
�

Computer Science

Process-aware Interrupt Scheduling and 
Accounting

Yuting Zhang and Richard West

Boston University
Boston, MA

{danazh,richwest}@cs.bu.edu

Introduction

� While many RT operating systems exist, aim of this work is 
to empower off-the-shelf systems with predictable service 
management
� Leverage widely-deployed systems having low 

development and maintenance costs
� Add safe, predictable and efficient app-specific services 

to commodity OSes for real-time use

� Focus of this talk specifically on improving predictability 
and accountability of interrupt processing

Commodity OSes for Real-Time

� Many variants based on systems such as Linux:
� Linux/RK, QLinux, RED-Linux, RTAI, KURT Linux, and 

RT Linux
� e.g., RTLinux Free provides predictable execution of 

kernel-level real-time tasks
� Bounds are enforced on interrupt processing 

overheads by deferring non-RT tasks when RT tasks 
require service

� NOTE: Many commodity systems suffer 
unpredictability (unbounded delays) due to interrupt-
disabling, e.g., in critical sections of poorly-written 
device drivers

The Problem of Interrupts

� Asynchronous events e.g., from hardware completing I/O requests and 
timer interrupts…
� Affect process/thread scheduling decisions
� Typically invoke interrupt handlers at priorities above those of

processes/threads
� i.e., interrupt scheduling disparate from process/thread 

scheduling

� Time spent handling interrupts impacts the timeliness of RT tasks and 
their ability to meet deadlines

� Overhead of handling an interrupt is charged to the process that is 
running when the interrupt occurs
� Not necessarily the process associated (if any) with the interrupt

Goals

� How to properly account for interrupt processing and 
correctly charge CPU time overheads to correct process, 
where possible

� How to schedule deferrable interrupt handling so that 
predictable task execution is guaranteed

Interrupt Handling

� Interrupt service routines are often split into “top” and 
“bottom” halves
� Idea is to avoid lengthy periods of time in “interrupt 

context”
� Top half executed at time of interrupt but bottom half may 

be deferred (e.g., to a schedulable thread)



�

Process-Independent Interrupt Service

� Traditional approach:
� I/O service request via kernel
� OS sends request to device 

via driver code;
� Hardware device responds w/ 

an interrupt, handled by a 
“top half”

� Deferrable “bottom half”
completes service for prior 
interrupt and wakes waiting 
process(es) – Usually runs w/ 
interrupts enabled

� A woken process can then be 
scheduled to resume after 
blocking I/O request

Processes

OS

Interrupt handler

Top Halves

Bottom Halves

P1 P2 P3 P4

Hardware

interrupts

1

2

3

4

1

2

3

4

Example: Linux

� Avoid undue impact of interrupt handling on CPU time for a 
running process

� Execute a finite # of pending deferrable fns after top half 
execution (in “interrupt context”)
� Linux deferrable fns: softirqs and tasklets (bottom 

halves now deprecated)
� Iterate through softirq handling a fixed number of times 

to avoid undue delay to processes but good 
responsiveness for interrupts (e.g., via network)

� Defer subsequent bottom halves to threads
� Awaken “ksoftirqd_CPUn” kernel thread

Linux Problems

� A real-time or high-priority blocked process waiting on I/O 
may be unduly delayed by a deferred bottom half
� Mismatch between bottom half priority and process

� Interrupt handling takes place in context of an arbitrary 
process
� May lead to incorrect CPU time accounting

� Why not schedule bottom halves in accordance with 
priorities of processes affected by their execution?

� For fairness and predictability: charge CPU time of interrupt 
handling to affected process(es), where possible

Process-Aware Interrupt Handling

� Not all interrupts associated with specific processes
� e.g., timer interrupt to update system clock tick, IPIs…
� Not necessarily a problem if we can account for such 

costs in execution time of tasks e.g., during scheduling

� I/O requests via syscalls (e.g., read/write) associate a 
process with a device that may generate an interrupt
� For this class of interrupts we assign process priorities to 

bottom half (deferrable) interrupt handling

� Allow top halves to run with immediate effect but consider 
dependency between bottom halves and processes

Bottom Half Scheduling / Accounting

� Modify Linux kernel to include interrupt 
accounting 
� TSC measurements on bottom halves
� Determine target process for interrupt 

processing and update system time 
accordingly

� BH/interrupt scheduler immediately 
between do_irq() and do_softirq()
� Predict target process associated with 

interrupt and set BH priority 
accordingly

BH schedulerOS

Interrupt handler

Top Halves

Bottom Halves

BH accounter

Interrupt Accounting Algorithm

� Measure the average execution time of a bottom half (BH) 
across multiple BH executions
� On x86 use rdtsc since time granularity typically < 1 clock 

tick
� Measure total interrupts processed and # processed for 

each process in 1 clock tick
� Adjust system CPU time for processes due to mischarged

interrupt costs

� For simplicity, focus on interrupts for one device type (e.g., 
NIC) but idea applies to all I/O devices



�

System CPU Time Compensation (1/2)

� N(t) - integer # interrupts whose total BH execution time = 1 
clock tick (or jiffy)
� Actually use an Exponentially-Weighted Moving Avg for 

N(t), N’(t)

� N’(t) = (1-γ)N’(t-1) + γ N(t) | 0 < γ < 1

� m(t) - # interrupts processed in last clock tick
� xk(t) - # unaccounted interrupts for process Pk

� Let Pi(t) be active at time t
� m(t) – xi(t) (if +ve) is # interrupts overcharged to Pi

System CPU Time Compensation (2/2)

� At each clock tick (do_timer) update accounting info as 
follows:

xi(t) = xi(t) – m(t);     // current # under-charged if +ve
sign = sign of (xi(t));
while (abs(xi(t)) >= N(t)) // update integer # of jiffies

� system_time(Pi) += 1*sign;
� timeslice(Pi) -= 1*sign;
� xi(t) = xi(t) – N(t);

m(t) = 0;

Example: System CPU Time Compensation

t0 1 2 3 4 5 6 7 8P1

P1 P3 P4

P1

P2 P1 P3

I1 I2 I1 I3 I2 I3 I1 I1 I4 I3 I2I1 I1 I4 I3 I2 I1 I1 I3I3

P2

x1(1): -3 + 2 = -1,           x2(2): -1 + 1= 0,  
x3(3): -2 + 2 = 0, x4(4) : -3 + 1 =-2, 
x4(5): -2 + -4+ 0= -6,     x2(6): 0 + -2 + 2 = 0,
x1(7): -1 + -2+ 4= 1,      x3(8): 0 + -3 + 4 = 1,

Interrupt Scheduling Algorithm

� (1) Find candidates associated with interrupt on device, D
� In top half can determine D
� A blocked process waiting on D may be associated with 

the interrupt
� We require I/O requests to register process ID and 

priorities with corresponding device
� (2) Predicting process associated with interrupt on D

� At end of top half select highest priority (ρmax(D)) from 
processes waiting on D 

� Use a heap structure for waiting processes
� (3) Compare priority of BH with running process

� If (ρmax(D) = ρBH) > ρcurrent run BH else process

Interrupt Scheduling Observations

� No need for ksoftirqd_CPUn
� Run interrupt scheduler at time of process scheduling
� If pending BH highest prio run in context of current 

process, else do switch to highest prio process

� Setting prio of BH (ρBH) to highest process prio (ρmax(D) ) for 
device D
� Rationale: no worse than current approach of always 

preferring BH (at least for finite occurrences) over 
process
� Simple priority scheme can provide better predictability 

for more important processes

Example: Interrupt Scheduling (1/3)

� t1: P1 issues I/O request and blocks, allowing P2 to run
� t2: top half interrupt processing for P1 in P2’s context
� t3: top half completes
� t4-t5: bottom half runs
� t6: P1 wakes up and runs

t1 t6

Interrupt Handler

Process

Hardware

P1 P2

It1 IB1

P1

t2 t3 t4

t5

�����	�
�������



�

Example: Interrupt Scheduling (2/3)

� Previous case: top and bottom half processing charged to P2

� Our approach: correctly charge bottom half processing to P1

Interrupt Handler

Process

Hardware

P1 P2

It1 IB1

P1

t2 t3 t4

t1 t6t5

Example: Interrupt Scheduling (3/3)

� If P2 is higher priority than P1, let P2 finish and defer the BH 
for P1

Interrupt Handler

Process

Hardware

P1

It1 IB1

P1

t1

t2 t3 t4

t5

P2

System Implementation

� Implemented scheduling & accounting framework on top of 
existing Linux bottom half (specifically, softirq) mechanism

� Focus on network packet reception (NET_RX_SOFTIRQ)
� Read TSC for each net_rx_action call as part of softirq
� Determine # pkts received in one clock tick
� udp_rcv() identifies proper socket/process for arriving pkt(s)

� Modify account_system_time() to compensate processes

� Interrupt scheduling code implemented in do_softirq()
� Before call to softirq handler (e.g., net_rx_action())

Linux Control Path for UDP Packet Reception

bind()
connect()

sys_ bind()
sys_ connect()

read()
recv()

recvfrom()

sock_recvmsg()

sock_common_recvmsg()

udp_recvmsg()

skb_recv_datagram()

wait_for_packet()
(block)

(device specific irq handler)

netif_rx_schedule(dev)

__raise_softirq_irqoff

net_rx_action()

(device specific poll fn)

netif_receive_skb()

do_softirq()

udp_rcv()

udp_queue_rcv_skb()

sock_def_readable()

wakeup_interruptible()

wait_for_packet()
(wake up)

skb_copy_datagram_iovec()

read()
recv()

recvfrom()User

Kernel

Hardware

skb_recv_datagram()

Experiments

� UDP server receives pkts on designated port
� CPU-bound process also active on server to observe 

effect of interrupt handling due to pkt processing
� UDP client sends pkts to server at adjustable rates

� Machines have 2.4GHz Pentium IV uniprocessors and 
1.2GB RAM each

� Gigabit Ethernet connectivity
� Linux 2.6.14 with 100Hz timer resolution

� Compare base 2.6.14 kernel w/ our patched kernel running 
accounting (Linux-IA) and scheduling (Linux-ISA) code

Accounting Accuracy

� CPU-bound process set to real-time priority 50 in 
SCHED_FIFO class
� Repeatedly runs for 100 secs & then sleeps 10 secs

� UDP server process non-real-time
� UDP client sends 512 byte pkts to server at constant rate 

� Read /proc/pid/stat to measure user/system time



�

Accounting Accuracy Results

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

2000

4000

6000

8000

10000

12000

14000

Packet Sending Rate (103 pkt/s))# 
Ji

ffi
es

 A
cc

ou
nt

ed
 fo

r 
C

P
U

-b
ou

nd
 P

ro
ce

ss

 

 

Linux
Linux-IA
Opt

� Optimal case (Opt) is total user/system-level CPU time that should be charged to 
CPU-bound process discounting unrelated interrupt processing

� Linux-IA close to optimal but original Linux miss-charges all interrupt processing 

Ratio of Accounting Error to Optimal

� Error as high as 60% in Linux 
� Less than 20% and more often less than 5% using Linux-IA

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218

10

20

30

40

50

60

Packet Sending Rate (103 pkt/s))

A
cc

o
un

tin
g 

E
rr

o
r 

(%
)

Linux
Linux-IA

Absolute Compensated Time

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

1000

2000

3000

4000

Packet Sending Rate (103 pkt/s))

A
bs

(C
om

pe
ns

at
ed

 T
im

e)
 (

jif
fie

s)

 

 

CPU-bound
UDP-Server(a)
UDP-Server(b)

� UDP-Server(a) – charged time for interrupts over 100s of each 110s period of 
CPU bound process

� UDP-Server(b) – charged time over full 110s period
� CPU-bound – system service time deducted from CPU-bound process

Bottom Half Scheduling Effects

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

2000

4000

6000

8000

10000

12000

Packet Sending Rate (103 pkt/s))# 
Ji

ffi
es

 C
on

su
m

ed
 b

y 
C

P
U

-b
ou

nd
 P

ro
ce

ss

 

 

Linux
Linux-ISA

� Linux – CPU-bound process affected by interrupts
� Linux-ISA – defer bottom-half interrupt processing until (higher priority) 

real-time CPU-bound process sleeps

Time Consumed by Interrupts (every 
110s)

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

1000

2000

3000

4000

5000

Packet Sending Rate (103 pkt/s))

# 
Ji

ffi
es

 C
on

su
m

ed
 b

y 
In

te
rr

up
ts

 

 

Linux
Linux-ISA

� Time consumed by CPU-server every 110s handling interrupts
� Linux-ISA – bottom half handling deferred to interval [100-110s]
� Linux – bottom half processing not deferred

UDP-Server Packet Reception Rate

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

2

4

6

8

10

12

Packet Sending Rate (103 pkt/s))

%
 P

kt
s 

R
ec

ei
ve

d 
by

 U
D

P
-s

er
ve

r

 

 

Linux
Linux-ISA



�

Bursty Packet Transmission Experiments

� UDP-client sends bursts of pkts w/ avg geometric sizes of 
5000 pkts
� Different avg exponential burst inter-arrival times

� CPU-bound process is periodic w/ C=0.95s and T=1.0s
� Runs for 100s as before

� Deadline at end of each 1s period

Deadline Miss Rate

� Linux-ISA – no missed deadlines for CPU-bound process
� Bottom half interrupt handling deferred until CPU-bound process 

completes each period

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

20

40

60

80

100

Packet Sending Rate (103 pkt/s))

D
ea

dl
in

e 
M

is
s 

R
at

e 
(%

)

Linux
Linux-ISA

Interrupt Overheads (100s interval)

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

500

1000

1500

2000

2500

Packet Sending Rate (103 pkt/s))

# 
Ji

ffi
e

s 
C

on
su

m
ed

 b
y 

In
te

rr
up

ts

 

 

Linux
Linux-ISA

Performance of UDP-server 

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

2

4

6

8

10

12

Packet Sending Rate (103 pkt/s))

%
 P

kt
s 

R
ec

e
iv

ed
 b

y 
U

D
P

-s
er

ve
r

 

 

Linux
Linux-ISA

� CPU-bound process cannot finish executing in 1s period when interrupt 
overheads are high
� Always competes for CPU cycles, starving lower priority UDP-server

� Linux-ISA guarantees “slack” time usage for UDP-server

Conclusions and Future Work

� Explore dependency between processes and interrupts
� Focus on bottom half scheduling and accounting

� Compensate processes for time spent in bottom halves
� Charge correct processes benefiting from interrupts

� Unify the scheduling of bottom half interrupt handlers w/ 
processes 
� Improve predictability of real-time tasks while avoiding 

undue interrupt-handling overheads
� Consequently, benefit non-real-time tasks also!

� Future? Better predictors of process(es) associated w/ 
interrupts for scheduling purposes

� Interrupt management on multi-processors/cores


