Virtual CPU Scheduling in the Quest Operating System
Matthew Danish, Ye Li, and Richard West

Introduction
- Real-time scheduling is about ensuring predictability and temporal isolation.
- Quest is a research operating system developed at Boston University.
- Physical CPU (PCPU) resources are allocated to Virtual CPUs (VCPUs).
- Program threads are assigned to VCPUs.
- Main VCPUs are associated with normal thread execution.
- I/O VCPUs perform interrupt handling on behalf of Main VCPUs, for I/O processing.

Scheduling
- Main VCPUs are Sporadic Servers (SS) [Sprunt 88]: they have a budget that is replenished after an interval.
- Good for processing aperiodic events.

Rate-Monotonic Property
Priority of VCPU \(V_i \) is inversely proportional to period \(T_i \).
Liu-Layland bound: If \(\sum_{i=1}^{n} \frac{T_i}{b_i} \leq n \left(\sqrt{2} - 1 \right) \) then temporal isolation is guaranteed.
Example: \(\frac{1}{3} + \frac{1}{4} + \frac{1}{20} < 3 \left(\sqrt{2} - 1 \right) \)

Blocking
- Programs may choose to wait for arbitrary reasons, or finish early.
- POSIX Sporadic specification is exploitable through this means. [Stanovich 10]
- A clever program can exceed its budget by causing "premature replenishment."

Solution: Split partly-used replenishment upon blocking. [Stanovich 10]
- Spills can later be merged if they wind up back-to-back.

Overhead
- Managing splits and merges is time and space consuming.
- For efficiency, replenishment list size is hard-capped.
- As a trade-off, reaching the cap causes the VCPU to lose effective capacity.

I/O
- Most I/O only uses short bursts of CPU.
- I/O tasks block quite often, usually while waiting for hardware.
- Sporadic Servers doing I/O hit the replenishment cap easily.
- Our alternative for I/O VCPUs: Priority-Inheriting Bandwidth-preserving Servers (PIBS).
- Different VCPUs can co-exist in the same scheduling framework.
- Many different mappings of I/O VCPUs and I/O devices can be designed. Examples:
 - one I/O VCPU system-wide,
 - an I/O VCPU per device, or
 - an I/O VCPU per device per Main VCPU.

PIBS
- I/O VCPUs run on behalf of a Main VCPU.
- They inherit their current priority from that Main VCPU.
- PIB Servers have a target CPU utilization \(U \).
- When the PIB Server consumes \(b \) time units, it must wait \(b / U \) before executing again.
- \(b \leq C_{\text{MAX}} \) where \(C_{\text{MAX}} \) is derived from the resources of the Main VCPU requesting the I/O work.

PIBS vs SS
- Experimental evaluation: network ping-flood begins at \(t = 50 \).
- Compare I/O VCPU algorithm: PIBS vs SS.

I/O Isolation
- In this experiment, VCPU1 uses I/O VCPU to read from the CD-ROM drive.
- Only the lowest priority, VCPU3, is forced to give up capacity.

Future Work
- Mapping VCPUs to PCPUs is the next important step.
- Cache awareness: when VCPUs get to run, try to avoid memory stalls that reduce number of instructions per clock cycle.
- Inter-process communication: the costs of IPC need to be controlled, particularly communication that spans PCPUs.
- Safety and modularity: separate components using hardware and software techniques. Isolate them with VCPUs.

Further Info
- Danish, Li and West. Virtual CPU Scheduling in the Quest Operating System. In Proceedings of the 17th IEEE Real-Time and Embedded Technology and Applications Symposium, April 11-14th, 2011, Chicago, IL, USA.
- Quest is free software.
- Website: http://QuestOS.github.com/