1. (a) Given points $p_1 = (1, 6, 5)$ and $p_2 = (-2, 2, 5)$, solve for v_1 the vector from p_1 to p_2.
 (b) Given a third point $p_3 = (0, 6, 5)$, solve for v_2 the vector from p_1 to p_3.

2. (a) Find the value for the magnitude of v_1.
 (b) Find the value for the magnitude of v_2.

3. (a) Solve for the unit vector in the direction of v_1.
 (b) Solve for the unit vector in the direction of v_2.

4. (a) Solve for the vector (cross) product $v_1 \times v_2$.
 (b) Solve for $v_2 \times v_1$.

5. Solve for the scalar (dot) product $v_2 \cdot v_1$.

6. If two vectors $u, v \in \mathbb{R}^n$ are orthogonal, what is the value of their scalar (dot) product?

7. Which of the following are unit vectors?
 $$(\frac{1}{2}, -\frac{1}{2}, 0) \quad (0, -1, 0) \quad \frac{1}{25}(-3, 0, 4)$$

8. We are given two non-zero vectors $u, v \in \mathbb{R}^3$. Assume the angle between u and v satisfies $0 < \theta < \frac{\pi}{2}$. Use dot products and/or cross products of u and v to give expressions for:
 (a) $\cos \theta$
 (b) $\sin \theta$
 (c) A vector perpendicular to both u and v

9. Given three square matrices $Q, R, S \in \mathbb{R}^{n \times n}$, which statements are true in general?
 (a) $(QRS)^{-1} = S^{-1}R^{-1}Q^{-1}$
 (b) $QR = RQ$
 (c) $(QRS)^T = Q^TR^TS^T$
 (d) $Q(R + S) = QS + QR$