
Hijack: Taking Control of COTS Systems for Real-Time User-Level Services ∗

Gabriel Parmer and Richard West

Computer Science Department
Boston University
Boston, MA 02215

{gabep1,richwest}@cs.bu.edu

Abstract

This paper focuses on a technique to empower
commercial-off-the-shelf (COTS) systems with an execution
environment, and corresponding services, to support real-
time and embedded applications. By leveraging COTS sys-
tems, we are able to reduce the potentially expensive main-
tenance and development costs of proprietary solutions. We
describe a system called “Hijack” that enables user-level
services to take control of features such as CPU scheduling,
interrupt handling and synchronization. In contrast to other
approaches that support real-time tasks within the kernel of
commodity systems such as Linux, Hijack provides the basis
for predictable thread execution at user-level. No changes
to the kernel source code are required to support this ap-
proach. Instead, Hijack works by using a combination of
kernel module support and an interposed execution envi-
ronment between traditional process address spaces and the
kernel. This technique enables system calls and hardware
interrupts to be intercepted with bounded latencies via the
kernel module, that passes control to a user-level real-time
executive. From within the executive, system-wide services
and policies can be deployed to over-ride certain features
of the underlying kernel, while still leveraging base kernel
services where appropriate.

Using this technique, we show how a vanilla Linux sys-
tem can be hijacked to support predictable service execu-
tion using a series of user-defined policies. In particular,
we show how to deliver and process asynchronous events
with bounded latency, using interposition agents within a
Hijack execution environment. Results show that for real-
time streaming applications, Hijack is able to receive and
process packets with significantly lower loss rates and jitter
compared to using alternative application-level processes
for the same task.

∗This material is based upon work supported by the National Science
Foundation under Grant No. 0615153. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.

1. Introduction

In order to eliminate the costs of proprietary systems
and special purpose hardware, many real-time and em-
bedded computing platforms are being built on commod-
ity operating systems and generic hardware. For example,
RTLinux [17], RTAI [16] and the Resource Kernel [11] are
real-time systems built using Linux, with modifications to
ensure predictability. Commodity systems are a desirable
basis for real-time computing platforms because they poten-
tially reduce development and maintenance costs compared
to special purpose systems. They also provide a common
code-base, including numerous device drivers, which can
potentially be utilized in a diverse range of computing envi-
ronments.

While real-time systems such as those mentioned above
leverage Linux, they either require real-time tasks to run
within the kernel protection domain (which is the case with
RTLinux Free and RTAI) or they require changes to the
kernel source code (e.g., to add resource reservation poli-
cies, deferrable interrupt mechanisms and high resolution
timing [19]). The goal of our work is to empower com-
modity systems such as Linux with safe, predictable and
efficient execution environments, that isolate real-time tasks
and application-specific services from the kernel. In achiev-
ing this goal, the aim is to avoid changes to the underlying
kernel source code to establish a user-space environment for
application-specific services.

In our previous work on user-level sandboxing
(ULS) [23], we showed how to establish a predictable exe-
cution environment at user-level using commonly-available
hardware protection mechanisms (such as paging). Our
ULS scheme enables real-time tasks and custom services
to be deployed and then executed with bounded and low la-
tency when corresponding system events occur. However,
while ULS provides the basis to implement “first-class ser-
vices” at user-level 1, it does not provide a complete ex-

1We define a “first-class service” at user-level as having the same priv-
ileges and capabilities, where possible, as kernel services, with the excep-
tion that the kernel can revoke access rights to such services if they abuse

ecution environment necessary to over-ride all inherently
non-real-time services of the host kernel. Likewise, ULS
still requires application-specific services that rely on ker-
nel services to use the standard system call interface, which
is often insufficient to capture the requirements of real-time
applications.

This work, therefore, is motivated by the desire to take
the philosophy of user-level sandboxing, to build a real-time
execution environment on top of a non-real-time commod-
ity operating system. The resultant “Hijack” system uses a
kernel loadable module to intercept system calls and hard-
ware interrupts, so they may be directed to a user-space ex-
ecution environment which enforces predictable service ex-
ecution. Henceforth, we will refer to Hijack’s user-space
execution environment as a “real-time executive”, which
is essentially a protection domain (similar to that in ULS)
mapped into a specific virtual address range in all real-time
processes. The purpose of this real-time executive is to
manage interposition code that mediates access to system
resources in a controlled and predictable manner. Funda-
mentally, then, Hijack offers the capabilities to interpose
user-level code between both system calls and hardware
interrupts for predictable real-time execution, whereas our
ULS work focuses on low-latency execution of application-
specific services without recourse to the underlying kernel
scheduler (that is inherently non-real-time).

By interposing code at the system interface we are able
to modify the behavior of existing system calls, or add new
ones, thereby potentially bridging the semantic gap between
application needs and the service provisions of the under-
lying kernel. For example, we could have system calls
that set priorities and timeslices be intercepted and han-
dled in a real-time executive using a completely different
scheduling policy to that of the underlying kernel. As will
be seen in later sections, Hijack offers the ability to rede-
fine and add application-specific services that can be built
on pre-existing kernel functionality. The degree to which
the underlying kernel supports predictability ultimately dic-
tates the predictability of Hijack services that rely on ker-
nel functions. For this reason, we focus on soft real-time
support (e.g., for multimedia streaming and resource parti-
tioning for virtual machines) due to the unpredictability of
low-level services in COTS systems such as Linux. How-
ever, the Hijack philosophy is largely independent of the
underlying kernel and, should that kernel offer highly pre-
dictable and bounded service execution (e.g., in RTLinux)
there is no reason why Hijack services could not be tailored
to hard real-time applications also.

The next section describes the implementation of Hijack
in more detail, as it relates to an underlying Linux kernel.
This is followed in Section 3 by an evaluation of Hijack us-
ing a series of experiments to show the predictability and

their privileges.

efficiency of services deployed in a user-space real-time ex-
ecutive. Related work is then outlined in Section 4. Finally,
conclusions and future work are discussed in Section 5.

2. Hijack: Implementation Details

Figure 1 shows the Hijack system architecture.

Kernel module
Host Kernel

. . .

Background
process

Guest Guest

Hardware (I/O devices)

Executive

Interrupts

IDT

Syscall
interception

Schedule / dispatch

Hijack execution
environment

Unintercepted syscalls

Figure 1. The Hijack system architecture.

2.1. The Hijack Execution Environment

The Hijack execution environment consists of a real-time
executive, and a number of “guest” real-time tasks. The sys-
tem architecture allows for the non-real-time background
processes to co-exist and interact with the host kernel if so
desired. However, for the purposes of enforcing predictable
execution of real-time tasks and services, Hijack requires
changes to the page table mappings of all guest address
spaces so they have a traditional process-private area and
a shared region for the executive.

Hijack’s execution environment is similar to that in our
prior work on ULS [23], but leverages page global bits
rather than superpages to minimize the cost of invoking
and returning from executive services. Hijack relies only
on paging, which is more commonly found on modern pro-
cessors. With Hijack, all processes’ page table entries are
modified so that, on the x86 architecture, their global bits
are set by default. A shared virtual address space is reserved
in each guest for one or more pages of the real-time execu-
tive. When a thread is executing within the process-private
address space of a guest, the executive’s address memory
area is not mapped into the guest. This guarantees that
application-specific real-time services loaded into the ex-
ecutive are not accessible to guest code executing outside
the executive, thereby enforcing a degree of memory pro-
tection. In contrast, when the Hijack real-time executive is
activated, it is mapped into the address space of the current
guest using traditional memory mapping techniques.

Observe that in our ULS approach, a sandbox area
is mapped a-priori into every process address space and
marked as being kernel-accessible until it is activated (at
which time the page, or pages, of the sandbox are set to
be user-level accessible). The advantage of the Hijack ap-
proach is that the executive can support code that uses
memory-mapping, while this is not possible using ULS. In
fact, we explicitly disable the mmap() functionality within
the standard C library in our ULS work. Whereas we take
advantage of 4MB super-pages on the Pentium-class pro-
cessors in ULS, here we instead rely on global page bits.

On the Pentium-class processors the global bit within a
page table entry controls whether or not that page is flushed
from the translation look-aside buffer (or, TLB, used to
cache virtual-to-physical address translations) when there is
a context-switch. By context-switch, we mean a change to
the page tables used to identify the address space of a given
protection domain. On the Pentium processor, the CR3 reg-
ister acts as a page directory base register and stores the
physical address of a two-level page-table hierarchy for the
current execution context. Any modifications to the value
of CR3 forces all non-global pages to be flushed from the
TLB.

By careful manipulation of page global bits, control flow
from Hijack’s real-time executive back to a process-private
guest area results in only the page table mappings of the
executive being flushed from the TLB. In this manner, code
executing within a guest’s private memory area cannot inad-
vertently access addresses within the executive, while also
ensuring the TLB does not have to be reloaded for the
guest. Hence, this leads to a relatively fast method for safely
switching between the real-time executive and guest mem-
ory areas. It is worth noting that one could individually
invalidate all pages of a Hijack executive rather than flush-
ing all non-global pages (by modifying CR3) but experi-
ence shows this to be more expensive for moderately-sized
executives occupying at least several page frames. Admit-
tedly, switching between Hijack guest processes, or one
guest process and a background non-real-time process (op-
erating outside Hijack’s control) leads to increased cost due
to having to toggle page global entries in the CR4 register
of the processor. However, one of the main thrusts of this
work is to optimize for communication and protection be-
tween real-time guests and the Hijack executive. As seen in
the microbenchmarks in Section 3.1 these costs are not pro-
hibitive. If the increased costs for page-table switching are
deemed unacceptable for a given application, we can eas-
ily modify our approach to use super-pages as in our ULS
work. In fact, we can even leverage hardware-specific fea-
tures such as segmentation, to implement a small-space [20]
execution domain but the focus of this work is to provide an
environment in which system policies can be redefined or
introduced for application-specific needs.

A guest executing within the Hijack execution environ-
ment behaves essentially like any traditional process run-
ning on the host system. The only difference is that guests
execute only when scheduled by the Hijack executive. In
turn, the executive is activated by upcalls from a Hijack
kernel module that intercepts interrupts generated either by
hardware (e.g., devices or the CPU itself) or software (e.g.,
due to faults or system calls). In this manner, the timer inter-
rupt can be bound to an upcall into the executive to update
various state variables pertaining to the execution time of
guests, and also to schedule new guest threads when appro-
priate. In the current approach, however, the Hijack execu-
tive has a single thread of control, which can be thought of
as a virtual processor for all subsequent guest threads. The
executive thread of control, which invokes the Hijack sched-
uler and dispatcher is itself scheduled by the host kernel. To
ensure the predictable execution of the scheduler within the
executive, its corresponding thread is assigned the highest
priority amongst all threads seen by the host kernel.

Observe that for all types of kernel events, including I/O
completion and timer expiration, predictable execution of
code within the executive is ensured because it is the high-
est priority thread in the system. Given this scenario, any
scheduling policy can be hierarchically composed within
the executive, as is the case with the work on Hierarchi-
cal Loadable Schedulers (HLS) [15]. Additionally, the Hi-
jack execution environment has the capability to manage
and multiplex between multiple guest address spaces. This
capability is provided by the kernel module that creates and
switches between address spaces on behalf of the executive.

Given that we wish to utilize the services of the host sys-
tem, guests are allowed to link with libraries and make sys-
tem calls. Any system call from a guest is automatically
redirected to the Hijack kernel module. For our current im-
plementation using Linux 2.6.13 on the x86 architecture,
system calls are made using the SYSENTER instruction. We
are able to redirect control flow via system calls into our ker-
nel module by carefully setting the appropriate model spe-
cific registers (MSRs) associated with SYSENTER to indi-
rectly update the CS, EIP, SS and ESP registers. These af-
fect the stack and instruction pointer (i.e., program counter)
values when system calls are made. For Linux systems that
use the old INT 0x80 software interrupt to perform sys-
tem calls, the Hijack kernel module modifies the interrupt
descriptor table (IDT) to remap vector entry 0x80 to an
address from where it can execute system call interception
code. This same method of modifying the IDT is used to in-
tercept other interrupts, and exceptions such as page faults,
so that the Hijack executive can execute its own handler
code via upcalls from the kernel module.

Kernel module
Host Kernel

. . .

Executive

Guest Guest

executive state

(to be restored)

saved guest state

syscall

Kernel module
Host Kernel

. . .

Executive

Guest Guest

saved guest state

(to be restored)

saved
executive state

Figure 2. (a) System call interposition, and (b) return from the executive to a guest.

2.2. The Hijack Interposition Mechanism

The Hijack application programming interface allows for
interposition agents [8, 5] to be loaded and invoked as part
of the execution path of system calls and interrupt handlers.
For example, a system call can be intercepted by interposi-
tion code that changes the values of its arguments, replaces
the system call, and/or enshrouds the system call with added
functionality. In this way, the Hijack executive can perform
validity checks on guest service requests to ensure quality of
service (QoS) guarantees are met without jeopardizing the
predictability of other guests in the system. Alternatively,
the semantic gap imposed by an application-agnostic sys-
tem interface of, say, UNIX can be bridged with functional-
ity in the executive, to ensure the needs of applications are
better met by the underlying system services. For exam-
ple, the Hijack executive may include interposition code for
POSIX system calls such as sched setscheduler()
and sched setparam() on a vanilla Linux system, so
that a policy of type SCHED OTHERmimics that of earliest-
deadline first scheduling.

In this paper, we focus on Hijack’s ability to support sys-
tem call interposition and controlled guest execution for the
purposes of soft real-time execution on non-real-time COTS
systems. To support this, Hijack has to manage both the
flow of control originating with a system call in a guest that
leads to execution in the executive, and also the return of
control from the executive back to the corresponding guest.
When a guest issues a system call (Figure 2(a)), the Hi-
jack executive is unmapped and therefore inaccessible in
the guest address space. However, at the time of the trap to
the host kernel, the Hijack kernel module intercepts the sys-
tem call and maps the page (or pages) of the executive into
the calling guest address space. This is done by updating
appropriate entries in the page directory (PGD) of the cur-
rent execution context. At this point, the machine (register)
state is stored by the kernel module on behalf of the current
guest, gcurrent. Observe that a guest’s state is stored in a
well-defined location within the executive, so that the exec-

utive is able to modify appropriate state values as necessary.
The kernel module then disables subsequent interception of
system calls since these will be made within the executive
as part of any interposition code associated with the guest’s
system call. Finally, control must be passed to the executive
so that specific interposition code can execute. This is done
by reloading machine state for a specific entry point into the
executive.

After the interposition code finishes, control flow needs
to return to either gcurrent or perhaps another guest thread
as dictated by the scheduling policy within the executive
(Figure 2(b)). First, the return from the interposition code
traps into the kernel module where the machine state on be-
half of the executive can be stored. The previously saved
state of the guest chosen by the executive to resume execu-
tion is now loaded into the processor registers. If the execu-
tive switches between guests, it also changes the active page
tables. Regardless, access to the pages of the executive are
then disabled to ensure guest code cannot affect its integrity.
This is done by clearing the PGD entries for the executive in
the context of the selected guest, and also flushing the TLB
to remove any stale mappings. System call interposition is
re-enabled so that subsequent system calls within the guest
pass through the executive.

Page fault interception. Observe that the Hijack system
architecture includes page fault interception, in additional
to system call interception. This is necessary because the
host system (here Linux) maintains software mappings for
the executive in the current address space, and we should
not allow a guest to access the executive directly from user-
space. This would potentially allow a guest to violate the
integrity of the executive. Observe that a guest attempting
to access a virtual address within the executive, when the
executive is unmapped, will lead to a page fault. Ordinarily,
the host kernel will map the missing page into the caller’s
address space but, with Hijack, we simply disallow this by
interposing code on the page fault hardware interrupt. In
fact, Hijack’s interposition mechanism has the capability to
take some form of action when a potential safety violation

like this occurs, such as aborting the offending guest.
In other faulting situations, such as a guest causing a seg-

mentation violation, the host kernel can deliver a SIGSEGV
signal to the executive. This way, the executive can take ap-
propriate action rather than having itself being terminated
by a guest. We will discuss event notification issues further
in the following subsection.

2.3. Kernel Event Notification

The Hijack system architecture allows user-defined exec-
utive code to execute in response to various system events,
in particular those triggered via signals. In essence, asyn-
chronous event notification can be handled with bounded
and lower latency than would be possible if we had to switch
to a specific guest to handle a given event, or can be vec-
tored to a specific guest at the executive’s discretion.

If a signal occurs during the execution of a guest (rather
than executive code) it is delivered to a function called
signal handler(), located 8KB below the execu-
tive’s base virtual address (see Figure 3). Using an alter-
native stack whose space is allocated above the executive
memory region, the signal handler() function issues
a special system call notification down into the Hijack ker-
nel module. This system call is intercepted as explained in
Section 2.2, so that the executive is mapped into the guest’s
virtual address space. Control flow passes to the executive
which is notified of the signal generated during the guest’s
execution so that it can now be handled in an executive-
defined manner. Before the specific signal is handled, the
executive copies guest state saved by the kernel when the
signal occurred to the area where guest’s state is stored (so
that the executive can later re-enable it), and then the exec-
utive re-enables signals.

signal_handler

4KB guard page

executive stack

4KB guard page

sigaltstack

executive

read-only

0x3FC00000

read-writable

Figure 3. Hijack memory layout.

If a signal occurs during execution within the executive,
control flow passes to the signal handler() function,
which can detect that the executive’s memory region is ac-
cessible. This function directly invokes the signal handling
routine defined within the executive. When complete, the

signal handler executes a sigreturn system call to re-
turn to the state of the executive’s execution context before
the signal event.

It would be straightforward to modify the kernel’s source
code to directly deliver a signal to the executive. However,
because we want to avoid kernel source code changes to
support Hijack, we use the method described above to dif-
ferentiate the occurrence of a signal during guest versus ex-
ecutive execution.

3. Experimental Evaluation

All experiments are performed on IBM xSeries 305 e-
server machines with Pentium IV, 2.4 GHz processors and
904 MB of available RAM. Each computer has a tigon3 gi-
gabit Ethernet card, connected by a switched gigabit net-
work. We use Linux version 2.6.13 as the host operating
system with a clock-tick (or jiffy) set to 10 milliseconds.

3.1 Microbenchmarks

Fundamentally, for the Hijack system to provide exe-
cution environments that are both efficient and predictable
for the guests executing in them, the interactions between
the guests and the executive, and between the executive
and the host kernel must not impose an unreasonable over-
head. Thus to investigate the viability of the approach,
Table 1 presents microbenchmarks pertinent to the perfor-
mance of the system. Additionally, the performance of stan-
dard UNIX mechanisms is included for comparison. Each
microbenchmark was run 10000 times and the average re-
ported.

Operation Cost in CPU cycles

System Call 430

RPC from Guest to

Executive & back to Guest 2900

Trap from Guest to Executive 1250

Interposition using

POSIX ptrace 26000

RPC Between Two Hijack Guests

(Separate Page Tables) 9250

RPC Between Two Processes

Using UNIX Pipes 14500

Table 1. Hijack system performance.

Protected interposition is fundamental to Hijack and al-
lows the executive to translate guest requests for service into
predictable and real-time aware forms, while the executive
remains isolated from the guests. The efficiency of interpo-
sition is examined in the first half of the table. In this case,

when a guest requests service by making a system call, Hi-
jack traps to the executive, which makes that system call on
the guest’s behalf, then returns to the guest. The total cost of
interposition, therefore, includes both the cost of a system
call (430 cycles) and the round-trip cost of RPC between
the guest and executive (2900 cycles). Cumulatively, this is
nearly eight times more efficient than performing interpo-
sition with the POSIX ptrace mechanism. The ptrace
microbenchmark includes the cost of retrieving the guest
register state to identify the requested system call. We ac-
knowledge that ptrace is intended as a debugging inter-
face and is therefore not focused on efficiency, let alone pre-
dictability, but it is essentially the only facility on UNIX
systems to support interposition. In fact, systems such as
User-Mode Linux [21] provide a virtual execution environ-
ment for guest Linux processes using ptrace, in the ab-
sence of host kernel modifications. Note that from Table 1,
it takes approximately 1650 cycles to return from the exec-
utive to the guest. This is the round-trip cost between the
guest and executive minus the cost of a one-way trap to the
executive. Returning from the executive to the guest is more
expensive than the contrary direction, as all the executive’s
page table entries are flushed from the TLB, which amounts
to a non-trivial overhead on Pentium IV processors.

The second section of the table compares the pipe RPC
mechanism in UNIX systems, with comparable function-
ality to perform a round-trip transfer of one byte of data
between a pair of Hijack guests via the executive. As can
be seen, Hijack RPC between two guests executes approx-
imately 36% faster than traditional pipes (i.e., 9250 cycles
versus 14500), even with the added cost of manipulating
global bits when transitioning between guests. Addition-
ally, traditional pipe latency is not predictable as the kernel
scheduler can introduce delays due to multiple tasks in its
run queue. In contrast, the real-time executive is capable of
defining its own RPC semantics between guests to ensure
predictable communication. In general, Hijack does not in-
duce unacceptable performance penalties due to protected
interposition and the communication it entails.

TLB Costs. To complement the above benchmarks, Fig-
ure 4 depicts a series of simple remote procedure call (RPC)
tests that measure the impact of the TLB on performance.
The working set size of a Hijack guest or, equivalently,
Linux client process is varied in terms of the number of in-
struction and data pages it uses. To do this, we make jumps
to instructions, or reads from addresses, that are 4160 bytes
apart to minimize cache interference. This is similar to our
own work on ULS [23], and that of “small spaces” [20] in
L4. For Hijack guests, RPC involves exchanging four bytes
with a function in the executive, while an equivalent Linux
pipe experiment exchanges the same data between two sep-
arate processes.

As can be seen from Figure 4, the control path using

Hijack is far less costly in terms of clock cycles, because
only the pages of the executive need to be mapped and
then flushed during the round-trip communication with a
guest. In contrast, a Linux pipe will involve flushing the
entire TLB when switching between processes (triggered
by a modification to CR3 to reference new page table map-
pings). This is emphasized by the observed TLB misses
(for user-level pages) as a function of instruction working
set size in Figure 4(c). Shown in this figure is the impact
on the TLB when making a conventional system call (here
using getppid()) down into the host kernel. This refer-
ence line shows the LRU replacement policy on the instruc-
tion TLB, which is clearly noticeable from the step increase
in misses around the i-TLB capacity (of 128 page entries
on the Pentium 4). For the Hijack RPC, there are 6 TLB
misses to flush the executive on the return to a guest. Only
when the i-TLB is filled to capacity do we observe addi-
tional misses using Hijack and even then the increase is at
a rate of about 2 misses per additional page until the work-
ing set is almost double the i-TLB capacity. We speculate
that global pages are being evicted from the i-TLB accord-
ing to some different policy than LRU but, nonetheless, Hi-
jack never incurs more TLB costs than conventional pipes.
These experiments clearly demonstrate the benefit of our
scheme using global bits to avoid flushing corresponding
guest pages from the TLB.

3.2 Kernel Event Notification

In addition to interposition, the notification of kernel
events to Hijack must be efficient and predictable. For in-
stance, the predictable notification that a given amount of
time has expired (commonly manifested as a clock-tick) is
necessary for any scheduling algorithm to be performed in
the executive. Additionally, in order to respond to hard-
ware events such as packet reception or sensor information
in a bounded amount of time, the executive must be notified
of these events predictably. Mechanisms such as signals,
and traditional event notification system calls (select,
poll, etc. . .) are not predictable in general-purpose sys-
tems, as they are subject to non-real-time scheduling delays
of corresponding processes. Because the Hijack thread is
the highest priority in the system it is assured of predictable
event notifications. To demonstrate this, a task is set to re-
ceive a SIGALRM signal as frequently as possible using the
setitimer system call. A number of CPU-bound tasks
are run in the background, and the average inter-arrival time
of each delivered signal is measured with the time-stamp
counter provided by Pentium IV processors. Ideally, the
inter-arrival time will be every clock tick on the host sys-
tem, which is every 10 milliseconds (as configured in the
Linux kernel).

Figure 5 shows the average signal inter-arrival time for

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 50 100 150 200 250 300

C
yc

le
s

Data WSS

Hijack Guest -> Executive RPC
Linux Pipe

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 50 100 150 200 250 300

C
yc

le
s

Instruction WSS

Hijack Guest -> Executive RPC
Linux Pipe

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300

iT

LB
 M

is
se

s

Instruction WSS

Hijack Guest -> Executive RPC
Linux Pipe

System Call

Figure 4. TLB Impact on RPC.

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0 1 2 3 4

Number of Background CPU Bound Tasks

A
ve

ra
ge

 S
ig

na
l I

nt
er

ar
riv

al
 T

im
e

(m
ill

is
ec

on
ds

)

Hijack
Linux Task

Figure 5. Predictability of kernel events.

two situations. In the first case (labeled “Hijack”), the signal
is received by the Hijack executive itself, which uses its own
round-robin scheduler to order the execution of 0 to 4 back-
ground guests. In the second case (labeled “Linux Task”),
a signal is delivered to a normal Linux task in the presence
of 0 to 4 background tasks all scheduled in a round-robin
manner by the host kernel. As can be seen, Hijack main-
tains a predictable event reception inter-arrival time of 10
milliseconds, while the default Linux case yields increasing
inter-arrival times as more background tasks are scheduled
by the host.

Predictable kernel event notification allows the timely
processing of external events. Figure 6 shows the perfor-
mance of a nanosleep system call, that allows a task to
sleep for a specified number of nanoseconds. The perfor-
mance of nanosleep can have a significant impact on
time-sensitive applications, and researchers have gone to
great lengths, such as modifying COTS systems, to achieve
a more predictable implementation [6].

The prevalent cause of unpredictability in nanosleep
is due to two factors. First, like other event-notification
mechanisms, the notification of a sleep timer expiration is
subject to the system scheduler which, in COTS systems,
is often not ideal for real-time tasks. Second, for sleep
periods that expire before the next system clock tick, the

1

10

100

1000

10000

100000

0 1 2 3 4

Number of Background CPU Bound Tasks

Ji
tte

r
(T

en
s

of
 M

ic
ro

se
co

nd
s)

Hijack
Linux Task
Hijack Extended

Figure 6. nanosleep predictability.

kernel will wake up the task too late, at the time of that
clock tick 2. This can lead to nanosleep having a prac-
tical granularity of the frequency of the system clock. Us-
ing Hijack, and the predictable delivery of clock ticks from
the kernel, we implement two improvements to the tradi-
tional nanosleep call. First, the Hijack version sim-
ply alleviates the scheduling problem by always deliver-
ing an expired sleep period notification to the executive
regardless of which guest is currently loaded. From this
point, the executive can wake up the specific guest whose
nanosleep duration has expired. This might be an appropri-
ate policy for systems where predictable sleeping periods
are more important than task fairness. Second, the Hijack
Extended case attempts to (in addition to the changes
mentioned above) provide a practical sleeping granularity
significantly less than a clock tick. This case will rely on
predictable clock ticks for detecting sleeps expiring after
the next tick, while the executive busy waits when expira-
tion times are less than a clock tick. This is not a general
solution as the time spent busy waiting might be significant
and, if there are other tasks in the system, they will not be al-

2With the exception of modern Linux systems which will busy wait for
expiration times less than 2 microseconds.

lowed to execute while the executive busy waits. Thus over-
all throughput can decrease, while predictability improves.
Hijack allows the redefinition of such system policies if it is
appropriate for the task at hand.

Figure 6 presents the results using nanosleep in
different systems. In each case, a task executes the
nanosleep system call a number of times starting with
a sleep value of 100 nanoseconds and increasing by half a
millisecond each call up until a sleep for one tenth of a sec-
ond. A time stamp is recorded before the system call and
immediately after, and the actual amount of time slept is
compared to the requested sleep period and the difference
is recorded as the jitter. This setup is used in the two cases
described above, and also with a single Linux task without
the Hijack system. The number of background CPU-bound
tasks (guests in Hijack) is altered to trigger scheduler inter-
ference, and the average jitter is reported. One can see that
the jitter for Hijack case does not vary significantly as the
number of background tasks changes. This is because the
executive defines the policy for predictable sleeping, and is
therefore able to wakeup and immediately execute a sleep-
ing guest when its sleep period ends (albeit at the granu-
larity of a clock tick). Hijack allows the system policies to
be redefined as in the Hijack Extended case where the
executive busy waits for waiting periods less than a clock
tick. The jitter in this case is orders less than the others be-
cause its sleeping granularity is significantly smaller than
the other cases.

Note that the functionality presented in this section can
be implemented in a number of alternative ways. However,
the purpose of these experiments is to demonstrate the pre-
dictability of kernel event notifications and the functional
capabilities of the Hijack software architecture. Hijack
is able to support predictable functionality in a protected
way that could not easily be achieved either by library-
based services linked into the address spaces of untrusted
application-level processes, or by convoluted manipulation
of underlying system services using conventional system
calls. In effect, services implemented within Hijack’s ex-
ecutive hide these issues from the guest applications.

3.3 Using Hijack for QoS based Resource
Allocation

This section demonstrates the ability of Hijack to ef-
ficiently and predictably manage resources based on QoS
constraints. Multiple tasks concurrently process different
streams incoming from the network, so there is competition
for system resources such as CPU cycles. There are four
tasks in the system, whereby Task0 is reserved a through-
put of 35,000 packets/second, Task1 is reserved 20,000
packets/second, Task2 is reserved 10,000 packets/second
and Task3 is best effort, and should consume any surplus

resources when all reservations are met.
The experiments involve four hosts, B,C,D and E

sending UDP packet streams of 42,000 packets/second to
the four tasks on a destination host A. Each packet is 16
bytes and consists of a serial number which is used to deter-
mine if and when packets are dropped, and also a timestamp
when the corresponding packet is sent into the network. Im-
mediately upon reception of a packet at host A by the cor-
responding task, another cycle timestamp is recorded. Con-
tiguous timestamps within packets from the same stream
yield the inter-send time for those packets, whereas con-
tiguous timestamps recorded upon packet reception yield
inter-arrival times. The difference between the inter-send
time and the inter-arrival time for two contiguously received
packets is what we define as the jitter for those packets.
Each task receives packets, stores them, and once 15,000
have been received, computes the total number of packets
delivered per second, amount dropped, and the average and
maximum jitter. Reservations are currently made in pack-
ets/second, but it would be trivial to extend the reservations
to bits/second.

// init_tokens(task) is an immutable initial
// token allocation for a task

// curr_tokens(task) is the current number
// of tokens for a task

// ’tasks’ array is sorted from highest QoS to lowest

main_event_loop () {
next = NULL;

select on the file descriptors for each task;

if (timing period has expired) {
for (each task in tasks)

curr_tokens(task) = init_tokens(task);
}

for (each task in tasks) {
if (select indicated that task has data) AND

(curr_tokens(task) > 0) {
next = task;
break;

}
}
if (next == NULL)

next = best_effort_task;
execute next;

}

guest_syscall_read(guest_fd, guest_buf, guest_size) {
fd = translate_to_host_fd(guest_fd);

loop until (read doesn’t return data) OR
(curr_tokens(task) == 0) {

read(fd, guest_buf, guest_size); //nonblocking
curr_tokens(task)--;

}
}

Figure 7. Hijack I/O scheduling algorithm.

Here, we segregate the experiment into three distinct im-
plementations. First, the same prio case: each and every

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5 10 15 20 25 30

N
um

be
r

of
 p

ac
ke

ts
 d

el
iv

er
ed

 to
 a

 ta
sk

Time (seconds)

Task 0
Task 1
Task 2
Task 3

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5 10 15 20 25 30

N
um

be
r

of
 p

ac
ke

ts
 d

el
iv

er
ed

 to
 a

 ta
sk

Time (seconds)

Task 0
Task 1
Task 2
Task 3

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5 10 15 20 25 30

N
um

be
r

of
 p

ac
ke

ts
 d

el
iv

er
ed

 to
 a

 ta
sk

Time (seconds)

Task 0
Task 1
Task 2
Task 3

Figure 8. Packets delivered using (a) Hijack, (b) same priority tasks, and (c) different priority tasks.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5 10 15 20 25 30

N
um

be
r

of
 p

ac
ke

ts
 d

ro
pp

ed

Time (seconds)

Task 0
Task 1
Task 2
Task 3

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5 10 15 20 25 30

N
um

be
r

of
 p

ac
ke

ts
 d

ro
pp

ed

Time (seconds)

Task 0
Task 1
Task 2
Task 3

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5 10 15 20 25 30

N
um

be
r

of
 p

ac
ke

ts
 d

ro
pp

ed

Time (seconds)

Task 0
Task 1
Task 2
Task 3

Figure 9. Packets dropped using (a) Hijack, (b) same priority tasks, and (c) different priority tasks.

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25 30

M
ax

im
um

 s
tr

ea
m

 ji
tte

r
(c

yc
le

s)

Time (seconds)

Task 0
Task 1
Task 2
Task 3

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25 30

M
ax

im
um

 s
tr

ea
m

 ji
tte

r
(c

yc
le

s)

Time (seconds)

Task 0
Task 1
Task 2
Task 3

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25 30

M
ax

im
um

 s
tr

ea
m

 ji
tte

r
(c

yc
le

s)

Time (seconds)

Task 0
Task 1
Task 2
Task 3

Figure 10. Max. stream jitter using (a) Hijack, (b) same priority tasks, and (c) different priority tasks.

Linux task is set to run using the SCHED RR scheduling
policy with the same fixed priority, with each task servicing
a data-stream. Second, the diff prio case is similar to
same prio, except that Task0 has the highest priority,
Task1 has the second highest, Task2 has the third highest,
and Task3, the best effort task, has the lowest priority of
the four. This assignment of priorities attempts to approxi-
mate the QoS requirements of the tasks, by reflecting their
relative importance. Third, the hijack case, each task is
run as a guest in a Hijack execution environment with a real-
time executive scheduling the guests appropriately based on
their QoS requirements.

The executive runs a QoS-aware algorithm simplified in
Figure 7. Tasks are allocated a number of tokens commen-
surate with the number of messages they need to receive
per second. The tokens allocated to a task are refreshed
periodically, at 10 times per second. Tasks are scheduled

based on two factors: (1) the presence of available pack-
ets to process for that task’s stream, and (2) the task’s
QoS. In the algorithm, a task’s tokens are specified by
the init tokens(task) value. As tasks execute, their
tokens are depleted. When a task is executed, it will read
from its corresponding packet stream, and the read service
request will be interposed by the executive. The executive
will continuously read packets from the corresponding data-
stream into the guest’s buffer using non-blocking I/O until
there is no pending data, the guest has run out of buffer
space, or the task runs out of tokens.

In each of the experiments, the best effort task, Task3,
begins (at t=0) receiving its data-stream. At five second
intervals, Task2, Task1, and Task0, respectively, start re-
ceiving data. This leads the system from an under-load to
overload situation. Figure 8 depicts the number of pack-
ets per second delivered to each task (for, left-to-right:

hijack, same prio, and diff prio cases). Like-
wise, Figure 9 plots the amount of packets dropped per sec-
ond for each task.

In both cases that use task priorities within Linux, there
is no notion of QoS-aware I/O, so no reservations are made
for the appropriate tasks. In hijack, the appropriate amount
of I/O processing is performed for each task to maintain its
reservation, while the best effort task uses any surplus re-
sources. When using the same priorities for tasks there is
no differentiation between delivery and drop rates of pack-
ets across the four corresponding streams. Contrarily, when
using different task priorities, the two tasks with highest pri-
orities receive a disproportionate degree of service relative
to the two least important tasks. Effectively, Task0 and
Task1 are being allocated resource shares above their re-
quired levels, while starving Task2 and Task3.

The final set of graphs in Figure 10 show the maximum
jitter in the delivery of data streams. The same prio case
reflects the same quality of service to all four streams and,
consequently, results in the same jitter in packet reception
across all four tasks. While hijack leads to greater jitter
for lower priority tasks, Task0 actually experiences less jit-
ter and, hence, more favorable service than any of the tasks
in the same prio case. In contrast, the diff prio case
maintains relative low maximum jitter for the two highest
priority tasks which receive service, at the cost of infinite
delay (and, therefore, extreme jitter) for the two least im-
portant tasks.

Our results for average jitter show similar patterns to
those for maximum jitter and have therefore been omitted,
for brevity. We acknowledge that hijack results in more jit-
ter for the two lowest QoS tasks, compared to the same
prio case, but this is consistent with the relative service
rates of those tasks. Moreover, only hijack is able to
achieve the desired service rates for the QoS-constrained
tasks.

In summary, Hijack provides the basis for implementing
efficient and predictable QoS-constrained resource and task
management policies. The above experiments demonstrate
that QoS based decisions regarding resource usage can be
manifested in Hijack to provide more predictable service
guarantees.

4. Related Work

In the operating systems community, there have been
various research endeavors ranging from system structure
to extensibility that relate to our work. Micro-kernels such
as Mach [1] and L4 [9, 10] originally considered the idea of
isolating all but the most basic service abstractions outside
the core kernel protection domain. We adhere to this phi-
losophy with our work, by providing an execution environ-
ment as part of Hijack that resides outside the base kernel.

The benefit of this approach, for us, is not only in terms of
the added safety due to isolating the kernel from untrusted
application-specific services, but also in that we can lever-
age a largely unmodified COTS system including all of its
pre-written services and low-level device drivers.

Extensible systems such as VINO [18] and SPIN [3] are
designed from the ground-up to support application-specific
services within the kernel, but such untrusted code is pre-
vented from jeopardizing the integrity of the system us-
ing techniques such as software-based fault isolation [22]
and/or type-safe languages [7, 24]. Our approach differs, in
that we wish to support application-specific real-time ser-
vices and predictable service invocation outside the base
kernel. To that end, our work is an attempt to empower off-
the-shelf systems with features to support predictable and
application-configurable real-time services.

Using off-the-shelf systems in real-time systems has
been the focus of a number of research groups for some
years [13, 14, 17, 16, 19, 11]. RTLinux and RTAI, for ex-
ample, provide support for hard real-time tasks by modify-
ing a base Linux kernel to essentially intercept the delivery
of interrupts. In this way, non-real-time tasks can be de-
ferred while hard real-time tasks execute with bounded and
low latency. Such approaches have proved to be very ef-
fective for real-time computing but, for the most part, these
approaches are “shared address space” systems, in which
real-time tasks execute within the kernel address space. As
stated earlier, our approach isolates real-time tasks and ser-
vices outside the core kernel. Since Hijack services may
make use of the underlying services of the base kernel, in
a manner similar to KURT [19] and Linux/RK [11], there
is possibility for some unpredictability due to e.g., inter-
rupts being disabled in host device drivers for synchroniza-
tion purposes. In such cases, Hijack services would be most
suitable for soft, as opposed to hard, real-time computing
supported by approaches such as RTLinux. While we have
chosen to implement Hijack on a COTS Linux system, it
would be possible to provide a similar infrastructure on sys-
tems such as RTLinux, thereby allowing Hijack services to
rely on very predictable services of the underlying kernel.
In effect, reliance on any underlying services of the host
kernel dictates the suitability of Hijack to hard or soft real-
time applications.

Given that we now have the ability to insert code be-
tween applications and the kernel we have, in effect, an ef-
ficient and predictable execution environment for middle-
ware services. Specifically, systems such as Tao [12] that
are built using CORBA must isolate real-time services in
process-private address spaces, that are subject to non-real-
time scheduling and IPC mechanisms of the host system.

Other related work includes the Drops system [10].
Drops has been used as the basis for L4RTL, a real-time
variant of the L4 micro-kernel, that isolates real-time tasks,

timesharing tasks, and other non-real services in separate
address spaces. While this approach is more endearing to
our philosophy of isolating application-specific real-time
services outside the core kernel, it is more of an attempt to
show how micro-kernels (built from the base hardware up)
can be used for predictable computing. Additionally, the
“small spaces” [20] technique in L4 uses a combination of
page global bits and segmentation to reduce the cost of IPC
between micro-kernel services. We, on the other hand, are
trying to use the basic services of underlying off-the-shelf
systems with interposition [5, 8] features to provide a real-
time execution environment outside the core kernel, with-
out relying on special hardware support such as segmenta-
tion, or specialized OSes. This, in turn, differentiates our
work from other operating systems purposefully designed
for real-time computing, such as QNX, VxWorks, as well
as those systems designed around special hardware protec-
tion features [4].

In many ways, our Hijack executive has similarities to
that of a virtual machine monitor [2], which has the abil-
ity to intercept the execution of guest operating systems
and their applications, thereby ensuring physical resources
are correctly multiplexed between all supported virtual ma-
chines. Hijack intercepts system service requests, rather
than machine instructions, and provides a basis for pre-
dictable application-specific services. This is similar to
User-Mode Linux [21] (UML) that originally used ptrace
to virtualize the system call interface. As shown in Sec-
tion 3.1, ptrace is a relatively inefficient method to sup-
port interposition, as it was originally intended as a de-
bugging facility. A more recent version of UML requires
host kernel modifications, so that guest Linux virtual ma-
chines can execute with improved efficiency. However,
UML makes no attempt to establish an execution environ-
ment with which to support real-time application-specific
services, which is the basis of our work. Moreover, Hijack
avoids changes to the underlying kernel to achieve its inter-
position capabilities.

5. Conclusions and Future Work

Commodity systems are appealing for real-time tasks as
they provide a common code base and a well-tested and sup-
ported environment, lowering maintenance costs and eas-
ing development. However, a semantic gap exists between
the needs of real-time applications and the capabilities of
COTS systems. We address this with a novel mechanism
for “hijacking” an unpredictable kernel, using a real-time
executive deployed at user-level, along with techniques to
interpose code on system calls and hardware interrupts. We
define an interface which allows the executive to manipulate
both address spaces and register states of all guests under its
control. This allows for services (e.g., for real-time schedul-

ing) to be deployed in the Hijack executive, which assumes
precedence over all other control flows in the system.

We demonstrate multiple applications of this mechanism
that provide more predictable system behavior and man-
age system resources, while explicitly taking into account
application-level QoS metrics. This is achieved without
making cumbersome changes to the core kernel of the un-
derlying COTS system. Experimental results show that for a
real-time streaming application, Hijack is able to more pre-
dictably manage resource usage amongst competing tasks
compared to alternative techniques using pre-existing poli-
cies within COTS systems.

Future work involves studying novel services and poli-
cies interposed on hardware interrupts, in addition to those
interposed on system calls and page faults. Additionally,
we intend to investigate strategies for deploying Hijack on
multi-core and multi-processor platforms. While we al-
ready have ideas how to do this, we will investigate tech-
niques that use shadow pages and inter-processor-interrupts
to manipulate per-processor TLBs. Finally, methods to
avoid “QoS crosstalk” [2] will be considered by address-
ing factors such as resource sharing (of caches and synchro-
nization objects, for example) amongst non-real-time back-
ground processes and Hijack guests. Our plan is to have
Hijack and our ongoing ULS [23] code available for down-
load, so that it can be used by the systems community.

6. Acknowledgments

We would like to thank Doug Niehaus and the anony-
mous reviewers, who together have helped improve the
quality of this work.

References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,
A. Tevanian, and M. Young. Mach: A new kernel foundation
for UNIX development. In Summer USENIX Conference,
pages 93–112, 1986.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In Symposium of Operating System
Principles, 2003.

[3] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fi-
uczynski, and B. E. Chambers. Extensibility, safety, and
performance in the SPIN operating system. In Proceedings
of the 15th ACM Symposium on Operating Systems Princi-
ples, pages 267–284, 1995.

[4] T. Chiueh, G. Venkitachalam, and P. Pradhan. Integrat-
ing segmentation and paging protection for safe, efficient
and transparent software extensions. In Proceeedings of the
ACM Symposium on Operating Systems Principles, pages
140–153, 1999.

[5] D. P. Ghormley, S. H. Rodrigues, D. Petrou, and T. E. Ander-
son. Interposition as an operating system extension mecha-
nism. Technical Report CSD-96-920, University of Califor-
nia, Berkeley, September 1997.

[6] A. Goel, L. Abeni, C. Krasic, J. Snow, and J. Walpole. Sup-
porting time-sensitive applications on a commodity os. In
Proceedings of the 5th Symposium on Operating Systems
Design and Implementation (OSDI), December 2002.

[7] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of C. In Proceedings of
the USENIX Annual Technical Conference, June 2002.

[8] M. B. Jones. Interposition agents: Transparently interposing
user code at the system interface. In Proceedings of the 14th
ACM Symposium on Operating Systems Principles, pages
80–93, December 1993.

[9] J. Liedtke. On µ-kernel construction. In Proceedings of
the 15th ACM Symposium on Operating Systems Principles.
ACM, December 1995.

[10] F. Mehnert, M. Hohmuth, and H. Hartig. Cost and benefit
of separate address spaces in real-time operating systems.
In Proceedings of the 23rd IEEE Real-Time Systems Sympo-
sium (RTSS), Austin, Texas, December 2002.

[11] S. Oikawa and R. Rajkumar. Linux/RK: A portable resource
kernel in Linux. In Proceedings of the 4th IEEE Real-
Time Technology and Applications Symposium (RTAS), June
1998.

[12] I. Pyarali, D. C. Schmidt, and R. Cytron. Achieving end-to-
end predictability of the tao real-time corba orb. In Proceed-
ings of the 8th IEEE Real-Time Technology and Applications
Symposium, San Jose, CA, September 2002.

[13] QLinux: http://www.cs.umass.edu/ lass/software/qlinux/.
[14] RED-Linux: http://linux.ece.uci.edu/red-linux/.
[15] J. Regehr and J. Stankovic. Hls: A framework for com-

posing soft real-time schedulers. In Proceedings of the
22nd IEEE Real-Time Systems Symposium (RTSS), Decem-
ber 2001.

[16] Real-Time Application Iinterface: http://www.rtai.org.
[17] Real-Time Linux: http://www.rtlinux.org.
[18] C. Small and M. I. Seltzer. A comparison of OS exten-

sion technologies. In USENIX Annual Technical Confer-
ence, pages 41–54, 1996.

[19] B. Srinivasan, S. Pather, R. Hill, F. Ansari, and D. Niehaus.
A firm real-time system implementation using commercial
off-the-shelf hardware and free software. In Proceedings of
the 4th IEEE Real-Time Technology and Applications Sym-
posium (RTAS), June 1998.

[20] V. Uhlig, U. Dannowski, E. Skoglund, A. Haeberlen, and
G. Heiser. Performance of address-space multiplexing on
the Pentium. Technical Report 2002-1, University of Karl-
sruhe, Germany, 2002.

[21] The user-mode linux kernel home page: http://user-mode-
linux.sourceforge.net/.

[22] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Software-
based fault isolation. In Proceedings of the 14th ACM Sym-
posium on Operating Systems Principles, December 1993.

[23] R. West and G. Parmer. Application-specific service tech-
nologies for commodity operating systems in real-time en-
vironments. In Proceedings of the IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS),
San Jose, California, April 2006.

[24] R. West and G. Wong. Cuckoo: a language for implementing
memory- and thread-safe system services. In Proceedings of
the International Conference on Programming Languages
and Compilers, June 2005.

