
data structures and code. The type safety of Popcorn pre-
vents extension code from forging pointers to arbitrary ad-
dresses or casting pointers to arbitrary types. Therefore, by
controlling the pointers passed to extension code, the parts
of the kernel address space that may be accessed by an ex-
tension can be finely controlled.

Another issue raised by passing pointers to extensions is
the possibility that memory referenced by a pointer may be
deallocated or reused by the core kernel. Extension code
cannot be trusted to stop using pointers to such memory
after reuse or deallocation. Consequently, some form of
garbage collection must be used to safely manage memory
referenced by extensions. The current safe extensions im-
plementation does not do such garbage collection, but de-
fers deallocation of memory objects until all extensions ref-
erencing them are unloaded from the kernel’s address space.
CPU Protection – Extension code may potentially execute
for unbounded periods of time, taking control of the sys-
tem. SafeX requires that applications reserve CPU time for
extensions before they are executed. SafeX enforces time
limits by aborting execution of extension code that exceeds
its reservation. In this way, SafeX can limit the total amount
of CPU time given to and used by extensions. The CPU
time used by an extension is charged to the associated ap-
plication so that the total CPU time consumed on the behalf
of the application is considered in its scheduling. SafeX
tracks extension execution time by decrementing a counter
at each system timer interrupt.

Attribute Classes

Handlers

Class 1

Class 2

Class k

Kernel Service Manager

get_attributes()

set_attributes()

Kernel
policy-specific

structures

Kernel timer queue of
bottom half (SM)

functions

Guard fn

MonitorsEvents out

Events in

Figure 1. The internals of a SafeX kernel ser-
vice manager.

SafeX Service Managers: SafeX allows service managers
(see Figure 1) to be defined within a kernel, to manage ser-
vice of a specific nature (e.g., to control scheduling and
synchronization of threads on available CPUs, or to con-
trol memory allocation). Each service manager enqueues
and invokes application-specific monitoring and handling
functions that are able to observe actual service levels and,

consequently, affect service changes. Monitor and handler
functions operate on attribute classes. These are data struc-
tures that hold the names of various service attributes and
their corresponding values (e.g., a CPU scheduling priority
and its corresponding value). Service extensions get and set
these attributes by name, as long as they have the necessary
access rights.
Guard Functions: Each service manager is equipped with
a guard function that is automatically generated by the code
generator in a SafeX daemon process running on the same
host. A guard function is responsible for the mapping of
attributes, contained in attribute classes, to kernel policy-
specific structures. It ensures that attributes are within valid
ranges and will not adversely affect the QoS guarantees to
the corresponding application, or other applications. More-
over, each SafeX daemon is capable of generating code for
run-time safety checks of extensions, thereby guaranteeing
they have bounded execution time.
SafeX Interfaces: To affect changes to the service received
by an application, the handlers need interfaces to adjust the
parameters of the underlying mechanism providing the ser-
vice. Though handlers execute within the kernel address
space, they cannot be trusted to directly modify core kernel
data. SafeX, therefore, provides service extensions with in-
terfaces to manipulate kernel data structures and perform
operations requiring special privileges (e.g., for synchro-
nization purposes, so that interrupts are not inadvertently
disabled). SafeX interface functions may be used only
by services possessing the capabilities for these interfaces.
Such capabilities are in fact pointers which are unforgeable
due to the type safety of the extension language.

SafeX interfaces, like system calls, must validate argu-
ments passed to them by application-specific services. They
must also ensure that requested operations are safe, as some
operations or decisions, while not violating system protec-
tion, may have a negative effect on system performance.
SafeX interfaces are therefore responsible for limiting the
possible global effects of operations requested by service
extensions and require careful design balancing the degree
of application control over resource allocations with con-
cern for system stability.

3 ULS Support for First-Class Services

Overview: The basic idea of user-level sandboxing is to
modify the address space of all processes, or logical pro-
tection domains, to contain one or more shared pages of
virtual addresses. The virtual address range shared by all
processes provides a sandboxed memory region into which
application-specific services may be mapped. Under nor-
mal operation, these shared pages will be accessible only by
the kernel. However, when the kernel wishes to pass con-
trol to a service extension, it changes the privilege level of

the shared page (or pages) containing the service code and
data, so that it can be executed with user-level capabilities.
This prevents application-specific service code from violat-
ing the integrity of the kernel, with the benefit that such
code can run in the context of any user-space process, even
one that did not register the service with the system. There
is potential for corrupt or ill-written service extension code
to modify the memory area of a running process. To guard
against this, we require application-specific services regis-
tered with the system to either be written by a trusted pro-
grammer, or to have additional software safety checks (e.g.,
using type-safe languages [8, 13, 17, 18] or software-based
fault isolation [23]).

In the absence of application-specific services being
written by a trusted programmer (such as a kernel developer
who wishes to isolate separate services), we only require
software safety checks on untrusted code mapped to the
sandbox. All other application and system-level code can
be written in non-type-safe languages. This differs from the
approach of the SPIN system [4] and JavaOS that require
all software objects to be type-safe.

3.1. Hardware Support for Memory-Safe
First-Class Services

Our approach assumes that hardware provides paging
(i.e., MMU) capabilities. A series of caches, most notably
one or more untagged translation look-aside buffers (TLBs)
is desirable but not necessary. This minimum hardware re-
quirement is met by many processors made today including
those used in embedded systems (e.g., the Intel XScale).

On many processors, switching between protection do-
mains mapped to different pages of virtual (or linear) ad-
dresses, requires switching page tables stored in main mem-
ory, and then reloading TLBs with the necessary address
translations. Such course-grained protection provided at the
hardware-level is becoming more undesirable as the dispar-
ity between processor and memory speeds increases [22].
This is certainly the case for processors that are now clock-
ing in the gigahertz range, while main memory is accessed
in the 108Hz range. In practice, it is clearly desirable to
keep address translations for separate protection domains in
cache memory as often as possible. ULS avoids the need for
expensive page table switches and TLB reloads by ensuring
the sandbox is common to all address spaces.

3.2. Implementation Details

We have implemented ULS on a Linux x86-based sys-
tem, with a few small changes (approximately 100 lines) to
the core kernel. These changes are required to: (1) create a
shared sandbox region, (2) support protected mapping of a
sandboxed service, (3) allow access to restricted sandboxed

memory regions from conventional process address spaces,
and (4) invoke application-specific services from within the
kernel. The key modifications involve additional entries in
the page tables (or, more precisely, global directories) of
processes, and the implementation of upcall code that tog-
gles page protection bits.

For the most part, our approach is not restricted to Linux.
However, where necessary, we describe the system-specific
features required for user-level sandboxing to work. The
user-level sandboxing implementation requires a few addi-
tional interface functions over those provided by the tradi-
tional system call interface. These interface functions are
contained within kernel-loadable modules and invoked via
ioctls, avoiding the need for new system calls.
Logical Protection Domains for Application-Specific
Services: Traditional operating systems provide logical
protection domains for processes mapped into separate ad-
dress spaces. With user-level sandboxing, as illustrated in
Figure 2, each process address space is divided into two
parts: a conventional process-private memory region and a
shared virtual memory region. The shared region acts as a
sandbox for mapped service extensions. The sandbox itself
is divided into public and protected areas, as explained later,
but this is not a general requirement of the approach. Kernel
events delivered to sandbox code are handled in the context
of the current process, thereby eliminating scheduling costs.

Sometimes it is important for a process to exchange data
with services registered in the sandbox. As a result, we al-
low controlled access to a region of sandbox addresses by
both code in a process-private region and also the sandbox.
Sandbox Regions: The two areas of the sandbox (as shown
in Figure 3) have the same virtual as well as physical ad-
dresses in all processes. These areas employ the page size
extensions supported by the Pentium processor and each
occupy one 4 megabyte page directory entry 2. Although
a number of MMU-enabled processors support multiple
page-sizes, a sandbox should be designed to minimize the
number of pages it uses while occupying the largest mem-
ory area necessary for extensions. This is to minimize the
TLB footprint of extensions.

One sandbox region is permanently assigned read and
execute permission at both user- and kernel-level and acts
as a public area. The other (protected) region is perma-
nently assigned read-write permission at kernel-level but,
by default, is inaccessible at user-level. The protected re-
gion can be made accessible to user-level by toggling the
user/supervisor flags of its page directory entry and invali-
dating the relevant TLB entry via the INVLPG instruction.
Sandbox/Upcall Threads: Sandboxed code can link with
libraries that make system calls. Care must be taken that
an application-specific service registered by one process

2The 32-bit x86 processor uses a two-level paging scheme, comprising
page directories and tables.

. . . Process-private
address space

Sandbox region
(shared virtual address space)

Kernel Level

User Level

P1 P2

Mapped data

Pn

Extension for PnExtension for P2

Kernel events make
sandbox region

user-level accessible

Figure 2. Each process address space has a
shared virtual memory region, or sandbox,
into which application-specific service exten-
sions are mapped.

Process 1 Process 2Physical Memory

Private
address
space

Mapped Data

Mapped Data

Extension
Stacks

Extension
Code

+
read-only data

Sandbox
public
area

Protected
area

Sandbox
public
area

Protected
area

4MB

4MB

Figure 3. Sandboxes common to all pro-
cesses are mapped to the same physical ad-
dress ranges. Pages of the sandbox can be
mapped into process-private address spaces
to exchange data.

does not affect the progress of another process, by issuing
a blocking system call. For example, if process pi registers
an extension ei that is invoked at the time process pj is ac-
tive, it may be possible for ei to affect the progress of pj by
issuing ‘slow’ system calls. Any sandbox code that issues a
blocking system call is promoted to a new thread of execu-
tion, if it is not already associated with its own thread. Since
sandbox threads execute in any process context, essentially
they are inexpensive to schedule.

A sandbox-bound thread of execution is created via
the create upcall() interface function, invoked from
within a user-space process. This interface function has
similarities to the POSIX pthread create() library
routine, producing a new thread of control sharing the cre-
dentials and file descriptor tables of the caller. The thread
produced by create upcall(), however, does not pos-
sess a conventional hardware-based address space. Instead,

sandbox threads execute using the page tables of the last
active address space.
Mapping Code into the Sandbox: The existence of a
shared sandbox requires the modification to the page tables
and address spaces of all created processes (when they are
first ‘forked’). As stated earlier, all processes will have page
tables that can resolve virtual addresses of instructions and
data in this memory area, thereby enabling sandbox code to
execute in any process context.

A loader, utilizing functions from the GNU BFD (Binary
File Descriptor) library, is used to map extensions into the
sandbox. In the current implementation, an extension must
be compiled into a target object (currently, ELF) format.
The loader then maps the .rodata and .text sections of the
object into the public super-page, with the .bss and .data
sections being mapped into the protected region.

Extension code is activated by upcalls from the trusted
kernel. To ensure the protected region of a sandbox is user-
level accessible, the kernel toggles the user/supervisor flag
of the corresponding super-page before issuing the upcall.
After toggling the privilege protection flag, the TLB entry
for the super-page must be flushed and reloaded to elimi-
nate stale flag settings. When the process whose page ta-
bles were used by a sandbox function is again scheduled,
the user/supervisor flag must be reset before the process re-
gains control of the CPU at user-level. This is necessary
to prevent malicious or ill-written processes from accessing
the protected sandbox area.
Additional Support for User-Level Sandboxing: As
sandbox extensions do not have conventional address
spaces, they are unable to use certain system interfaces re-
lated to memory management, without modification. Some
of the the affected interfaces include brk(), mmap() and
shmget(). These interfaces are used to fulfill a variety of
needs: brk() affects the breakpoint at the end of the heap
data area in a process, while shmget() allocates shared
memory segments. Likewise, mmap() can allocate either
process-private or shared virtual memory as well as provid-
ing memory-mapped file I/O.

In our current implementation, we allow C, Cyclone [13]
and Cuckoo [26] extensions to link with a slightly modified
version of the dietlibc library, to manage sandbox memory
and make system calls. Cyclone is syntactically similar to
C but provides type-safety and, hence, memory protection
for multiple extensions co-existing in the sandbox. Cuckoo
is our own language that is similar to Cyclone but also pro-
vides memory-safety for multi-threaded code. We envision
type-safe languages being used for extensions written by
untrusted users, to prevent them from accessing addresses
of other sandbox extensions, or the private address space of
an active process at the time the extension is invoked. In
contrast, we allow extensions written in C to be produced
by trusted users such as kernel developers, who are aware of

potential side-effects of their code and do not intend to be-
have in a malicious manner, by deliberately corrupting the
sandbox or process-private address spaces. It is important to
note that “trusted” code implies that code is non-malicious,
not necessarily error-free. The isolation provided by ULS
allows the system to survive ill-written service extensions.
Fast Upcalls: Traditionally, signals and other such kernel
event notification schemes [3, 15] have been used to invoke
actions in user-level address spaces when there are specific
kernel state changes. Unfortunately, these schemes incur
costs associated with the traversal of the kernel-user bound-
ary, process context-switching and scheduling. Our upcall
mechanism operates like a software trap (i.e., the mirror im-
age of a typical system call), to efficiently vector events to
user-level sandbox extensions. To make function invoca-
tions from kernel to user space, we utilize hardware support
in the form of the SYSENTER and SYSEXIT instructions
where available, and stack activations otherwise [6]. An
upcall made while in the context of any process is termed a
“pure upcall”. Finally, to avoid the problem of generating
upcalls when no user-level process is running, all extensions
utilize a private stack in the sandbox.

Though the expected behavior of application-specific
services is to predominantly make pure upcalls in the con-
text of any currently loaded address space, it is also possible
for services to run in a threaded, schedulable context. For
example, if a service blocks on a slow system call it can
continue as a schedulable (albeit not necessarily real-time)
thread. In this case, TLB flushing costs are still mitigated
when switching to the service task.
Beyond Memory-Safety: Issues of memory-safety aside,
it is also important to ensure both CPU and I/O protection.
CPU protection is ensured in a manner similar to that in
SafeX. Most importantly, the time spent executing a first-
class service is bounded and charged to the process that
registered that service. ULS addresses I/O protection by
ensuring that the file-descriptors visible to a first-class ser-
vice are those inherited from the registering process (which
may not necessarily be the current process at the time the
service is invoked).

4. Experimental Evaluation

This section begins by assessing the effectiveness of a
ULS implementation applied to a Linux kernel. With the
exception of the experiments in Section 4.3, all other cases
involve a patched Linux 2.4.9 kernel running on a series of
1.4 GHz Pentium 4 based systems. The nature of these ex-
periments is partly to show that sandbox extensions can be
executed with bounded overheads compared to user-level
services mapped into private address spaces. Such bounded
overheads can be achieved by relying only on page-based
hardware as opposed to specialized features such as seg-

mentation and tagged TLBs. In the following experimental
results, the extensions have been written in C. Our work
with Cyclone and our new language, called Cuckoo [26],
suggests that run-time overheads of type-safe languages can
be kept fairly low, so performance results should be similar
if we used type-safe extensions.

4.1 Inter-Protection Domain Communi-
cation

To investigate the effects of working set size on the ef-
fectiveness of sandbox-based extensions, a number of IPC
ping-pong experiments similar to those conducted in the
“small spaces” work [22] were carried out. These experi-
ments also consider the effects of both instruction and data
TLBs, found on the x86 architecture. The Pentium 4 pro-
cessor has a 64 entry data TLB and an 128 entry instruction
TLB for address translation. These experiments demon-
strate the ability of ULS to make the best use of system
caches as the size of applications running on the system vary
in working set size. This property will affect the predictable
behavior of caching for normal processes executing on the
system.

Two threads exchange four byte messages over con-
nected pipes. One thread simulates an application thread
in a traditional address space with a configurable instruc-
tion and data TLB working set. The second thread (hav-
ing a small, fixed TLB footprint) acts as an extension run-
ning either in a separate full address space or in the sand-
box. The ”application” thread fills some number of TLB en-
tries, sends a message to the ”extension” thread, and reads
a reply message. To simulate various data TLB sizes, the
application thread reads 4 bytes of data from a series of
memory addresses spaced 4160 byte apart. To simulate in-
struction TLB sizes, the application thread performs a series
of relative jumps to instructions spaced 4160 bytes apart.
These spacings avoid cache interference effects. The TLB
miss counts were obtained using the Pentium 4 CPU perfor-
mance counters.

Figure 4(a) shows the data TLB working set of the appli-
cation thread is maintained for up to approximately 45 en-
tries when the extension thread is mapped into the sandbox.
Thereafter, the combined data TLB demands of the OS, ap-
plication and extension no longer fit the 64 entries available
on the Pentium 4 and each page access incurs a TLB miss.
Note that for the extension thread in a traditional address
space, every data page access after the IPC ping-pong in-
curs a TLB miss regardless of the working set size, as all
TLB entries are purged on every context switch.

As shown in Figure 4(b), the instruction TLB entries
of the application thread are preserved when the extension
is located in the sandbox. No instruction TLB misses oc-
cur until the working set approaches 110 entries, which is

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120

D
at

a
T

LB
 M

is
se

s

Referenced Data Pages

User
Sandbox

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180 200

In
st

ru
ct

io
n

T
LB

 M
is

se
s

Referenced Instruction Pages

User
Sandbox

Figure 4. Effects of working set sizes in terms of (a) data, and (b) instruction pages on the number
of TLB misses, for inter-protection domain communication. The ‘User’ case is for traditional inter-
process communication, while the ‘Sandbox’ case shows communication costs between a process
and a sandboxed protection domain.

11000

12000

13000

14000

15000

16000

17000

18000

19000

0 20 40 60 80 100 120

P
ip

e
La

te
nc

y
(C

P
U

 C
yc

le
s)

Referenced Data Pages

User
Sandbox

11000

12000

13000

14000

15000

16000

17000

18000

19000

20000

21000

22000

0 20 40 60 80 100 120 140 160 180 200

P
ip

e
La

te
nc

y
(C

P
U

 C
yc

le
s)

Referenced Instruction Pages

User
Sandbox

Figure 5. Latency of communication via a pipe between two protection domains, as a function of
working set sizes in terms of (a) data, and (b) instruction pages.

close to the available 128 TLB entries. Thereafter, the num-
ber of instruction TLB misses are similar for both exten-
sion types. These results correspond to those in the “small
spaces” work that uses the segmentation features of the x86
to implement multiple logical protection domains within a
single address space. This shows that our user-level sand-
box technique can achieve inter-protection domain commu-
nication performance similar to approaches based on spe-
cialist hardware features such as segmentation.

Finally, Figure 5(a) shows the communication latency re-
mains lower with the sandbox extension even when the data
TLB miss rates are similar. Likewise, in Figure 5(b), the
pipe latency is considerably lower for the sandboxed exten-
sion, until the instruction TLB is filled.

In the presence of the execution of application-specific
services, we conclude that caches will perform predictably
for user-level processes on the system. This is necessary to
maintain execution isolation of processes from the service
extensions.

4.2 Microbenchmarks

Operation Cost in CPU Cycles
Upcall including TLB flush/reload 11000

TLB flush and reload 8500
Raw upcall 2500

Signal delivery (current process) 6000
Signal delivery (different process) 46000

Table 1. Microbenchmarks taken on a 1.4GHz
Pentium 4, 512 Megs RAM.

Table 1 presents a number of microbenchmarks that
point to the efficiency of using our fast upcalls method for
invoking sandbox code. In this table, the fast upcall costs
are shown for the SYSEXIT/ENTER implementation. CPU
clock cycles are measured using the processor’s time stamp
counter. The complete upcall cost includes the CPU cycles
required to go from kernel space to a user-space upcall han-

dler function. This includes the costs of flushing the sand-
box data area TLB entry, placing arguments on the upcall
stack, performing a SYSEXIT and executing the user-level
prologue of the upcall handler function. The TLB flush and
reload time dominates the overall upcall cost, while the re-
maining “raw upcall” cost accounts for less than a quarter
of the elapsed cycles. Copying arguments and trampoline
code to the (user-level) upcall stack consumes majority of
the clock cycles associated with the raw upcall. The tram-
poline code is simply a SYSENTER instruction, placed on
the upcall stack before any arguments and referenced by the
return address (also on the same stack) of the upcall handler.
A few hundred cycles of the raw upcall can be attributed to
the SYSEXIT instruction, while the rest are associated with
saving information on the kernel stack for when we return
via the corresponding SYSENTER.

The signal costs measure the overheads of delivering a
signal to user space from the kernel within the same address
space context as well as between different address spaces.
The costs of delivering a signal within the same address
space is lower than the cost of an upcall, but once an ad-
dress space switch and scheduling operation are involved
the costs of delivering a signal from kernel to a user-space
process are over 4 times the cost of a full upcall. Note that
the measured cost of delivering a signal to a different pro-
cess involves making that process the highest priority, so it
is guaranteed to be scheduled next.

4.3 User-level Sandboxing versus SafeX

In this set of experiments, we compare the performance
of kernel-level extensions against user-level approaches for
monitoring and adapting system resource usage. The aim
is to see whether it is possible to implement system-wide
service extensions in a user-level sandbox, and still achieve
a similar level of control over physical resources to that of
kernel-based approaches, using our SafeX approach. This
set of experiments uses a standalone 550 Mhz Pentium III
with 256 MB of RAM. In this case, a user-level sandbox is
implemented on a patched Linux 2.4.20 kernel.

Four different methods of dynamically managing CPU
usage are compared, for a set of processes each with specific
resource requirements over finite windows of real-time. For
brevity, the details about the exact setup of these experi-
ments are omitted, as they can be found in our earlier SafeX
work [25]. The four methods implement a CPU service
manager within: (1) a user-level process, (2) a sandboxed
thread, (3) a pure upcall function in the sandbox, and (4) a
kernel bottom-half handler.

Three processes, P1, P2 and P3 have target CPU de-
mands of 40mS every period of 400mS, 100mS every pe-
riod of 500mS, and 60mS every period of 200mS, respec-
tively. A process misses a deadline if it does not receive

its CPU demand within its current period. For simplicity,
the processes are all CPU-bound, have memory footprints
less than 4KB when stripped of symbols, and merely it-
erate over a number of integer computations. Note that in
similar experiments, more realistic and complex application
processes encode a number of video frames into groups of
pictures. Results of these experiments are not included due
to space constraints, and because they show similar perfor-
mance patterns to those shown in this section. In any case,
processes P1, P2 and P3 have static real-time priorities ini-
tialized to 80 ∗ (target/period), where target and period
denote the target CPU time required in a given request pe-
riod, measured in milliseconds. Since Linux real-time prior-
ities range from 1 (lowest) to 99 (highest), kernel daemons
are assigned real-time priorities of 97 or higher, thereby en-
suring the whole system continues to function responsively.

The kernel-based service manager is invoked once every
10mS from a Linux timer queue, to monitor the CPU al-
locations of the three CPU-bound processes. Similarly, the
upcall-based service manager is invoked once every 10mS
by upcall events triggered from a timer bottom half. Corre-
sponding handler functions in each case adjust the timeslice
of the three process as necessary, using the same PID 3 con-
troller described in prior experiments [25]. A guard func-
tion allows a process’s timeslice to increase as long as its
average CPU usage, measured over twice its period, is not
above the target utilization.

Both the kernel- and pure upcall-based service managers
check the identity of the running process when they are in-
voked via the kernel timer queue. Accounting information
for the CPU usage of the current process is updated to the
nearest clock tick (or jiffy). The kernel approach accounts
for lost ticks but the sandboxed approach does not, mak-
ing the latter method of tracking CPU usage slightly less
accurate. In contrast, the process- and thread-based man-
agers determine the CPU usage of the three processes via
the /proc filesystem, when they are scheduled by the ker-
nel. To ensure predictable service, the process- and thread-
based managers are assigned real-time priorities of 96.

For all four service manager methods, a background dis-
turbance process attempts to consume all available CPU cy-
cles when it is active. Its execution pattern is based on a
Markov Modulated Poisson Process, with average exponen-
tial inter-burst times of 10 seconds and average geometric
burst lengths of 3 seconds. Each burst of the disturbance
is triggered with an initial priority of 96, but when the cor-
responding service manager is active, the disturbance’s pri-
ority is adjusted to maintain service to the other three pro-
cesses. In all cases, the disturbance is scheduled using the
POSIX.4 SCHED FIFO policy. The aim is to maintain fine-
grained control over CPU allocation for processes that could
be part of a real-time application.

3Proportional plus integral plus derivative.

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f C
P

U

time (seconds)

P3
P2
P1

Disturbance

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f C
P

U

time (seconds)

P3
P2
P1

Disturbance

Figure 6. CPU service management controlled by (a) a user-level real-time process, and (b) a sand-
boxed thread.

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f C
P

U

time (seconds)

P3
P2
P1

Disturbance

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f C
P

U

time (seconds)

P3
P2
P1

Disturbance

Figure 7. CPU service management controlled by (a) a pure upcall function in the sandbox, and (b) a
kernel bottom-half handler.

Figures 6 and 7 show the abilities of each service
management method to maintain CPU allocations of the
three processes at their target levels. Both the process- and
thread-based approaches suffer from the need for schedul-
ing by the kernel in order to control resource allocation.
When the disturbance uses SCHED FIFO scheduling it can-
not be preempted by a service manager that is scheduled
at the same initial priority. For brevity, we do not include
results for the case when the disturbance is scheduled us-
ing a SCHED RR policy, but the pure upcall- and kernel-
based approaches still perform better. Moreover, having
the disturbance scheduled using SCHED FIFO indicates
the vulnerability of process- and thread-based approaches
to user-level service management. That is, they are depen-
dent upon the parameters of other schedulable entities, and
the scheduling policy enforced by the underlying kernel.
This contrasts with the pure upcall- and kernel-based ser-
vice managers, that do not entirely depend upon the under-
lying nature of the kernel’s scheduling policy.

As can be seen from Figure 7, implementing an efficient

service extension for dynamic management of CPU cycles
is possible using user-level sandboxing. The upcall-based
service manager successfully maintains the target CPU al-
locations to all three processes, without allowing the back-
ground disturbance to hog all the resources when it is active.
While the kernel-based approach provides the finest granu-
larity of control over resource allocation, implementing ex-
tensions in the kernel precludes the use of libraries, system
calls and the benefits of isolating application-specific code
outside the kernel protection domain. With all the user-level
approaches, including the pure upcall method, conventional
system calls such as sched setscheduler() are avail-
able to control CPU allocations. In general, the slight re-
duction in fine-grained control over resources is offset by
the ease of programming at user-level.

The violation rate for tasks P1, P2 and P3, measured
in deadlines missed per second, is plotted in Figure 8 as a
function of time. The ability to manage the CPU on a fine-
grained basis is not satisfied by the thread-based methods,
even threads running within a sandbox. However, sand-

boxed services invoked by pure upcalls are comparable in
their ability to manage resources as predictably as SafeX
type methods that place application-specific services in the
most trusted hardware protection domain. Both upcalls to
sandboxed handlers and SafeX kernel extensions yield rela-
tively low violation rates, close to 0.2 deadlines per second
in the steady state, compared to around four times worse
performance for sandboxed threads and user processes.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50 60 70 80 90 100

vi
ol

at
io

n
ra

te

time (seconds)

Kernel Handler
Pure Upcall Fn

Sandbox Thread
User Process

Figure 8. Deadline violation rates.

5. Related Work

There have been a number of related research efforts
that focus on OS structure, extensibility, safety, and ser-
vice invocation. Extensible operating systems [21, 4, 6, 14,
11] aim to provide applications with greater control over
the management of their resources. Additionally, micro-
kernels [2] and Exo-kernels [10] offer a few basic abstrac-
tions, while moving the implementation of more complex
services and policies into application-level components. By
separating kernel- and user-level services, micro-kernels in-
troduce significant amounts of interprocess communication
overhead, although it has been argued that by leveraging
hardware support many such costs can be made to disap-
pear [16]. In effect, our sandboxing technique provides a
way to construct micro-kernel services without the inher-
ent costs of heavyweight inter-address space communica-
tion. We support this without the need for esoteric hard-
ware features (e.g., segmentation as used by Palladium [6])
to implement fine-grained logical protection domains, so
that the latency to invoke application-specific services is
limited to the cost of an upcall and the flush of a TLB en-
try. Consequently, unbounded delays due to e.g., priority
based scheduling of process address spaces does not affect
the timely execution of system service extensions.

Another area of research related to ours has focused on
service invocation, kernel event notifications [3, 15] and up-
calls [7, 12]. Much of this work is concerned with the way

to trigger user-level services or handlers due to some condi-
tion or event in the kernel. With our ULS approach, we en-
able upcalls to be triggered no matter which address space is
active at the time of a kernel event, thereby greatly reducing
the overheads of service invocation.

Finally, while others have considered methods to instru-
ment applications, to intercept requests for resources such
as CPU cycles, memory and bandwidth [5], the emphasis
of our ULS and SafeX work is to develop safe and pre-
dictable execution domains in which application-specific
services may be deployed. Our work enables COTS sys-
tems to be extended with resource management methods
to improve and/or guarantee qualities of service [19] to in-
dividual applications without the need for entire QoS ar-
chitectures [1, 20] to be constructed. As stated earlier,
such execution domains do not suffer from scheduling and
context-switching overheads as would be the case for ser-
vices mapped into traditional process address spaces.

6. Conclusions and Future Work

This paper compares various methods to instrument
commodity operating systems with services and handlers
that are tailored to the needs of real-time applications.
We compare methods to deploy service extensions at both
kernel- and user-level, using our SafeX and user-level sand-
boxing (ULS) schemes, respectively. Both approaches
enable applications to deploy services in a manner that
does not require explicit scheduling and context-switching
between process-private address spaces, thereby ensuring
bounded dispatch latencies and finer-grained resource man-
agement. SafeX relies on a combination of type-safe lan-
guage and run-time support to enforce memory, CPU and
I/O-space protection of untrusted application-specific ser-
vices within the address space of the trusted kernel. This
enables users to deploy “first class” services having the
same capabilities as core kernel services, with the excep-
tion that the kernel may revoke access rights on any services
abusing their privileges. Such an approach prevents e.g.,
an application-specific service from running for unbounded
amounts of time and/or altering its resource usage beyond
that allowed by the kernel. However, SafeX places restric-
tions on how extensions operate within the kernel by pre-
venting them from disabling interrupts and accessing kernel
symbols outside those within a defined API.

To alleviate the potential problems associated with
application-specific services executing in the trusted kernel
address space, our ULS approach allows first-class services
to execute in a sandbox environment isolated by hardware-
level (i.e., page-based) protection from the kernel. This im-
poses only minimal additional overheads over those asso-
ciated with SafeX when dispatching application-services.
Specifically, ULS requires an upcall into a sandboxed mem-

ory region as well as a TLB flush of a single page entry.
Such a cost is minimal and bounded compared to the over-
heads of otherwise scheduling and context-switching be-
tween user-level process address spaces.

Experimental results show that ULS and SafeX incur
similar performance penalties and benefits for an exam-
ple service extension that adaptively manages CPU us-
age amongst competing processes in specific windows of
real-time. Both approaches yield lower service violations
than alternative user-level methods of application-level re-
source monitoring and management. Given this obser-
vation, we feel ULS is preferred over SafeX as the first
step towards supporting application-specific real-time ser-
vices on commodity OSes. ULS requires no special hard-
ware support other than page-based hardware protection
and timer interrupt support to control bounds on CPU us-
age by application-specific services.

Future work involves extending our ULS approach to
multiprocessor platforms, and to provide safe and pre-
dictable resource management support for entire virtual ma-
chines rather than the more simplistic services and handlers
currently supported.

References

[1] T. F. Abdelzaher and K. G. Shin. End-host architecture for
QoS-adaptive communication. In Proceedings of the IEEE
Real-Time Technology and Applications Symposium, Den-
ver, Colorado, June 1998.

[2] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,
A. Tevanian, and M. Young. Mach: A new kernel foundation
for UNIX development. In Summer USENIX Conference,
pages 93–112, 1986.

[3] G. Banga, J. C. Mogul, and P. Druschel. A scalable and
explicit event delivery mechanism for UNIX. In Proceed-
ings of the USENIX Annual Technical Conference, Mon-
terey, CA, June 1999.

[4] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fi-
uczynski, and B. E. Chambers. Extensibility, safety, and
performance in the SPIN operating system. In Proceedings
of the 15th ACM Symposium on Operating Systems Princi-
ples, pages 267–284, 1995.

[5] F. Chang, A. Itzkovitz, and V. Karamcheti. User-level
resource-constrained sandboxing. In Proceedings of the 4th
USENIX Windows Systems Symposium, 2000.

[6] T. Chiueh, G. Venkitachalam, and P. Pradhan. Integrat-
ing segmentation and paging protection for safe, efficient
and transparent software extensions. In Proceeedings of the
ACM Symposium on Operating Systems Principles, pages
140–153, 1999.

[7] D. Clark. The structuring of systems using upcalls. In Pro-
ceedings of the 10th ACM Symposium on Operating Systems
Principles, pages 171–180. ACM, 1985.

[8] Cyclone: http://www.research.att.com/projects/cyclone/.
[9] Embedded Linux Consortium: http://www.embedded-

linux.org.

[10] D. R. Engler, M. F. Kaashoek, and J. O. Jr. Exokernel: An
operating system architecture for application-level resource
management. In Proceedings of the 15th ACM Symposium
on Operating Systems Principles, December 1995.

[11] D. P. Ghormley, S. H. Rodrigues, D. Petrou, and T. E. Ander-
son. Interposition as an operating system extension mecha-
nism. Technical Report CSD-96-920, University of Califor-
nia, Berkeley, September 1997.

[12] G. Gopalakrishnan and G. Parulkar. Efficient user space pro-
tocol implementations with QoS guarantees using real-time
upcalls. IEEE/ACM Transactions on Networking, 6(4):374–
388, 1998.

[13] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of C. In Proceedings of
the USENIX Annual Technical Conference, June 2002.

[14] M. B. Jones. Interposition agents: Transparently interposing
user code at the system interface. In Proceedings of the 14th
ACM Symposium on Operating Systems Principles, pages
80–93, December 1993.

[15] J. Lemon. Kqueue - a generic and scalable event notification
facility. In Proceedings of the USENIX Annual Technical
Conference, FREENIX Track, 2001.

[16] J. Liedtke. On µ-kernel construction. In Proceedings of
the 15th ACM Symposium on Operating Systems Principles.
ACM, December 1995.

[17] G. Morrisett, K. Crary, N. Glew, D. Grossman, F. Smith,
D. Walker, S. Weirich, and S. Zdancewic. TALx86: A real-
istic typed assembly language. In ACM SIGPLAN Workshop
on Compiler Support for System Software, May 1999.

[18] G. Morrisett, D. Walker, K. Crary, and N. Glew. From Sys-
tem F to typed assembly language. ACM Trans. on Program-
ming Languages and Systems, 21(3):527–568, 1999.

[19] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. Prac-
tical solutions for QoS-based resource allocation problems.
In IEEE Real-Time Systems Symposium, December 1998.

[20] D. Rosu, K. Schwan, and S. Yalamanchili. FARA - a frame-
work for adaptive resource allocation in complex real-time
systems. In Proceedings of the 4th IEEE Real-Time Tech-
nology and Applications Symposium, June 1998.

[21] C. Small and M. I. Seltzer. A comparison of OS exten-
sion technologies. In USENIX Annual Technical Confer-
ence, pages 41–54, 1996.

[22] V. Uhlig, U. Dannowski, E. Skoglund, A. Haeberlen, and
G. Heiser. Performance of address-space multiplexing on
the Pentium. Technical Report 2002-1, University of Karl-
sruhe, Germany, 2002.

[23] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Software-
based fault isolation. In Proceedings of the 14th ACM Sym-
posium on Operating Systems Principles, December 1993.

[24] D. A. Wallach, D. R. Engler, and M. F. Kaashoek. Ashs:
Application-specific handlers for high-performance messag-
ing. In ACM Communication Architectures, Protocols, and
Applications (SIGCOMM ’96), 1996.

[25] R. West and J. Gloudon. ‘QoS safe’ kernel extensions for
real-time resource management. In the 14th EuroMicro In-
ternational Conference on Real-Time Systems, June 2002.

[26] R. West and G. Wong. Cuckoo: a language for implementing
memory- and thread-safe system services. In Proceedings of
the International Conference on Programming Languages
and Compilers, June 2005.

