
ptg

1.1 BASIC PROGRAMMING MODEL

Our study of algorithms is based upon implementing them as programs written in
the Java programming language. We do so for several reasons:

■ Our programs are concise, elegant, and complete descriptions of algorithms.
■ You can run the programs to study properties of the algorithms.
■ You can put the algorithms immediately to good use in applications.

These are important and significant advantages over the alternatives of working with
English-language descriptions of algorithms.

A potential downside to this approach is that we have to work with a specific pro-
gramming language, possibly making it difficult to separate the idea of the algorithm
from the details of its implementation. Our implementations are designed to mitigate
this difficulty, by using programming constructs that are both found in many modern
languages and needed to adequately describe the algorithms.

We use only a small subset of Java. While we stop short of formally defining the
subset that we use, you will see that we make use of relatively few Java constructs, and
that we emphasize those that are found in many modern programming languages. The
code that we present is complete, and our expectation is that you will download it and
execute it, on our test data or test data of your own choosing.

We refer to the programming constructs, software libraries, and operating system
features that we use to implement and describe algorithms as our programming model.
In this section and Section 1.2, we fully describe this programming model. The treat-
ment is self-contained and primarily intended for documentation and for your refer-
ence in understanding any code in the book. The model we describe is the same model
introduced in our book An Introduction to Programming in Java: An Interdisciplinary
Approach, which provides a slower-paced introduction to the material.

For reference, the figure on the facing page depicts a complete Java program that
illustrates many of the basic features of our programming model. We use this code for
examples when discussing language features, but defer considering it in detail to page
46 (it implements a classic algorithm known as binary search and tests it for an applica-
tion known as whitelist filtering). We assume that you have experience programming
in some modern language, so that you are likely to recognize many of these features in
this code. Page references are included in the annotations to help you find answers to
any questions that you might have. Since our code is somewhat stylized and we strive
to make consistent use of various Java idioms and constructs, it is worthwhile even for
experienced Java programmers to read the information in this section.

8

From <www.wowebook.com>

ptg

import java.util.Arrays;

public class BinarySearch
{
 public static int rank(int key, int[] a)
 {
 int lo = 0;
 int hi = a.length - 1;
 while (lo <= hi)
 {
 int mid = lo + (hi - lo) / 2;
 if (key < a[mid]) hi = mid - 1;
 else if (key > a[mid]) lo = mid + 1;
 else return mid;
 }
 return -1;
 }

 public static void main(String[] args)
 {

 int[] whitelist = In.readInts(args[0]);

 Arrays.sort(whitelist);

 while (!StdIn.isEmpty())
 {
 int key = StdIn.readInt();
 if (rank(key, whitelist) == -1)
 StdOut.println(key);
 }
 }

}

expression (see page 11)

call a method in our standard library;
need to download code (see page 27)

call a method in a Java library (see page 27)

call a local method
(see page 27)

import a Java library (see page 27)

code must be in file BinarySearch.java (see page 26)

initializing
declaration statement

(see page 16)

command line
(see page 36)

static method (see page 22)

unit test client (see page 26)

loop statement
(see page 15)

conditional statement
(see page 15)

system calls main()

system passes argument value
"whitelist.txt" to main()

Anatomy of a Java program and its invocation from the command line

parameter
variables

return type parameter type

return statement

no return value; just side effects (see page 24)

% java BinarySearch largeW.txt < largeT.txt

499569
984875
...

file name (args[0])

file redirectd from StdIn
(see page 40)

StdOut
(see page 37)

91.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

Basic structure of a Java program A Java program (class) is either a library of
static methods (functions) or a data type definition. To create libraries of static methods
and data-type definitions, we use the following five components, the basis of program-
ming in Java and many other modern languages:

■

Primitive data types precisely define the meaning of terms like integer, real num-
ber, and boolean value within a computer program. Their definition includes the
set of possible values and operations on those values, which can be combined
into expressions like mathematical expressions that define values.

■

Statements allow us to define a computation by creating and assigning values to
variables, controlling execution flow, or causing side effects. We use six types of
statements: declarations, assignments, conditionals, loops, calls, and returns.

■ Arrays allow us to work with multiple values of the same type.
■ Static methods allow us to encapsulate and reuse code and to develop programs

as a set of independent modules.
■ Strings are sequences of characters. Some operations on them are built in to Java.
■ Input/output sets up communication between programs and the outside world.
■

Data abstraction extends encapsulation and reuse to allow us to define non-
primitive data types, thus supporting object-oriented programming.

In this section, we will consider the first five of these in turn. Data abstraction is the
topic of the next section.

Running a Java program involves interacting with an operating system or a program
development environment. For clarity and economy, we describe such actions in terms
of a virtual terminal, where we interact with programs by typing commands to the
system. See the booksite for details on using a virtual terminal on your system, or for
information on using one of the many more advanced program development environ-
ments that are available on modern systems.

For example, BinarySearch is two static methods, rank() and main(). The first
static method, rank(), is four statements: two declarations, a loop (which is itself an as-
signment and two conditionals), and a return. The second, main(), is three statements:
a declaration, a call, and a loop (which is itself an assignment and a conditional).

To invoke a Java program, we first compile it using the javac command, then run it us-
ing the java command. For example, to run BinarySearch, we first type the command
javac BinarySearch.java (which creates a file BinarySearch.class that contains
a lower-level version of the program in Java bytecode in the file BinarySearch.class).
Then we type java BinarySearch (followed by a whitelist file name) to transfer con-
trol to the bytecode version of the program. To develop a basis for understanding the
effect of these actions, we next consider in detail primitive data types and expressions,
the various kinds of Java statements, arrays, static methods, strings, and input/output.

10 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

 Primitive data types and expressions A data type is a set of values and a set of
operations on those values. We begin by considering the following four primitive data
types that are the basis of the Java language:

■ Integers, with arithmetic operations (int)
■ Real numbers, again with arithmetic operations (double)
■ Booleans, the set of values { true, false } with logical operations (boolean)
■

Characters, the alphanumeric characters and symbols that you type (char)
Next we consider mechanisms for specifying values and operations for these types.

A Java program manipulates variables that are named with identifiers. Each variable
is associated with a data type and stores one of the permissible data-type values. In Java
code, we use expressions like familiar mathematical expressions to apply the operations
associated with each type. For primitive types, we use identifiers to refer to variables,
operator symbols such as + - * / to specify operations, literals such as 1 or 3.14 to
specify values, and expressions such as (x + 2.236)/2 to specify operations on values.
The purpose of an expression is to define one of the data-type values.

term examples definition

primitive
data type int double boolean char

a set of values and a set of
operations on those values

(built in to the Java language)

identifier a abc Ab$ a_b ab123 lo hi
a sequence of letters, digits,
_, and $, the first of which is

not a digit

variable [any identifier] names a data-type value

operator + - * / names a data-type operation

literal source-code representation
of a value

int 1 0 -42

double 2.0 1.0e-15 3.14

boolean true false

char 'a' '+' '9' '\n'

expression

a literal, a variable, or a
sequence of operations on

literals and/or variables that
produces a value

int lo + (hi - lo)/2

double 1.0e-15 * t

boolean lo <= hi

Basic building blocks for Java programs

111.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

To define a data type, we need only specify the values and the set of operations on
those values. This information is summarized in the table below for Java’s int, double,
boolean, and char data types. These data types are similar to the basic data types found
in many programming languages. For int and double, the operations are familiar
arithmetic operations; for boolean, they are familiar logical operations. It is important
to note that +, -, *, and / are overloaded—the same symbol specifies operations in mul-
tiple different types, depending on context. The key property of these primitive opera-
tions is that an operation involving values of a given type has a value of that type. This rule
highlights the idea that we are often working with approximate values, since it is often
the case that the exact value that would seem to be defined by the expression is not a
value of the type. For example, 5/3 has the value 1 and 5.0/3.0 has a value very close
to 1.66666666666667 but neither of these is exactly equal to 5/3. This table is far from
complete; we discuss some additional operators and various exceptional situations that
we occasionally need to consider in the Q&A at the end of this section.

type set of values operators
typical expressions

expression value

int

integers between
231 and�231� 1
(32-bit two’s
complement)

+ (add)
- (subtract)
* (multiply)
/ (divide)

% (remainder)

5 + 3

5 - 3

5 * 3

5 / 3

5 % 3

8

2

15

1

2

double

double-precision
real numbers

(64-bit IEEE 754
standard)

+ (add)
- (subtract)
* (multiply)
/ (divide)

3.141 - .03

2.0 - 2.0e-7

100 * .015

6.02e23 / 2.0

3.111

1.9999998

1.5

3.01e23

boolean true or false

&& (and)
|| (or)
! (not)
^ (xor)

true && false

false || true

!false

true ^ true

false

true

true

false

char
characters
(16-bit)

[arithmetic operations, rarely used]

 Primitive data types in Java

12 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

 Expressions. As illustrated in the table at the bottom of the previous page, typical ex-
pressions are infix: a literal (or an expression), followed by an operator, followed by
another literal (or another expression). When an expression contains more than one
operator, the order in which they are applied is often significant, so the following pre-
cedence conventions are part of the Java language specification: The operators * and / (
and %) have higher precedence than (are applied before) the + and - operators; among
logical operators, ! is the highest precedence, followed by && and then ||. Generally,
operators of the same precedence are applied left to right. As in standard arithmetic ex-
pressions, you can use parentheses to override these rules. Since precedence rules vary
slightly from language to language, we use parentheses and otherwise strive to avoid
dependence on precedence rules in our code.

 Type conversion. Numbers are automatically promoted to a more inclusive type if no
information is lost. For example, in the expression 1 + 2.5 , the 1 is promoted to the
double value 1.0 and the expression evaluates to the double value 3.5 . A cast is a type
name in parentheses within an expression, a directive to convert the following value
into a value of that type. For example (int) 3.7 is 3 and (double) 3 is 3.0. Note that
casting to an int is truncation instead of rounding—rules for casting within compli-
cated expressions can be intricate, and casts should be used sparingly and with care. A
best practice is to use expressions that involve literals or variables of a single type.

 Comparisons. The following operators compare two values of the same type and
produce a boolean value: equal (==), not equal (!=), less than (<), less than or equal
(<=), greater than (>), and greater than or equal (>=). These operators are known as
mixed-type operators because their value is boolean, not the type of the values being
compared. An expression with a boolean value is known as a boolean expression. Such
expressions are essential components in conditional and loop statements, as we will see.

Other primitive types. Java’s int has 232 different values by design, so it can be repre-
sented in a 32-bit machine word (many machines have 64-bit words nowadays, but the
32-bit int persists). Similarly, the double standard specifies a 64-bit representation.
These data-type sizes are adequate for typical applications that use integers and real
numbers. To provide flexibility, Java has five additional primitive data types:

■ 64-bit integers, with arithmetic operations (long)
■ 16-bit integers, with arithmetic operations (short)
■ 16-bit characters, with arithmetic operations (char)
■ 8-bit integers, with arithmetic operations (byte)
■ 32-bit single-precision real numbers, again with arithmetic operations (float)

We most often use int and double arithmetic operations in this book, so we do not
consider the others (which are very similar) in further detail here.

131.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

 Statements A Java program is composed of statements, which define the computa-
tion by creating and manipulating variables, assigning data-type values to them, and
controlling the flow of execution of such operations. Statements are often organized in
blocks, sequences of statements within curly braces.

■ Declarations create variables of a specified type and name them with identifiers.
■ Assignments associate a data-type value (defined by an expression) with a vari-

able. Java also has several implicit assignment idioms for changing the value of a
data-type value relative to its current value, such as incrementing the value of an
integer variable.

■ Conditionals provide for a simple change in the flow of execution—execute the
statements in one of two blocks, depending on a specified condition.

■ Loops provide for a more profound change in the flow of execution—execute the
statements in a block as long as a given condition is true.

■

Calls and returns relate to static methods (see page 22), which provide another way
to change the flow of execution and to organize code.

A program is a sequence of statements, with declarations, assignments, conditionals,
loops, calls, and returns. Programs typically have a nested structure : a statement among
the statements in a block within a conditional or a loop may itself be a conditional or a
loop. For example, the while loop in rank() contains an if statement. Next, we con-
sider each of these types of statements in turn.

 Declarations. A declaration statement associates a variable name with a type at com-
pile time. Java requires us to use declarations to specify the names and types of vari-
ables. By doing so, we are being explicit about any computation that we are specify-
ing. Java is said to be a strongly typed language, because the Java compiler checks for
consistency (for example, it does not permit us to multiply a boolean and a double).
Declarations can appear anywhere before a variable is first used—most often, we put
them at the point of first use. The scope of a variable is the part of the program where it
is defined. Generally the scope of a variable is composed of the statements that follow
the declaration in the same block as the declaration.

 Assignments. An assignment statement associates a data-type value (defined by an ex-
pression) with a variable. When we write c = a + b in Java, we are not expressing
mathematical equality, but are instead expressing an action: set the value of the vari-
able c to be the value of a plus the value of b. It is true that c is mathematically equal
to a + b immediately after the assignment statement has been executed, but the point
of the statement is to change the value of c (if necessary). The left-hand side of an as-
signment statement must be a single variable; the right-hand side can be an arbitrary
expression that produces a value of the type.

14 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

 Conditionals. Most computations require different actions for different inputs. One
way to express these differences in Java is the if statement:

if (<boolean expression>) { <block statements> }

This description introduces a formal notation known as a template that we use occa-
sionally to specify the format of Java constructs. We put within angle brackets (< >)
a construct that we have already defined, to indicate that we can use any instance of
that construct where specified. In this case, <boolean expression> represents an
expression that has a boolean value, such as one involving a comparison operation,
and < block statements> represents a sequence of Java statements. It is possible to
make formal definitions of <boolean expression> and <block statements>, but
we refrain from going into that level of detail. The meaning of an if statement is self-
explanatory: the statement(s) in the block are to be executed if and only if the boolean
expression is true. The if-else statement:

if (<boolean expression>) { <block statements> }
else { <block statements> }

allows for choosing between two alternative blocks of statements.

 Loops. Many computations are inherently repetitive. The basic Java construct for han-
dling such computations has the following format:

while (<boolean expression>) { <block statements> }

The while statement has the same form as the if statement (the only difference being
the use of the keyword while instead of if), but the meaning is quite different. It is an
instruction to the computer to behave as follows: if the boolean expression is false,
do nothing; if the boolean expression is true, execute the sequence of statements in
the block (just as with if) but then check the boolean expression again, execute the se-
quence of statements in the block again if the boolean expression is true, and continue
as long as the boolean expression is true. We refer to the statements in the block in a
loop as the body of the loop.

Break and continue. Some situations call for slightly more complicated control flow
than provide by the basic if and while statements. Accordingly, Java supports two ad-
ditional statements for use within while loops:

■ The break statement, which immediately exits the loop
■ The continue statement, which immediately begins the next iteration of the

loop
We rarely use these statements in the code in this book (and many programmers never
use them), but they do considerably simplify code in certain instances.

151.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

Shortcut notations There are several ways to express a given computation; we
seek clear, elegant, and efficient code. Such code often takes advantage of the following
widely used shortcuts (that are found in many languages, not just Java).

 Initializing declarations. We can combine a declaration with an assignment to ini-
tialize a variable at the same time that it is declared (created). For example, the code
int i = 1; creates an int variable named i and assigns it the initial value 1. A best
practice is to use this mechanism close to first use of the variable (to limit scope).

 Implicit assignments. The following shortcuts are available when our purpose is to
modify a variable’s value relative to its current value:

■ Increment/decrement operators: i++ is the same as i = i + 1 and has the value
i in an expression. Similarly, i-- is the same as i = i - 1. The code ++i and
--i are the same except that the expression value is taken after the increment/
decrement, not before.

■ Other compound operations: Prepending a binary operator to the = in an as-
signment is equivalent to using the variable on the left as the first operand.
For example, the code i/=2; is equivalent to the code i = i/2; Note that
i += 1; has the same effect as i = i+1; (and i++).

 Single-statement blocks. If a block of statements in a conditional or a loop has only a
single statement, the curly braces may be omitted.

 For notation. Many loops follow this scheme: initialize an index variable to some val-
ue and then use a while loop to test a loop continuation condition involving the index
variable, where the last statement in the while loop increments the index variable. You
can express such loops compactly with Java’s for notation:

for (<initialize>; <boolean expression>; <increment>)
{
 <block statements>

}

This code is, with only a few exceptions, equivalent to

<initialize>;
while (<boolean expression>)
{
 <block statements>
 <increment>;
}

We use for loops to support this initialize-and-increment programming idiom.

16 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

statement examples definition

declaration
int i;

double c;

create a variable of a specified type,
named with a given identifier

assignment
a = b + 3;

discriminant = b*b - 4.0*c;
assign a data-type value to a variable

initializing
declaration

int i = 1;

double c = 3.141592625;

declaration that also assigns an
initial value

implicit
assignment

i++;

i += 1;
i = i + 1;

conditional (if) if (x < 0) x = -x;
execute a statement,

depending on boolean expression

conditional
(if-else)

if (x > y) max = x;
else max = y;

execute one or the other statement,
depending on boolean expression

loop (while)

int v = 0;

while (v <= N)

 v = 2*v;

double t = c;

while (Math.abs(t - c/t) > 1e-15*t)

 t = (c/t + t) / 2.0;

execute statement
until boolean expression is false

loop (for)

for (int i = 1; i <= N; i++)

 sum += 1.0/i;

for (int i = 0; i <= N; i++)

 StdOut.println(2*Math.PI*i/N);

compact version of while statement

call int key = StdIn.readInt(); invoke other methods (see page 22)

return return false; return from a method (see page 24)

Java statements

171.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

 Arrays An array stores a sequence of values that are all of the same type. We want
not only to store values but also to access each individual value. The method that we
use to refer to individual values in an array is numbering and then indexing them. If
we have N values, we think of them as being numbered from 0 to N�1. Then, we can
unambiguously specify one of them in Java code by using the notation a[i] to refer to
the ith value for any value of i from 0 to N-1. This Java construct is known as a one-
dimensional array.

Creating and initializing an array. Making an array in a Java program involves three
distinct steps:

■ Declare the array name and type.
■ Create the array.
■ Initialize the array values.

To declare the array, you need to specify a name and the type of data it will contain.
To create it, you need to specify its length (the number of values). For example, the
“long form” code shown at right makes
an array of N numbers of type double, all
initialized to 0.0. The first statement is
the array declaration. It is just like a dec-
laration of a variable of the correspond-
ing primitive type except for the square
brackets following the type name, which
specify that we are declaring an array.
The keyword new in the second state-
ment is a Java directive to create the ar-
ray. The reason that we need to explicitly
create arrays at run time is that the Java
compiler cannot know how much space
to reserve for the array at compile time (as it can for primitive-type values). The for
statement initializes the N array values. This code sets all of the array entries to the value
0.0. When you begin to write code that uses an array, you must be sure that your code
declares, creates, and initializes it. Omitting one of these steps is a common program-
ming mistake.

Short form. For economy in code, we often take advantage of Java’s default array ini-
tialization convention and combine all three steps into a single statement, as in the
“short form” code in our example. The code to the left of the equal sign constitutes the
declaration; the code to the right constitutes the creation. The for loop is unnecessary
in this case because the default initial value of variables of type double in a Java array is

declaration

creationdouble[] a;
a = new double[N];
for (int i = 0; i < N; i++)
 a[i] = 0.0;

double[] a = new double[N];

initialization

Declaring, creating and initializing an array

short form

int[] a = { 1, 1, 2, 3, 5, 8 };

initializing declaration

long form

18 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

0.0, but it would be required if a nonzero value were desired. The default initial value
is zero for numeric types and false for type boolean. The third option shown for our
example is to specify the initialization values at compile time, by listing literal values
between curly braces, separated by commas.

Using an array. Typical array-processing code is shown on page 21. After declaring
and creating an array, you can refer to any individual value anywhere you would use
a variable name in a program by enclosing an integer index in square brackets after
the array name. Once we create an array, its size is fixed. A program can refer to the
length of an array a[] with the code a.length. The last element of an array a[] is
always a[a.length-1]. Java does automatic bounds checking—if you have created an
array of size N and use an index whose value is less than 0 or greater than N-1, your pro-
gram will terminate with an ArrayOutOfBoundsException runtime exception.

 Aliasing. Note carefully that an array name refers to the whole array—if we assign one
array name to another, then both refer to the same array, as illustrated in the following
code fragment.

int[] a = new int[N];
...
a[i] = 1234;
...
int[] b = a;
...
b[i] = 5678; // a[i] is now 5678.

This situation is known as aliasing and can lead to subtle bugs. If your intent is to make
a copy of an array, then you need to declare, create, and initialize a new array and then
copy all of the entries in the original array to the new array, as in the third example on
page 21.

 Two-dimensional arrays. A two-dimensional array in Java is an array of one-dimen-
sional arrays. A two-dimensional array may be ragged (its arrays may all be of differing
lengths), but we most often work with (for appropriate parameters M and N) M-by-N
two-dimensional arrays that are arrays of M rows, each an array of length N (so it also
makes sense to refer to the array as having N columns). Extending Java array constructs
to handle two-dimensional arrays is straightforward. To refer to the entry in row i and
column j of a two-dimensional array a[][], we use the notation a[i][j]; to declare a
two-dimensional array, we add another pair of square brackets; and to create the array,
we specify the number of rows followed by the number of columns after the type name
(both within square brackets), as follows:

191.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

double[][] a = new double[M][N];

We refer to such an array as an M-by-N array. By convention, the first dimension is the
number of rows and the second is the number of columns. As with one-dimensional
arrays, Java initializes all entries in arrays of numeric types to zero and in arrays of
boolean values to false. Default initialization of two-dimensional arrays is useful
because it masks more code than for one-dimensional arrays. The following code is
equivalent to the single-line create-and-initialize idiom that we just considered:

double[][] a;
a = new double[M][N];
for (int i = 0; i < M; i++)
 for (int j = 0; j < N; j++)
 a[i][j] = 0.0;

This code is superfluous when initializing to zero, but the nested for loops are needed
to initialize to other value(s).

20 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

task implementation (code fragment)

find the maximum of
the array values

double max = a[0];
for (int i = 1; i < a.length; i++)
 if (a[i] > max) max = a[i];

compute the average of
 the array values

int N = a.length;
double sum = 0.0;
for (int i = 0; i < N; i++)
 sum += a[i];
double average = sum / N;

copy to another array

int N = a.length;
double[] b = new double[N];
for (int i = 0; i < N; i++)
 b[i] = a[i];

 reverse the elements
within an array

int N = a.length;
for (int i = 0; i < N/2; i++)
{
 double temp = a[i];
 a[i] = a[N-1-i];
 a[N-i-1] = temp;
}

matrix-matrix multiplication
(square matrices)

a[][]*b[][] = c[][]

int N = a.length;
double[][] c = new double[N][N];
for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 { // Compute dot product of row i and column j.
 for (int k = 0; k < N; k++)
 c[i][j] += a[i][k]*b[k][j];
 }

 Typical array-processing code

211.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

 Static methods Every Java program in this book is either a data-type definition
(which we describe in detail in Section 1.2) or a library of static methods (which we de-
scribe here). Static methods are called functions in many programming languages, since
they can behave like mathematical functions, as described next. Each static method is
a sequence of statements that are executed, one after the other, when the static method
is called, in the manner described below. The modifier static distinguishes these meth-
ods from instance methods, which we discuss in Section 1.2. We use the word method
without a modifier when describing characteristics shared by both kinds of methods.

 Defining a static method. A method encapsulates a computation that is defined as a
sequence of statements. A method takes arguments (values of given data types) and
computes a return value of some data type that depends upon the arguments (such
as a value defined by a mathematical function) or causes a side effect that depends on
the arguments (such as printing a value). The static method rank() in BinarySearch

is an example of the first; main() is an ex-
ample of the second. Each static method
is composed of a signature (the keywords
public static followed by a return type,
the method name, and a sequence of ar-
guments, each with a declared type) and
a body (a statement block: a sequence of
statements, enclosed in curly braces). Ex-
amples of static methods are shown in the
table on the facing page.

 Invoking a static method. A call on a static
method is its name followed by expressions
that specify argument values in parenthe-

ses, separated by commas. When the method call is part of an expression, the method
computes a value and that value is used in place of the call in the expression. For ex-
ample the call on rank() in BinarySearch() returns an int value. A method call
followed by a semicolon is a statement that generally causes side effects. For example,
the call Arrays.sort() in main() in BinarySearch is a call on the system method
Arrays.sort() that has the side effect of putting the entries in the array in sorted
order. When a method is called, its argument variables are initialized with the values
of the corresponding expressions in the call. A return statement terminates a static
method, returning control to the caller. If the static method is to compute a value, that
value must be specified in a return statement (if such a static method can reach the
end of its sequence of statements without a return, the compiler will report the error).

signature

method
body

return statement

methodreturn
nametype

argument
variable

local
variables

argument
type

call on another method

public static double sqrt (double c)

{
 if (c < 0) return Double.NaN;
 double err = 1e-15;

 double t = c;
 while (Math.abs(t - c/t) > err * t)
 t = (c/t + t) / 2.0;
 return t;
}

Anatomy of a static method

22 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

task implementation

absolute value of an
int value

public static int abs(int x)
{
 if (x < 0) return -x;
 else return x;
}

absolute value of a
double value

public static double abs(double x)
{
 if (x < 0.0) return -x;
 else return x;
}

 primality test

public static boolean isPrime(int N)
{
 if (N < 2) return false;
 for (int i = 2; i*i <= N; i++)
 if (N % i == 0) return false;
 return true;
}

square root
(Newton’s method)

public static double sqrt(double c)
{
 if (c > 0) return Double.NaN;
 double err = 1e-15;
 double t = c;
 while (Math.abs(t - c/t) > err * t)
 t = (c/t + t) / 2.0;
 return t;
}

hypotenuse of
a right triangle

public static double hypotenuse(double a, double b)
{ return Math.sqrt(a*a + b*b); }

 Harmonic number
(see page 185)

public static double H(int N)
{
 double sum = 0.0;
 for (int i = 1; i <= N; i++)
 sum += 1.0 / i;
 return sum;
}

Typical implementations of static methods

231.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

 Properties of methods. A complete detailed description of the properties of methods
is beyond our scope, but the following points are worth noting:

■ Arguments are passed by value. You can use argument variables anywhere in the
code in the body of the method in the same way you use local variables. The
only difference between an argument variable and a local variable is that the
argument variable is initialized with the argument value provided by the call-
ing code. The method works with the value of its arguments, not the arguments
themselves. One consequence of this approach is that changing the value of an
argument variable within a static method has no effect on the calling code. Gen-
erally, we do not change argument variables in the code in this book. The pass-
by-value convention implies that array arguments are aliased (see page 19)—the
method uses the argument variable to refer to the caller’s array and can change
the contents of the array (though it cannot change the array itself). For example,
Arrays.sort() certainly changes the contents of the array passed as argument:
it puts the entries in order.

■

Method names can be overloaded. For example, the Java Math library uses
this approach to provide implementations of Math.abs(), Math.min(), and
Math.max() for all primitive numeric types. Another common use of overload-
ing is to define two different versions of a function, one that takes an argument
and another that uses a default value of that argument.

■ A method has a single return value but may have multiple return statements. A
Java method can provide only one return value, of the type declared in the
method signature. Control goes back to the calling program as soon as the first
return statement in a static method is reached. You can put return statements
wherever you need them. Even though there may be multiple return statements,
any static method returns a single value each time it is invoked: the value follow-
ing the first return statement encountered.

■ A method can have side effects. A method may use the keyword void as its return
type, to indicate that it has no return value. An explicit return is not necessary
in a void static method: control returns to the caller after the last statement.
A void static method is said to produce side effects (consume input, produce
output, change entries in an array, or otherwise change the state of the system).
For example, the main() static method in our programs has a void return type
because its purpose is to produce output. Technically, void methods do not
implement mathematical functions (and neither does Math.random(), which
takes no arguments but does produce a return value).

The instance methods that are the subject of Section 2.1 share these properties, though
profound differences surround the issue of side effects.

24 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

 Recursion. A method can call itself (if you are not comfortable with this idea, known
as recursion, you are encouraged to work Exercises 1.1.16 through 1.1.22). For ex-
ample, the code at the bottom of this page gives an alternate implementation of the
rank() method in BinarySearch. We often use recursive implementations of methods
because they can lead to compact, elegant code that is easier to understand than a cor-
responding implementation that does not use recursion. For example, the comment
in the implementation below provides a succinct description of what the code is sup-
posed to do. We can use this comment to convince ourselves that it operates correctly,
by mathematical induction. We will expand on this topic and provide such a proof for
binary search in Section 3.1. There are three important rules of thumb in developing
recursive programs:

■

The recursion has a base case—we always include a conditional statement as the
first statement in the program that has a return.

■ Recursive calls must address subproblems that are smaller in some sense, so
that recursive calls converge to the base case. In the code below, the difference
between the values of the fourth and the third arguments always decreases.

■ Recursive calls should not address subproblems that overlap. In the code below,
the portions of the array referenced by the two subproblems are disjoint.

Violating any of these guidelines is likely to lead to incorrect results or a spectacularly
inefficient program (see Exercises 1.1.19 and 1.1.27). Adhering to them is likely to
lead to a clear and correct program whose performance is easy to understand. Another
reason to use recursive methods is that they lead to mathematical models that we can
use to understand performance. We address this issue for binary search in Section 3.2
and in several other instances throughout the book.

public static int rank(int key, int[] a)
{ return rank(key, a, 0, a.length - 1); }

public static int rank(int key, int[] a, int lo, int hi)
{ // Index of key in a[], if present, is not smaller than lo
 // and not larger than hi.
 if (lo > hi) return -1;
 int mid = lo + (hi - lo) / 2;
 if (key < a[mid]) return rank(key, a, lo, mid - 1);
 else if (key > a[mid]) return rank(key, a, mid + 1, hi);
 else return mid;
}

 Recursive implementation of binary search

251.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

Basic programming model. A library of static methods is a set of static methods that
are defined in a Java class, by creating a file with the keywords public class followed
by the class name, followed by the static methods, enclosed in braces, kept in a file with
the same name as the class and a .java extension. A basic model for Java programming
is to develop a program that addresses a specific computational task by creating a li-
brary of static methods, one of which is named main(). Typing java followed by a class
name followed by a sequence of strings leads to a call on main() in that class, with an
array containing those strings as argument. After the last statement in main() executes,
the program terminates. In this book, when we talk of a Java program for accomplishing
a task, we are talking about code developed along these lines (possibly also including a
data-type definition, as described in Section 1.2). For example, BinarySearch is a Java
program composed of two static methods, rank() and main(), that accomplishes the
task of printing numbers on an input stream that are not found in a whitelist file given
as command-line argument.

Modular programming. Of critical importance in this model is that libraries of stat-
ic methods enable modular programming where we build libraries of static methods
(modules) and a static method in one library can call static methods defined in other
libraries. This approach has many important advantages. It allows us to

■ Work with modules of reasonable size, even in program involving a large
amount of code

■ Share and reuse code without having to reimplement it
■ Easily substitute improved implementations
■ Develop appropriate abstract models for addressing programming problems
■

Localize debugging (see the paragraph below on unit testing)
For example, BinarySearch makes use of three other independently developed librar-
ies, our StdIn and In library and Java’s Arrays library. Each of these libraries, in turn,
makes use of several other libraries.

 Unit testing. A best practice in Java programming is to include a main() in every li-
brary of static methods that tests the methods in the library (some other programming
languages disallow multiple main() methods and thus do not support this approach).
Proper unit testing can be a significant programming challenge in itself. At a minimum,
every module should contain a main() method that exercises the code in the module
and provides some assurance that it works. As a module matures, we often refine the
main() method to be a development client that helps us do more detailed tests as we
develop the code, or a test client that tests all the code extensively. As a client becomes
more complicated, we might put it in an independent module. In this book, we use
main() to help illustrate the purpose of each module and leave test clients for exercises.

26 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

External libraries. We use static methods from four different kinds of libraries, each
requiring (slightly) differing procedures for code reuse. Most of these are libraries of
static methods, but a few are data-type definitions that also include some static methods.

■ The standard system libraries java.lang.*. These include Math, which contains
methods for commonly used mathematical functions; Integer and Double,
which we use for converting between strings of characters and
int and double values; String and StringBuilder, which
we discuss in detail later in this section and in Chapter 5; and
dozens of other libraries that we do not use.

■ Imported system libraries such as java.util.Arrays. There
are thousands of such libraries in a standard Java release, but
we make scant use of them in this book. An import statement
at the beginning of the program is needed to use such libraries
(and signal that we are doing so).

■ Other libraries in this book. For example, another program can
use rank() in BinarySearch. To use such a program, down-
load the source from the booksite into your working directory.

■ The standard libraries Std* that we have developed for use
in this book (and our introductory book An Introduction to
Programming in Java: An Interdisciplinary Approach). These
libraries are summarized in the following several pages. Source
code and instructions for downloading them are available on
the booksite.

To invoke a method from another library (one in the same directory
or a specified directory, a standard system library, or a system library
that is named in an import statement before the class definition), we
prepend the library name to the method name for each call. For ex-
ample, the main() method in BinarySearch calls the sort() method
in the system library java.util.Arrays, the readInts() method in
our library In, and the println() method in our library StdOut.

Libraries of methods implemented by ourselves and by others in a modular
programming environment can vastly expand the scope of our programming model.
Beyond all of the libraries available in a standard Java release, thousands more are avail-
able on the web for applications of all sorts. To limit the scope of our programming
model to a manageable size so that we can concentrate on algorithms, we use just the
libraries listed in the table at right on this page, with a subset of their methods listed in
APIs, as described next.

 standard system libraries

Math

Integer†

Double†

String†

StringBuilder

System

imported system libraries

java.util.Arrays

our standard libraries

StdIn

StdOut

StdDraw

StdRandom

StdStats

In†

Out†

† data type definitions that
include some static methods

Libraries with static
methods used in this book

271.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

 APIs A critical component of modular programming is documentation that explains
the operation of library methods that are intended for use by others. We will consis-
tently describe the library methods that we use in this book in application programming
interfaces (APIs) that list the library name and the signatures and short descriptions of
each of the methods that we use. We use the term client to refer to a program that calls
a method in another library and the term implementation to describe the Java code that
implements the methods in an API.

Example. The following example, the API for commonly used static methods from the
standard Math library in java.lang, illustrates our conventions for APIs:

public class Math

static double abs(double a) absolute value of a
static double max(double a, double b) maximum of a and b
static double min(double a, double b)

minimum of a and b
Note 1: abs(), max(), and min() are defined also for int, long, and float.

static double sin(double theta) sine function
static double cos(double theta) cosine function
static double tan(double theta) tangent function

Note 2: Angles are expressed in radians. Use toDegrees() and toRadians() to convert.
Note 3: Use asin(), acos(), and atan() for inverse functions.

static double exp(double a) exponential (e a)
static double log(double a) natural log (loge a, or ln a)
static double pow(double a, double b) raise a to the bth power (ab)

static double random() random number in [0, 1)
static double sqrt(double a) square root of a

static double E value of e (constant)
static double PI value of � (constant)

See booksite for other available functions.

API for Java’s mathematics library (excerpts)

28 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

These methods implement mathematical functions—they use their arguments to com-
pute a value of a specified type (except random(), which does not implement a math-
ematical function because it does not take an argument). Since they all operate on
double values and compute a double result, you can consider them as extending the
double data type—extensibility of this nature is one of the characteristic features of
modern programming languages. Each method is described by a line in the API that
specifies the information you need to know in order to use the method. The Math li-
brary also defines the precise constant values PI (for �) and E (for e), so that you can
use those names to refer to those constants in your programs. For example, the value
of Math.sin(Math.PI/2) is 1.0 and the value of Math.log(Math.E) is 1.0 (because
Math.sin() takes its argument in radians and Math.log() implements the natural
logarithm function).

Java libraries. Extensive online descriptions of thousands of libraries are part of every
Java release, but we excerpt just a few methods that we use in the book, in order to clear-
ly delineate our programming model. For example, BinarySearch uses the sort()
method from Java’s Arrays library, which we document as follows:

public class Arrays

static void sort(int[] a) put the array in increasing order

Note : This method is defined also for other primitive types and Object.

Excerpt from Java’s Arrays library (java.util.Arrays)

The Arrays library is not in java.lang, so an import statement is needed to use it, as
in BinarySearch. Actually, Chapter 2 of this book is devoted to implementations of
sort() for arrays, including the mergesort and quicksort algorithms that are imple-
mented in Arrays.sort(). Many of the fundamental algorithms that we consider in
this book are implemented in Java and in many other programming environments. For
example, Arrays also includes an implementation of binary search. To avoid confusion,
we generally use our own implementations, although there is nothing wrong with using
a finely tuned library implementation of an algorithm that you understand.

291.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

Our standard libraries. We have developed a number of libraries that provide useful
functionality for introductory Java programming, for scientific applications, and for
the development, study, and application of algorithms. Most of these libraries are for
input and output; we also make use of the following two libraries to test and analyze
our implementations. The first extends Math.random() to allow us to draw random
values from various distributions; the second supports statistical calculations:

public class StdRandom

static void initialize(long seed) initialize

static double random() real between 0 and 1

static int uniform(int N) integer between 0 and N-1

static int uniform(int lo, int hi) integer between lo and hi-1

static double uniform(double lo, double hi) real between lo and hi

static boolean bernoulli(double p) true with probability p

static double gaussian() normal, mean 0, std dev 1

static double gaussian(double m, double s) normal, mean m, std dev s

static int discrete(double[] a) i with probability a[i]

static void shuffle(double[] a) randomly shuffle the array a[]

Note: overloaded implementations of shuffle() are included for other primitive types and for Object.

API for our library of static methods for random numbers

public class StdStats

static double max(double[] a) largest value

static double min(double[] a) smallest value

static double mean(double[] a) average

static double var(double[] a) sample variance

static double stddev(double[] a) sample standard deviation

static double median(double[] a) median

API for our library of static methods for data analysis

30 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

The initialize() method in StdRandom allows us to seed the random number gen-
erator so that we can reproduce experiments involving random numbers. For reference,
implementations of many of these methods are given on page 32. Some of these methods
are extremely easy to implement; why do we bother including them in a library? An-
swers to this question are standard for well-designed libraries:

■ They implement a level of abstraction that allow us to focus on implement-
ing and testing the algorithms in the book, not generating random objects or
calculating statistics. Client code that uses such methods is clearer and easier to
understand than homegrown code that does the same calculation.

■

Library implementations test for exceptional conditions, cover rarely encoun-
tered situations, and submit to extensive testing, so that we can count on them to
operate as expected. Such implementations might involve a significant amount
of code. For example, we often want implementations for various types of data.
For example, Java’s Arrays library includes multiple overloaded implementa-
tions of sort(), one for each type of data that you might need to sort.

These are bedrock considerations for modular programming in Java, but perhaps a bit
overstated in this case. While the methods in both of these libraries are essentially self-
documenting and many of them are not difficult to implement, some of them represent
interesting algorithmic exercises. Accordingly, you are well-advised to both study the
code in StdRandom.java and StdStats.java on the booksite and to take advantage
of these tried-and-true implementations. The easiest way to use these libraries (and to
examine the code) is to download the source code from the booksite and put them in
your working directory; various system-dependent mechanisms for using them with-
out making multiple copies are also described on the booksite.

Your own libraries. It is worthwhile to consider every program that you write as a li-
brary implementation, for possible reuse in the future.

■ Write code for the client, a top-level implementation that breaks the computa-
tion up into manageable parts.

■ Articulate an API for a library (or multiple APIs for multiple libraries) of static
methods that can address each part.

■ Develop an implementation of the API, with a main() that tests the methods
independent of the client.

Not only does this approach provide you with valuable software that you can later
reuse, but also taking advantage of modular programming in this way is a key to suc-
cessfully addressing a complex programming task.

311.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

intended result implementation

random double
value in [a, b)

public static double uniform(double a, double b)
{ return a + StdRandom.random() * (b-a); }

random int
value in [0..N)

public static int uniform(int N)
{ return (int) (StdRandom.random() * N); }

random int
value in [lo..hi)

public static int uniform(int lo, int hi)
{ return lo + StdRandom.uniform(hi - lo); }

random int value drawn
from discrete distribution
(i with probability a[i])

public static int discrete(double[] a)
{ // Entries in a[] must sum to 1.
 double r = StdRandom.random();
 double sum = 0.0;
 for (int i = 0; i < a.length; i++)
 {
 sum = sum + a[i];
 if (sum >= r) return i;
 }
 return -1;
}

randomly shuffle the
elements in an array of

double values
(See Exercise 1.1.36)

public static void shuffle(double[] a)
{
 int N = a.length;
 for (int i = 0; i < N; i++)
 { // Exchange a[i] with random element in a[i..N-1]
 int r = i + StdRandom.uniform(N-i);
 double temp = a[i];
 a[i] = a[r];
 a[r] = temp;
 }
}

 Implementations of static methods in StdRandom library

32 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

The purpose of an API is to separate the client from the implementation: the client
should know nothing about the implementation other than information given in the
API, and the implementation should not take properties of any particular client into
account. APIs enable us to separately develop code for various purposes, then reuse
it widely. No Java library can contain all the methods that we might need for a given
computation, so this ability is a crucial step in addressing complex programming ap-
plications. Accordingly, programmers normally think of the API as a contract between
the client and the implementation that is a clear specification of what each method is to
do. Our goal when developing an implementation is to honor the terms of the contract.
Often, there are many ways to do so, and separating client code from implementation
code gives us the freedom to substitute new and improved implementations. In the
study of algorithms, this ability is an important ingredient in our ability to understand
the impact of algorithmic improvements that we develop.

331.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

 Strings A String is a sequence of characters (char values). A literal String is a
sequence of characters within double quotes, such as "Hello, World". The data type
String is a Java data type but it is not a primitive type. We consider String now be-
cause it is a fundamental data type that almost every Java program uses.

 Concatenation. Java has a built-in concatenation operator (+) for String like the
built-in operators that it has for primitive types, justifying the addition of the row in
the table below to the primitive-type table on page 12. The result of concatenating two
String values is a single String value, the first string followed by the second.

Conversion. Two primary uses of strings are to convert values that we can enter on a
keyboard into data-type values and to convert data-type values to values that we can
read on a display. Java has built-in operations for String to facilitate these operations.
In particular, the language includes libraries Integer and Double that contain static
methods to convert between String values and int values and between String values
and double values, respectively.

public class Integer

static int parseInt(String s) convert s to an int value

static String toString(int i) convert i to a String value

public class Double

static double parseDouble(String s) convert s to a double value

static String toString(double x) convert x to a String value

APIs for conversion between numbers and String values

type set of values typical literals operators
typical expressions

expression value

String
character
sequences

"AB"
"Hello"
"2.5"

+
(concatenate)

"Hi, " + "Bob"

"12" + "34"

"1" + "+" + "2"

"Hi, Bob"

"1234"

"1+2"

Java’s String data type

34 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

Automatic conversion. We rarely explicitly use the static toString() methods just
described because Java has a built-in mechanism that allows us to convert from any data
type value to a String value by using concatenation: if one of the arguments of + is a
String, Java automatically converts the other argument to a String (if it is not already
a String). Beyond usage like "The square root of 2.0 is " + Math.sqrt(2.0)
this mechanism enables conversion of any data-type value to a String, by concatenat-
ing it with the empty string "".

 Command-line arguments. One important use of strings in Java programming is to
enable a mechanism for passing information from the command line to the program.
The mechanism is simple. When you type the java command followed by a library
name followed by a sequence of strings, the Java system invokes the main() method in
that library with an array of strings as argument: the strings typed after the library name.
For example, the main() method in BinarySearch takes one command-line argument,
so the system creates an array of size one. The program uses that value, args[0], to
name the file containing the whitelist, for use as the argument to In.readInts(). An-
other typical paradigm that we often use in our code is when a command-line argu-
ment is intended to represent a number, so we use parseInt() to convert to an int
value or parseDouble() to convert to a double value.

Computing with strings is an essential component of modern computing. For the
moment, we make use of String just to convert between external representation of
numbers as sequences of characters and internal representation of numeric data-type
values. In Section 1.2, we will see that Java supports many, many more operations on
String values that we use throughout the book; in Section 1.4, we will examine the
internal representation of String values; and in Chapter 5, we consider in depth al-
gorithms that process String data. These algorithms are among the most interesting,
intricate, and impactful methods that we consider in this book.

351.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

Input and output The primary purpose of our standard libraries for input, out-
put, and drawing is to support a simple model for Java programs to interact with the
outside world. These libraries are built upon extensive capabilities that are available in
Java libraries, but are generally much more complicated and much more difficult to

learn and use. We begin by briefly reviewing the model.
In our model, a Java program takes input values from

command-line arguments or from an abstract stream of
characters known as the standard input stream and writes
to another abstract stream of characters known as the
standard output stream.

Necessarily, we need to consider the interface between
Java and the operating system, so we need to briefly dis-
cuss basic mechanisms that are provided by most modern
operating systems and program-development environ-
ments. You can find more details about your particular
system on the booksite. By default, command-line argu-
ments, standard input, and standard output are associated

with an application supported by either the operating system or the program develop-
ment environment that takes commands. We use the generic term terminal window to
refer to the window maintained by this application, where we type and read text. Since
early Unix systems in the 1970s this model has proven to be a convenient and direct way
for us to interact with our programs and data. We add to the classical model a standard
drawing that allows us to create visual representations for data analysis.

 Commands and arguments. In the terminal window, we see a prompt, where we type
commands to the operating system that may take arguments. We use only a few com-
mands in this book, shown in the table below. Most often, we use the .java com-
mand, to run our programs. As mentioned on page 35, Java classes have a main() static
method that takes a String array args[] as its argument. That array is the sequence
of command-line arguments that we type, provided to Java by the operating system.

By convention, both Java and
the operating system process
the arguments as strings. If
we intend for an argument to
be a number, we use a method
such as Integer.parseInt()
to convert it from String to
the appropriate type.

standard input command-line
arguments

standard output

standard drawing

file I/O

A bird’s-eye view of a Java program

command arguments purpose

javac .java file name compile Java program

java
 .class file name (no extension)

and command-line arguments
run Java program

more any text file name print file contents

Typical operating-system commands

36 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

 Standard output. Our StdOut library provides sup-
port for standard output. By default, the system con-
nects standard output to the terminal window. The
print() method puts its argument on standard out-
put; the println() method adds a newline; and the
printf() method supports formatted output, as de-
scribed next. Java provides a similar method in its
System.out library; we use StdOut to treat standard
input and standard output in a uniform manner (and
to provide a few technical improvements).

StdOutpublic class

static void print(String s) print s

static void println(String s) print s, followed by newline

static void println() print a new line

static void printf(String f, ...) formatted print

Note: overloaded implementations are included for primitive types and for Object.

API for our library of static methods for standard output

To use these methods, download into
your working directory StdOut.java
from the booksite and use code such as
StdOut.println("Hello, World");
to call them. A sample client is shown
at right.

 Formatted output. In its simplest
form, printf() takes two arguments.
The first argument is a format string
that describes how the second argu-
ment is to be converted to a string for
output. The simplest type of format
string begins with % and ends with a
one-letter conversion code. The conversion codes that we
use most frequently are d (for decimal values from Java’s
integer types), f (for floating-point values), and s (for
String values). Between the % and the conversion code
is an integer value that specifies the field width of the

% java RandomSeq 5 100.0 200.0
123.43
153.13
144.38
155.18
104.02

public class RandomSeq
{
 public static void main(String[] args)
 { // Print N random values in (lo, hi).
 int N = Integer.parseInt(args[0]);
 double lo = Double.parseDouble(args[1]);
 double hi = Double.parseDouble(args[2]);
 for (int i = 0; i < N; i++)
 {
 double x = StdRandom.uniform(lo, hi);
 StdOut.printf("%.2f\n", x);
 }
 }
}

Sample StdOut client

prompt

invoke
Java

runtime

call the static method
main() in RandomSeq

args[0]
args[1]

args[2]

 % java RandomSeq 5 100.0 200.0

Anatomy of a command

371.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

converted value (the number of characters in the converted output string). By default,
blank spaces are added on the left to make the length of the converted output equal to
the field width; if we want the spaces on the right, we can insert a minus sign before the
field width. (If the converted output string is bigger than the field width, the field width
is ignored.) Following the width, we have the option of including a period followed by
the number of digits to put after the decimal point (the precision) for a double value
or the number of characters to take from the beginning of the string for a String value.
The most important thing to remember about using printf() is that the conversion
code in the format and the type of the corresponding argument must match. That is, Java
must be able to convert from the type of the argument to the type required by the con-
version code. The first argument of printf() is a String that may contain characters
other than a format string. Any part of the argument that is not part of a format string
passes through to the output, with the format string replaced by the argument value
(converted to a String as specified). For example, the statement

StdOut.printf("PI is approximately %.2f\n", Math.PI);

prints the line

PI is approximately 3.14

Note that we need to explicitly include the newline character \n in the argument in
order to print a new line with printf(). The printf() function can take more than
two arguments. In this case, the format string will have a format specifier for each ad-
ditional argument, perhaps separated by other characters to pass through to the out-
put. You can also use the static method String.format() with arguments exactly as
just described for printf() to get a formatted string without printing it. Formatted
printing is a convenient mechanism that allows us to develop compact code that can
produce tabulated experimental data (our primary use in this book).

type code
typical
literal

sample
format strings

converted string
values for output

int d 512
"%14d"
"%-14d"

" 512"
"512 "

double f 1595.1680010754388
"%14.2f"
"%.7f"
"%14.4e"

" 1595.17"
"1595.1680011"
" 1.5952e+03"e

String s "Hello, World"
"%14s"
"%-14s"
"%-14.5s"

" Hello, World"
"Hello, World "
"Hello "

Format conventions for printf() (see the booksite for many other options)

38 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

 Standard input. Our StdIn library
takes data from the standard input
stream that may be empty or may
contain a sequence of values sepa-
rated by whitespace (spaces, tabs,
newline characters, and the like). By
default, the system connects stan-
dard output to the terminal win-
dow—what you type is the input
stream (terminated by <ctrl-d> or
<ctrl-z>, depending on your termi-
nal window application). Each value
is a String or a value from one of
Java’s primitive types. One of the key
features of the standard input stream
is that your program consumes values when it reads them. Once
your program has read a value, it cannot back up and read it again.
This assumption is restrictive, but it reflects physical characteristics
of some input devices and simplifies implementing the abstrac-
tion. Within the input stream model, the static methods in this li-
brary are largely self-documenting (described by their signatures).

StdInpublic class

static boolean isEmpty() true if no more values, false otherwise

static int readInt() read a value of type int

static double readDouble() read a value of type double

static float readFloat() read a value of type float

static long readLong() read a value of type long

static boolean readBoolean() read a value of type boolean

static char readChar() read a value of type char

static byte readByte() read a value of type byte

static String readString() read a value of type String

static boolean hasNextLine() is there another line in the input stream?

static String readLine() read the rest of the line

static String readAll() read the rest of the input stream

API for our library of static methods for standard input

public class Average
{
 public static void main(String[] args)
 { // Average the numbers on StdIn.
 double sum = 0.0;
 int cnt = 0;
 while (!StdIn.isEmpty())
 { // Read a number and cumulate the sum.
 sum += StdIn.readDouble();
 cnt++;
 }
 double avg = sum / cnt;
 StdOut.printf("Average is %.5f\n", avg);
 }
}

Sample StdIn client

% java Average
1.23456
2.34567
3.45678
4.56789
<ctrl-d>
Average is 2.90123

391.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

 Redirection and piping. Standard input and output enable us to take advantage of
command-line extensions supported by many operating-systems. By adding a simple
directive to the command that invokes a program, we can redirect its standard output
to a file, either for permanent storage or for input to another program at a later time:

% java RandomSeq 1000 100.0 200.0 > data.txt

This command specifies that the standard output stream is not to be printed in the ter-
minal window, but instead is to be written to a text file named data.txt. Each call to

StdOut.print() or StdOut.println()
appends text at the end of that file. In
this example, the end result is a file that
contains 1,000 random values. No out-
put appears in the terminal window: it
goes directly into the file named after
the > symbol. Thus, we can save away
information for later retrieval. Not that
we do not have to change RandomSeq in
any way—it is using the standard out-
put abstraction and is unaffected by our
use of a different implementation of
that abstraction. Similarly, we can redi-
rect standard input so that StdIn reads
data from a file instead of the terminal
application:

% java Average < data.txt

This command reads a sequence of
numbers from the file data.txt and
computes their average value. Specifi-
cally, the < symbol is a directive that tells
the operating system to implement the
standard input stream by reading from
the text file data.txt instead of waiting
for the user to type something into the

terminal window. When the program calls StdIn.readDouble(), the operating system
reads the value from the file. Combining these to redirect the output of one program to
the input of another is known as piping:

% java RandomSeq 1000 100.0 200.0 | java Average

redirecting standard output to a file

piping the output of one program to the input of another

redirecting from a file to standard input

standard input

Average

% java Average < data.txt

data.txt

standard output

RandomSeq

% java RandomSeq 1000 100.0 200.0 > data.txt

data.txt

standard inputstandard output

RandomSeq

% java RandomSeq 1000 100.0 200.0 | java Average

Average

Redirection and piping from the command line

40 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

This command specifies that standard output for RandomSeq and standard input for
Average are the same stream. The effect is as if RandomSeq were typing the numbers it
generates into the terminal window while Average is running. This difference is pro-
found, because it removes the limitation on the size of the input and output streams that
we can process. For example, we could replace 1000 in our example with 1000000000,
even though we might not have the space to save a billion numbers on our computer
(we do need the time to process them). When RandomSeq calls StdOut.println(), a
string is added to the end of the stream; when Average calls StdIn.readInt(), a string
is removed from the beginning of the stream. The timing of precisely what happens is
up to the operating system: it might run RandomSeq until it produces some output, and
then run Average to consume that output, or it might run Average until it needs some
output, and then run RandomSeq until it produces the needed output. The end result
is the same, but our programs are freed from worrying about such details because they
work solely with the standard input and standard output abstractions.

Input and output from a file. Our In and Out libraries provide static methods that
implement the abstraction of reading from and writing to a file the contents of an ar-
ray of values of a primitive type (or String). We use readInts(), readDoubles(),
and readStrings() in the In library and writeInts(), writeDoubles(), and
writeStrings() in the Out library. The named argument can be a file or a web page.
For example, this ability allows us to use a file and standard input for two different pur-
poses in the same program, as in BinarySearch. The In and Out libraries also imple-
ment data types with instance methods that allow us the more general ability to treat
multiple files as input and output streams, and web pages as input streams, so we will
revisit them in Section 1.2.

public class In

static int[] readInts(String name) read int values

static double[] readDoubles(String name) read double values

static String[] readStrings(String name) read String values

public class Out

static void write(int[] a, String name) write int values

static void write(double[] a, String name) write double values

static void write(String[] a, String name) write String values

Note 1: Other primitive types are supported.
Note 2: StdIn and StdOut are supported (omit name argument).

APIs for our static methods for reading and writing arrays

411.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

 Standard drawing (basic methods). Up to this point,
our input/output abstractions have focused exclusively
on text strings. Now we introduce an abstraction for
producing drawings as output. This library is easy to
use and allows us to take advantage of a visual medi-
um to cope with far more information than is possible
with just text. As with standard input/output, our stan-
dard drawing abstraction is implemented in a library
StdDraw that you can access by downloading the file
StdDraw.java from the booksite into your working
directory. Standard draw is very simple: we imagine an
abstract drawing device capable of drawing lines and
points on a two-dimensional canvas. The device is ca-
pable of responding to the commands to draw basic
geometric shapes that our programs issue in the form
of calls to static methods in StdDraw, including meth-
ods for drawing lines, points, text strings, circles, rect-
angles, and polygons. Like the methods for standard
input and standard output, these methods are nearly
self-documenting: StdDraw.line() draws a straight
line segment connecting the point (x0 , y0) with the
point (x1 , y1) whose coordinates are given as arguments.
StdDraw.point() draws a spot centered on the point
(x, y) whose coordinates are given as arguments, and so
forth, as illustrated in the diagrams at right. Geometric
shapes can be filled (in black, by default). The default
scale is the unit square (all coordinates are between 0
and 1). The standard implementation displays the can-
vas in a window on your computer’s screen, with black
lines and points on a white background.

(x0, y0)

(x1, y1)

(x2, y2)
(x3, y3)

double[] x = {x0, x1, x2, x3};
double[] y = {y0, y1, y2, y3};
StdDraw.polygon(x, y);

(x, y)

StdDraw.circle(x, y, r);

StdDraw.square(x, y, r);

r

(x, y)

r

r

StdDraw examples

(1, 1)

StdDraw.point(x0, y0);
StdDraw.line(x0, y0, x1, y1);

(x0, y0)

(x2, y2)

(x1, y1)

(0, 0)

42 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

public class StdDraw

static void line(double x0, double y0, double x1, double y1)

static void point(double x, double y)

static void text(double x, double y, String s)

static void circle(double x, double y, double r)

static void filledCircle(double x, double y, double r)

static void ellipse(double x, double y, double rw, double rh)

static void filledEllipse(double x, double y, double rw, double rh)

static void square(double x, double y, double r)

static void filledSquare(double x, double y, double r)

static void rectangle(double x, double y, double rw, double rh)

static void filledRectangle(double x, double y, double rw, double rh)

static void polygon(double[] x, double[] y)

static void filledPolygon(double[] x, double[] y)

API for our library of static methods for standard drawing (drawing methods)

Standard drawing (control methods). The library also includes methods to change
the scale and size of the canvas, the color and width of the lines, the text font, and
the timing of drawing (for use in animation). As arguments for setPenColor() you
can use one of the predefined colors BLACK, BLUE, CYAN, DARK_GRAY, GRAY, GREEN,
LIGHT_GRAY, MAGENTA, ORANGE, PINK, RED, BOOK_RED, WHITE, and YELLOW that are de-
fined as constants in StdDraw (so we refer to one of them with code like StdDraw.RED).
The window also includes a menu option to save your drawing to a file, in a format
suitable for publishing on the web.

public class StdDraw

static void setXscale(double x0, double x1) reset x range to (x0 , x1)

static void setYscale(double y0, double y1) reset y range to (y0 , y1)

static void setPenRadius(double r) set pen radius to r

static void setPenColor(Color c) set pen color to c

static void setFont(Font f) set text font to f

static void setCanvasSize(int w, int h) set canvas to w-by-h window

static void clear(Color c) clear the canvas; color it c

static void show(int dt) show all; pause dt milliseconds

API for our library of static methods for standard drawing (control methods)

431.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

In this book, we use StdDraw for data analysis and for creating visual representations
of algorithms in operation. The table at on the opposite page indicates some possibli-
ties; we will consider many more examples in the text and the exercises throughout the
book. The library also supports animation—of course, this topic is treated primarily on
the booksite.

44 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

data plot implementation (code fragment) result

function
values

int N = 100;
StdDraw.setXscale(0, N);
StdDraw.setYscale(0, N*N);
StdDraw.setPenRadius(.01);
for (int i = 1; i <= N; i++)
{
 StdDraw.point(i, i);
 StdDraw.point(i, i*i);
 StdDraw.point(i, i*Math.log(i));
}

array of
random
values

int N = 50;
double[] a = new double[N];
for (int i = 0; i < N; i++)
 a[i] = StdRandom.random();
for (int i = 0; i < N; i++)
{
 double x = 1.0*i/N;
 double y = a[i]/2.0;
 double rw = 0.5/N;
 double rh = a[i]/2.0;
 StdDraw.filledRectangle(x, y, rw, rh);
}

sorted array
of random

values

int N = 50;
double[] a = new double[N];
for (int i = 0; i < N; i++)
 a[i] = StdRandom.random();
Arrays.sort(a);
for (int i = 0; i < N; i++)
{
 double x = 1.0*i/N;
 double y = a[i]/2.0;
 double rw = 0.5/N;
 double rh = a[i]/2.0;
 StdDraw.filledRectangle(x, y, rw, rh);
}

StdDraw plotting examples

451.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

 Binary search The sample Java program that we started with, shown on the facing
page, is based on the famous, effective, and widely used binary search algorithm. This
example is a prototype of the way in which we will examine new algorithms throughout
the book. As with all of the programs we consider, it is both a precise definition of the
method and a complete Java implementation that you can download from the booksite.

Binary search. We will study the binary search algorithm in detail in Section 3.2,
but a brief description is appropriate here. The algorithm is implemented in the static

method rank(), which takes an integer key and
a sorted array of int values as arguments and re-
turns the index of the key if it is present in the
array, -1 otherwise. It accomplishes this task by
maintaining variables lo and hi such that the key
is in a[lo..hi] if it is in the array, then entering
into a loop that tests the middle entry in the in-
terval (at index mid). If the key is equal to a[mid],
the return value is mid; otherwise the method cuts
the interval size about in half, looking at the left
half if the key is less than a[mid] and at the right
half if the key is greater than a[mid]. The process
terminates when the key is found or the interval is
empty. Binary search is effective because it needs
to examine just a few ar-
ray entries (relative to the
size of the array) to find
the key (or determine that
it is not there).

Development client. For every algorithm implementation,
we include a development client main() that you can use with
sample input files provided in the book and on the booksite
to learn about the algorithm and to test its performance. In
this example, the client reads integers from the file named on
the command line, then prints any integers on standard input
that do not appear in the file. We use small test files such as
those shown at right to demonstrate this behavior, and as the
basis for traces and examples such as those at left above. We
use large test files to model real-world applications and to test
performance (see page 48).

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

successful search for 23
lo mid hi

lo mid hi

lo mid hi

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

Binary search in an ordered array

unsuccessful search for 50

lo mid hi

lo mid hi

lo mid

hi lo

hi

lo mid hi

84
48
68
10
18
98
12
23
54
57
48
33
16
77
11
29

tinyW.txt

23
50
10
99
18
23
98
84
11
10
48
77
13
54
98
77
77
68

tinyT.txt

Small test files for
BinarySearch test client

not in
tinyW.txt

46 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

 Binary Search

import java.util.Arrays;

public class BinarySearch
{
 public static int rank(int key, int[] a)
 { // Array must be sorted.
 int lo = 0;
 int hi = a.length - 1;
 while (lo <= hi)
 { // Key is in a[lo..hi] or not present.
 int mid = lo + (hi - lo) / 2;
 if (key < a[mid]) hi = mid - 1;
 else if (key > a[mid]) lo = mid + 1;
 else return mid;
 }
 return -1;
 }

 public static void main(String[] args)
 {
 int[] whitelist = In.readInts(args[0]);

 Arrays.sort(whitelist);

 while (!StdIn.isEmpty())
 { // Read key, print if not in whitelist.
 int key = StdIn.readInt();
 if (rank(key, whitelist) < 0)
 StdOut.println(key);
 }

 }

}

This program takes the name of a whitelist file (a sequence of integers) as argument and filters any
entry that is on the whitelist from standard input, leaving only integers that are not on the whitelist
on standard output. It uses the binary search algorithm, implemented in the static method rank(),
to accomplish the task efficiently. See Sec-
tion 3.1 for a full discussion of the binary
search algorithm, its correctness, its per-
formance analysis, and its applications.

% java BinarySearch tinyW.txt < tinyT.txt
50
99
13

471.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

 Whitelisting. When possible, our development clients are intended to mirror practical
situations and demonstrate the need for the algorithm at hand. In this case, the process
is known as whitelisting. Specifically, imagine a credit card company that needs to check
whether customer transactions are for a valid account. To do so, it can

■ Keep customers account numbers in a file, which we refer to as a whitelist.
■ Produce the account number associated with each transaction in the standard

input stream.
■

Use the test client to put onto standard output the numbers that are not associat-
ed with any customer. Presumably the company would refuse such transactions.

It would not be unusual for a big company with millions of customers to have to pro-
cess millions of transactions or more. To model this situation, we provide on the book-
site the files largeW.txt (1 million integers) and largeT.txt (10 million integers).

Performance. A working program is often not sufficient. For example, a much simpler
implementation of rank(), which does not even require the array to be sorted, is to
check every entry, as follows:

public static int rank(int key, int[] a)
{
 for (int i = 0; i < a.length; i++)
 if (a[i] == key) return i;
 return -1;
}

Given this simple and easy-to-understand solution, why do we use mergesort and bi-
nary search? If you work Exercise 1.1.38, you will see that your computer is too slow
to run this brute-force implementation of rank() for large numbers of inputs (say, 1
million whitelist entries and 10 million transactions). Solving the whitelist problem for
a large number of inputs is not feasible without efficient algorithms such as binary search
and mergesort. Good performance is often of critical importance, so we lay the ground-
work for studying performance in Section 1.4 and analyze the performance character-
istics of all of our algorithms (including binary search, in Section 3.1 and mergesort,
in Section 2.2).

In the present context, our goal in thoroughly outlining our programming model
is to ensure that you can run code like BinarySearch on your computer, use it on test
data like ours, and modify it to adapt to various situations (such as those described in
the exercises at the end of this section), in order to best understand its applicability.
The programming model that we have sketched is designed to facilitate such activities,
which are crucial to our approach to studying algorithms.

48 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

489910
 18940
774392
490636
125544
407391
115771
992663
923282
176914
217904
571222
519039
395667
 ...

944443
293674
572153
600579
499569
984875
763178
295754
 44696
207807
138910
903531
140925
699418
759984
199694
774549
635871
161828
805380
 ...

% java BinarySearch largeW.txt < largeT.txt
499569
984875
295754
207807
140925
161828
 ...

largeW.txt largeT.txt

Large files for BinarySearch test client

not in
largeW.txt

1,000,000
int values

3,675,966
int values

10,000,000
int values

491.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

Perspective In this section, we have described a fine and complete programming
model that served (and still serves) many programmers for many decades. Modern
programming, however, goes one step further. This next level is called data abstraction,
sometimes known as object-oriented programming, and is the subject of the next sec-
tion. Simply put, the idea behind data abstraction is to allow a program to define data
types (sets of values and sets of operations on those values), not just static methods that
operate on predefined data types.

Object-oriented programming has come into widespread use in recent decades, and
data abstraction is central to modern program development. We embrace data abstrac-
tion in this book for three primary reasons:

■

It enables us to expand our ability to reuse code through modular programming.
For example, our sorts in Chapter 2 and binary search and other algorithms in
Chapter 3 allow clients to make use of the same code for any type of data (not
just integers), including one defined by the client.

■

It provides a convenient mechanism for building so-called linked data structures
that provide more flexibility than arrays and are the basis of efficient algorithms
in many settings.

■

It enables us to precisely define the algorithmic challenges that we face. For ex-
ample, our union-find algorithms in Section 1.5, our priority-queue algorithms
in Section 2.4, and our symbol-table algorithms in Chapter 3 are all oriented
toward defining data structures that enable efficient implementations of a set of
operations. This challenge aligns perfectly with data abstraction.

Despite all of these considerations, our focus remains on the study of algorithms. In
this context, we proceed to consider next the essential features of object-oriented pro-
gramming that are relevant to our mission.

50 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

Q&A

Q. What is Java bytecode?

A. A low-level version of your program that runs on the Java virtual machine. This level
of abstraction makes it easier for the developers of Java to ensure that our programs run
on a broad variety of devices.

Q. It seems wrong that Java should just let ints overflow and give bad values. Shouldn’t
Java automatically check for overflow?

A. This issue is a contentious one among programmers. The short answer is that the
lack of such checking is one reason such types are called primitive data types. A little
knowledge can go a long way in avoiding such problems. We use the int type for small
numbers (less than ten decimal digits), and the long type when values run into the bil-
lions or more.

Q. What is the value of Math.abs(-2147483648)?

A. -2147483648. This strange (but true) result is a typical example of the effects of
integer overflow.

Q. How can I initialize a double variable to infinity?

A. Java has built-in constants available for this purpose: Double.POSITIVE_INFINITY
and Double.NEGATIVE_INFINITY.

Q. Can you compare a double to an int?

A. Not without doing a type conversion, but remember that Java usually does the req-
uisite type conversion automatically. For example, if x is an int with the value 3, then
the expression (x < 3.1) is true—Java converts x to double (because 3.1 is a double
literal) before performing the comparison.

Q. What happens if I use a variable before initializing it to a value?

A. Java will report a compile-time error if there is any path through your code that
would lead to use of an uninitialized variable.

Q. What are the values of 1/0 and 1.0/0.0 as Java expressions?

A. The first generates a runtime exception for division by zero (which stops your pro-
gram because the value is undefined); the second has the value Infinity.

511.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

Q. Can you use < and > to compare String variables?

A. No. Those operators are defined only for primitive types. See page 80.

Q. What is the result of division and remainder for negative integers?

A. The quotient a/b rounds toward 0; the remainder a % b is defined such that (a /
b) * b + a % b is always equal to a. For example, -14/3 and 14/-3 are both -4, but
-14 % 3 is -2 and 14 % -3 is 2.

Q. Why do we say (a && b) and not (a & b)?

A. The operators &, |, and ^ are bitwise logical operations for integer types that do and,
or, and exclusive or (respectively) on each bit position. Thus the value of 10&6 is 14 and
the value of 10^6 is 12. We use these operators rarely (but occasionally) in this book.
The operators && and || are valid only in boolean expressions are included separately
because of short-circuiting: an expression is evaluated left-to-right and the evaluation
stops when the value is known.

Q. Is ambiguity in nested if statements a problem?

A. Yes. In Java, when you write

if <expr1> if <expr2> <stmntA> else <stmntB>

it is equivalent to

if <expr1> { if <expr2> <stmntA> else <stmntB> }

even if you might have been thinking

if <expr1> { if <expr2> <stmntA> } else <stmntB>

Using explicit braces is a good way to avoid this dangling else pitfall.

Q. What is the difference between a for loop and its while formulation?

A. The code in the for loop header is considered to be in the same block as the for
loop body. In a typical for loop, the incrementing variable is not available for use in
later statements; in the corresponding while loop, it is. This distinction is often a rea-
son to use a while instead of a for loop.

Q. Some Java programmers use int a[] instead of int[] a to declare arrays. What’s
the difference?

Q&A (continued)

52 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

A. In Java, both are legal and equivalent. The former is how arrays are declared in C.
The latter is the preferred style in Java since the type of the variable int[] more clearly
indicates that it is an array of integers.

Q. Why do array indices start at 0 instead of 1?

A. This convention originated with machine-language programming, where the ad-
dress of an array element would be computed by adding the index to the address of the
beginning of an array. Starting indices at 1 would entail either a waste of space at the
beginning of the array or a waste of time to subtract the 1.

Q. If a[] is an array, why does StdOut.println(a) print out a hexadecimal integer,
such as @f62373 , instead of the elements of the array?

A. Good question. It is printing out the memory address of the array, which, unfortu-
nately, is rarely what you want.

Q. Why are we not using the standard Java libraries for input and graphics?

A. We are using them, but we prefer to work with simpler abstract models. The Java
libraries behind StdIn and StdDraw are built for production programming, and the
libraries and their APIs are a bit unwieldy. To get an idea of what they are like, look at
the code in StdIn.java and StdDraw.java.

Q. Can my program reread data from standard input?

A. No. You only get one shot at it, in the same way that you cannot undo println().

Q. What happens if my program attempts to read after standard input is exhausted?

A. You will get an error. StdIn.isEmpty() allows you to avoid such an error by check-
ing whether there is more input available.

Q. What does this error message mean?

 Exception in thread "main" java.lang.NoClassDefFoundError: StdIn

A. You probably forgot to put StdIn.java in your working directory.

Q. Can a static method take another static method as an argument in Java?

A. No. Good question, since many other languages do support this capability.

531.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

EXERCISES

1.1.1 Give the value of each of the following expressions:

a. (0 + 15) / 2

b. 2.0e-6 * 100000000.1

c. true && false || true && true

1.1.2 Give the type and value of each of the following expressions:

a. (1 + 2.236)/2

b. 1 + 2 + 3 + 4.0

c. 4.1 >= 4

d. 1 + 2 + "3"

1.1.3 Write a program that takes three integer command-line arguments and prints
equal if all three are equal, and not equal otherwise.

1.1.4 What (if anything) is wrong with each of the following statements?

a. if (a > b) then c = 0;

b. if a > b { c = 0; }

c. if (a > b) c = 0;

d. if (a > b) c = 0 else b = 0;

1.1.5 Write a code fragment that prints true if the double variables x and y are both
strictly between 0 and 1 and false otherwise.

1.1.6 What does the following program print?

int f = 0;
int g = 1;
for (int i = 0; i <= 15; i++)
{
 StdOut.println(f);
 f = f + g;
 g = f - g;
}

54 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

1.1.7 Give the value printed by each of the following code fragments:

a. double t = 9.0;
 while (Math.abs(t - 9.0/t) > .001)
 t = (9.0/t + t) / 2.0;

 StdOut.printf("%.5f\n", t);

b. int sum = 0;
 for (int i = 1; i < 1000; i++)

 for (int j = 0; j < i; j++)

 sum++;

 StdOut.println(sum);

c. int sum = 0;
 for (int i = 1; i < 1000; i *= 2)

 for (int j = 0; j < N; j++)

 sum++;

 StdOut.println(sum);

1.1.8 What do each of the following print?

a. System.out.println('b');

b. System.out.println('b' + 'c');

c. System.out.println((char) ('a' + 4));

Explain each outcome.

1.1.9 Write a code fragment that puts the binary representation of a positive integer N
into a String s.

Solution: Java has a built-in method Integer.toBinaryString(N) for this job, but
the point of the exercise is to see how such a method might be implemented. Here is a
particularly concise solution:

String s = "";
for (int n = N; n > 0; n /= 2)
 s = (n % 2) + s;

551.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

1.1.10 What is wrong with the following code fragment?

int[] a;
for (int i = 0; i < 10; i++)
 a[i] = i * i;

Solution: It does not allocate memory for a[] with new. This code results in a
variable a might not have been initialized compile-time error.

1.1.11 Write a code fragment that prints the contents of a two-dimensional boolean
array, using * to represent true and a space to represent false. Include row and column
numbers.

1.1.12 What does the following code fragment print?

int[] a = new int[10];
for (int i = 0; i < 10; i++)
 a[i] = 9 - i;
for (int i = 0; i < 10; i++)
 a[i] = a[a[i]];
for (int i = 0; i < 10; i++)
 System.out.println(i);

1.1.13 Write a code fragment to print the transposition (rows and columns changed)
of a two-dimensional array with M rows and N columns.

1.1.14 Write a static method lg() that takes an int value N as argument and returns
the largest int not larger than the base-2 logarithm of N. Do not use Math.

1.1.15 Write a static method histogram() that takes an array a[] of int values and
an integer M as arguments and returns an array of length M whose ith entry is the num-
ber of times the integer i appeared in the argument array. If the values in a[] are all
between 0 and M–1, the sum of the values in the returned array should be equal to
a.length.

1.1.16 Give the value of exR1(6):

public static String exR1(int n)
{
 if (n <= 0) return "";
 return exR1(n-3) + n + exR1(n-2) + n;
}

EXERCISES (continued)

56 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

1.1.17 Criticize the following recursive function:

public static String exR2(int n)
{
 String s = exR2(n-3) + n + exR2(n-2) + n;
 if (n <= 0) return "";
 return s;
}

Answer : The base case will never be reached. A call to exR2(3) will result in calls to
exR2(0), exR2(-3), exR3(-6), and so forth until a StackOverflowError occurs.

1.1.18 Consider the following recursive function:

public static int mystery(int a, int b)
{
 if (b == 0) return 0;
 if (b % 2 == 0) return mystery(a+a, b/2);
 return mystery(a+a, b/2) + a;
}

What are the values of mystery(2, 25) and mystery(3, 11)? Given positive integers
a and b, describe what value mystery(a, b) computes. Answer the same question, but
replace + with * and replace return 0 with return 1.

1.1.19 Run the following program on your computer:

public class Fibonacci
{
 public static long F(int N)
 {
 if (N == 0) return 0;
 if (N == 1) return 1;
 return F(N-1) + F(N-2);
 }

 public static void main(String[] args)
 {
 for (int N = 0; N < 100; N++)
 StdOut.println(N + " " + F(N));
 }
}

571.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

What is the largest value of N for which this program takes less 1 hour to compute the
value of F(N)? Develop a better implementation of F(N) that saves computed values in
an array.

1.1.20 Write a recursive static method that computes the value of ln (N !)

1.1.21 Write a program that reads in lines from standard input with each line contain-
ing a name and two integers and then uses printf() to print a table with a column of
the names, the integers, and the result of dividing the first by the second, accurate to
three decimal places. You could use a program like this to tabulate batting averages for
baseball players or grades for students.

1.1.22 Write a version of BinarySearch that uses the recursive rank() given on page
25 and traces the method calls. Each time the recursive method is called, print the argu-
ment values lo and hi, indented by the depth of the recursion. Hint: Add an argument
to the recursive method that keeps track of the depth.

1.1.23 Add to the BinarySearch test client the ability to respond to a second argu-
ment: + to print numbers from standard input that are not in the whitelist, - to print
numbers that are in the whitelist.

1.1.24 Give the sequence of values of p and q that are computed when Euclid’s algo-
rithm is used to compute the greatest common divisor of 105 and 24. Extend the code
given on page 4 to develop a program Euclid that takes two integers from the command
line and computes their greatest common divisor, printing out the two arguments for
each call on the recursive method. Use your program to compute the greatest common
divisor or 1111111 and 1234567.

1.1.25 Use mathematical induction to prove that Euclid’s algorithm computes the
greatest common divisor of any pair of nonnegative integers p and q.

EXERCISES (continued)

58 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

CREATIVE PROBLEMS

1.1.26 Sorting three numbers. Suppose that the variables a, b, c, and t are all of the
same numeric primitive type. Show that the following code puts a, b, and c in ascending
order:

if (a > b) { t = a; a = b; b = t; }
if (a > c) { t = a; a = c; c = t; }
if (b > c) { t = b; b = c; c = t; }

1.1.27 Binomial distribution. Estimate the number of recursive calls that would be
used by the code

public static double binomial(int N, int k, double p)
{
 if ((N == 0) || (k < 0)) return 1.0;
 return (1.0 - p)*binomial(N-1, k) + p*binomial(N-1, k-1);
}

to compute binomial(100, 50). Develop a better implementation that is based on
saving computed values in an array.

1.1.28 Remove duplicates. Modify the test client in BinarySearch to remove any du-
plicate keys in the whitelist after the sort.

1.1.29 Equal keys. Add to BinarySearch a static method rank() that takes a key and
a sorted array of int values (some of which may be equal) as arguments and returns the
number of elements that are smaller than the key and a similar method count() that
returns the number of elements equal to the key. Note : If i and j are the values returned
by rank(key, a) and count(key, a) respectively, then a[i..i+j-1] are the values in
the array that are equal to key.

1.1.30 Array exercise. Write a code fragment that creates an N-by-N boolean array
a[][] such that a[i][j] is true if i and j are relatively prime (have no common fac-
tors), and false otherwise.

1.1.31 Random connections. Write a program that takes as command-line arguments
an integer N and a double value p (between 0 and 1), plots N equally spaced dots of size
.05 on the circumference of a circle, and then, with probability p for each pair of points,
draws a gray line connecting them.

591.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

1.1.32 Histogram. Suppose that the standard input stream is a sequence of double
values. Write a program that takes an integer N and two double values l and r from the
command line and uses StdDraw to plot a histogram of the count of the numbers in the
standard input stream that fall in each of the N intervals defined by dividing (l , r) into
N equal-sized intervals.

1.1.33 Matrix library. Write a library Matrix that implements the following API:

public class Matrix

static double dot(double[] x, double[] y) vector dot product

static double[][] mult(double[][] a, double[][] b) matrix-matrix product

static double[][] transpose(double[][] a) transpose

static double[] mult(double[][] a, double[] x) matrix-vector product

static double[] mult(double[] y, double[][] a) vector-matrix product

Develop a test client that reads values from standard input and tests all the methods.

1.1.34 Filtering. Which of the following require saving all the values from standard
input (in an array, say), and which could be implemented as a filter using only a fixed
number of variables and arrays of fixed size (not dependent on N)? For each, the input
comes from standard input and consists of N real numbers between 0 and 1.

■ Print the maximum and minimum numbers.
■ Print the median of the numbers.
■ Print the k th smallest value, for k less than 100.
■ Print the sum of the squares of the numbers.
■ Print the average of the N numbers.
■ Print the percentage of numbers greater than the average.
■ Print the N numbers in increasing order.
■ Print the N numbers in random order.

CREATIVE PROBLEMS (continued)

60 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

EXPERIMENTS

1.1.35 Dice simulation. The following code computes the exact probability distribu-
tion for the sum of two dice:

int SIDES = 6;
double[] dist = new double[2*SIDES+1];
for (int i = 1; i <= SIDES; i++)
 for (int j = 1; j <= SIDES; j++)
 dist[i+j] += 1.0;

for (int k = 2; k <= 2*SIDES; k++)
 dist[k] /= 36.0;

The value dist[i] is the probability that the dice sum to k. Run experiments to vali-
date this calculation simulating N dice throws, keeping track of the frequencies of oc-
currence of each value when you compute the sum of two random integers between 1
and 6. How large does N have to be before your empirical results match the exact results
to three decimal places?

1.1.36 Empirical shuffle check. Run computational experiments to check that our
shuffling code on page 32 works as advertised. Write a program ShuffleTest that takes
command-line arguments M and N, does N shuffles of an array of size M that is initial-
ized with a[i] = i before each shuffle, and prints an M-by-M table such that row i
gives the number of times i wound up in position j for all j. All entries in the array
should be close to N/M.

1.1.37 Bad shuffling. Suppose that you choose a random integer between 0 and N-1
in our shuffling code instead of one between i and N-1. Show that the resulting order is
not equally likely to be one of the N! possibilities. Run the test of the previous exercise
for this version.

1.1.38 Binary search versus brute-force search. Write a program BruteForceSearch
that uses the brute-force search method given on page 48 and compare its running time
on your computer with that of BinarySearch for largeW.txt and largeT.txt.

611.1 ■ Basic Programming Model

From <www.wowebook.com>

ptg

1.1.39 Random matches. Write a BinarySearch client that takes an int value T as
command-line argument and runs T trials of the following experiment for N = 103, 104,
105, and 106: generate two arrays of N randomly generated positive six-digit int values,
and find the number of values that appear in both arrays. Print a table giving the average
value of this quantity over the T trials for each value of N.

EXPERIMENTS (continued)

62 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

1.2 DATA ABSTRACTION

A data type is a set of values and a set of operations on those values. So far, we have
discussed in detail Java’s primitive data types: for example, the values of the primitive
data type int are integers between �231 and 231 � 1; the operations of int include +, *,
-, /, %, <, and >. In principle, we could write all of our programs using only the built-in
primitive types, but it is much more convenient to write programs at a higher level of
abstraction. In this section, we focus on the process of defining and using data types,
which is known as data abstraction (and supplements the function abstraction style that
is the basis of SECTION 1.1).

Programming in Java is largely based on building data types known as reference types
with the familiar Java class. This style of programming is known as object-oriented
programming, as it revolves around the concept of an object, an entity that holds a data
type value. With Java’s primitive types we are largely confined to programs that operate
on numbers, but with reference types we can write programs that operate on strings,
pictures, sounds, any of hundreds of other abstractions that are available in Java’s stan-
dard libraries or on our booksite. Even more significant than libraries of predefined
data types is that the range of data types available in Java programming is open-ended,
because you can define your own data types to implement any abstraction whatsoever.

An abstract data type (ADT) is a data type whose representation is hidden from the
client. Implementing an ADT as a Java class is not very different from implementing a
function library as a set of static methods. The primary difference is that we associate
data with the function implementations and we hide the representation of the data
from the client. When using an ADT, we focus on the operations specified in the API and
pay no attention to the data representation; when implementing an ADT, we focus on
the data, then implement operations on that data.

Abstract data types are important because they support encapsulation in program
design. In this book, we use them as a means to

■ Precisely specify problems in the form of APIs for use by diverse clients
■ Describe algorithms and data structures as API implementations

Our primary reason for studying different algorithms for the same task is that perfor-
mance characteristics differ. Abstract data types are an appropriate framework for the
study of algorithms because they allow us to put knowledge of algorithm performance
to immediate use: we can substitute one algorithm for another to improve performance
for all clients without changing any client code.

64

From <www.wowebook.com>

ptg

Using abstract data types You do not need to know how a data type is imple-
mented in order to be able to use it, so we begin by describing how to write programs
that use a simple data type named Counter whose values are a name and a nonnega-
tive integer and whose operations are create and initialize to zero, increment by one, and
examine the current value. This abstraction is useful in many contexts. For example, it
would be reasonable to use such a data type in electronic voting software, to ensure that
the only thing that a voter can do is increment a chosen candidate’s tally by one. Or,
we might use a Counter to keep track of fundamental operations when analyzing the
performance of algorithms. To use a Counter, you need to learn our mechanism for
specifying the operations defined in the data type and the Java language mechanisms
for creating and manipulating data-type values. Such mechanisms are critically im-
portant in modern programming, and we use them throughout this book, so this first
example is worthy of careful attention.

API for an abstract data type. To specify the behavior of an abstract data type, we use
an instance application programming interface (API), which is a list of constructors and
methods (operations), with an informal description of the effect of each, as in this API
for Counter:

 public class Counter

Counter(String id) create a counter named id
void increment() increment the counter by one
int tally() number of increments since creation

String toString() string representation
 An API for a counter

Even though the basis of a data-type definition is a set of values, the role of the values
is not visible from the API, only the operations on those values. Accordingly, an ADT
definition has many similarities with a library of static methods (see page 24):

■ Both are implemented as a Java class.
■ Instance methods may take zero or more arguments of a specified type, sepa-

rated by commas and enclosed in parentheses.
■ They may provide a return value of a specified type or no return value (signified

by void).
And there are three significant differences:

■ Some entries in the API have the same name as the class and lack a return type.
Such entries are known as constructors and play a special role. In this case,
Counter has a constructor that takes a String argument.

651.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

■ Instance methods lack the static modifier. They are not static methods—their
purpose is to operate on data type values.

■

Some instance methods are present so as to adhere to Java conventions—we
refer to such methods as inherited methods and shade them gray in the API.

As with APIs for libraries of static methods, an API for an abstract data type is a con-
tract with all clients and, therefore, the starting point both for developing any client
code and for developing any data-type implementation. In this case, the API tells us
that to use Counter, we have available the Counter() constructor, the increment()
and tally() instance methods, and the inherited toString() method.

Inherited methods. Various Java conventions enable a data type to take advantage of
built-in language mechanisms by including specific methods in the API. For example,
all Java data types inherit a toString() method that returns a String representation
of the data-type values. Java calls this method when any data-type value is to be concat-
enated with a String value with the + operator. The default implementation is not par-
ticularly useful (it gives a string representation of the memory address of the data-type
value), so we often provide an implementation that overrides the default, and include
toString() in the API whenever we do so. Other examples of such methods include
equals(), compareTo(), and hashCode() (see page 101).

Client code. As with modular programming based on static methods, the API allows
us to write client code without knowing details of the implementation (and to write
implementation code without knowing details of any particular client). The mecha-
nisms introduced on page 28 for organizing programs as independent modules are use-
ful for all Java classes, and thus are effective for modular programming with ADTs as
well as for libraries of static methods. Accordingly, we can use an ADT in any program
provided that the source code is in a .java file in the same directory, or in the standard
Java library, or accessible through an import statement, or through one of the classpath
mechanisms described on the booksite. All of the benefits of modular programming
follow. By encapsulating all the code that implements a data type within a single Java
class, we enable the development of client code at a higher level of abstraction. To de-
velop client code, you need to be able to declare variables, create objects to hold data-
type values, and provide access to the values for instance methods to operate on them.
These processes are different from the corresponding processes for primitive types,
though you will notice many similarities.

66 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

 Objects. Naturally, you can declare that a variable heads is to be associated with data
of type Counter with the code

Counter heads;

but how can you assign values or specify operations? The answer to this question in-
volves a fundamental concept in data abstraction: an object is an entity that can take on
a data-type value. Objects are characterized by three essential prop-
erties: state, identity, and behavior. The state of an object is a value
from its data type. The identity of an object distinguishes one object
from another. It is useful to think of an object’s identity as the place
where its value is stored in memory. The behavior of an object is the
effect of data-type operations. The implementation has the sole re-
sponsibility for maintaining an object’s identity, so that client code
can use a data type without regard to the representation of its state
by conforming to an API that describes an object’s behavior. An ob-
ject’s state might be used to provide information to a client or cause
a side effect or be changed by one of its data type’s operations, but
the details of the representation of the data-type value are not rel-
evant to client code. A reference is a mechanism for accessing an ob-
ject. Java nomenclature makes clear the distinction from primitive
types (where variables are associated with values) by using the term
reference types for nonprimitive types. The details of implementing
references vary in Java implementations, but it is useful to think of a
reference as a memory address, as shown at right (for brevity, we use
three-digit memory addresses in the diagram).

 Creating objects. Each data-type value is stored in an object. To
create (or instantiate) an individual object, we invoke a constructor
by using the keyword new, followed by the class name, followed by
() (or a list of argument values enclosed in parentheses, if the con-
structor takes arguments). A constructor has no return type because
it always returns a reference to an object of its data type. Each time
that a client uses new(), the system

■ Allocates memory space for the object
■ Invokes the constructor to initialize its value
■ Returns a reference to the object

In client code we typically create objects in an initializing declaration that associates a
variable with the object, as we often do with variables of primitive types. Unlike primi-
tive types, variables are associated with references to objects, not the data-type values

460

heads 460

reference

460

heads 460

612

tails 612
identity
of heads

identity
of tails

identity
(details hidden

Object representation

one Counter object

two Counter objects

671.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

themselves. We can create any num-
ber of objects from the same class—
each object has its own identity
and may or may not store the same
value as another object of the same
type. For example, the code

Counter heads = new Counter("heads");
Counter tails = new Counter("tails");

creates two different Counter objects. In an abstract data type, details of the representa-
tion of the value are hidden from client code. You might assume that the value associ-
ated with each Counter object is a String name and an int tally, but you cannot write
code that depends on any specific representation (or even know whether that assumption
is true—perhaps the tally is a long value).

 Invoking instance methods. The purpose of an instance method is to operate on data-
type values, so the Java language includes a special mechanism to invoke instance meth-
ods that emphasizes a connection to an object. Specifically, we invoke an instance meth-

od by writing a variable name that refers to an object,
followed by a period, followed by an instance method
name, followed by 0 or more arguments, enclosed in
parentheses and separated by commas. An instance
method might change the data-type value or just exam-
ine the data-type value. Instance methods have all of
the properties of static methods that we considered on
page 24—arguments are passed by value, method names
can be overloaded, they may have a return value, and
they may cause side effects—but they have an addi-
tional property that characterizes them: each invoca-
tion is associated with an object. For example, the code

 heads.increment();

invokes the instance method increment() to operate
on the Counter object heads (in this case the opera-
tion involves incrementing the tally), and the code

 heads.tally() - tails.tally();

invokes the instance method tally() twice, first to
operate on the Counter object heads and then to op-
erate on the Counter object tails (in this case the

StdOut.println(heads);

invoke heads.toString()

heads.tally() - tails.tally()

invoke an instance method
that accesses the object’s value

heads.increment();

object name

declaration

object name

invoke an instance method
that changes the object’s value

heads = new Counter ("heads");

invoke a constructor (create an object)

Invoking instance methods

via automatic type conversion (toString())

as an expression

as a statement (void return value)

with new (constructor)

Counter heads;

call on constructor
to create an object

declaration to associate
variable with object reference

Counter heads = new Counter("heads");

Creating an object

68 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

operation involves returning the tally as an int value). As these examples illustrate, you
can use calls on instance methods in client code in the same way as you use calls on stat-
ic methods—as statements (void methods) or values in expressions (methods that re-
turn a value). The primary purpose of stat-
ic methods is to implement functions; the
primary purpose of non-static (instance)
methods is to implement data-type opera-
tions. Either type of method may appear in
client code, but you can easily distinguish
between them, because a static method
call starts with a class name (uppercase, by
convention) and a non-static method call
always starts with an object name (lower-
case, by convention). These differences are
summarized in the table at right.

 Using objects. Declarations give us variable names for objects that we can use in code
not just to create objects and invoke instance methods, but also in the same way as we
use variable names for integers, floating-point numbers, and other primitive types. To
develop client code for a given data type, w:

■ Declare variables of the type, for use in referring to objects
■ Use the keyword new to invoke a constructor that creates objects of the type
■

Use the object name to invoke instance methods, either as statements or within
expressions

For example, the class Flips shown at the top of the next page is a Counter client that
takes a command-line argument T and simulates T coin flips (it is also a StdRandom cli-
ent). Beyond these direct uses, we can use variables associated with objects in the same
way as we use variables associated with primitive-type values:

■ In assignment statements
■ To pass or return objects from methods
■ To create and use arrays of object.

Understanding the behavior of each of these types of uses requires thinking in terms of
references, not values, as you will see when we consider them, in turn.

Assignment statements. An assignment statement with a reference type creates a copy
of the reference. The assignment statement does not create a new object, just another
reference to an existing object. This situation is known as aliasing: both variables refer
to the same object. The effect of aliasing is a bit unexpected, because it is different for
variables holding values of a primitive type. Be sure that you understand the difference.

instance method static method

sample call head.increment() Math.sqrt(2.0)

invoked with object name class name

parameters
reference to object
and argument(s)

argument(s)

primary
purpose

examine or change
object value

compute return
value

Instance methods versus static methods

691.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

If x and y are variables of a primitive type, then the as-
signment x = y copies the value of y to x. For reference
types, the reference is copied (not the value). Aliasing is a
common source of bugs in Java programs, as illustrated
by the following example:

Counter c1 = new Counter("ones");
c1.increment();
Counter c2 = c1;
c2.increment();
StdOut.println(c1);

With a typical toString() implementation this code
would print the string "2 ones" which may or may not
be what was intended and is counterintuitive at first. Such
bugs are common in programs written by people without
much experience in using objects (that may be you, so pay
attention here!). Changing the state of an object impacts
all code involving aliased variables referencing that ob-
ject. We are used to thinking of two different variables of
primitive types as being independent, but that intuition
does not carry over to variables of reference types.

public class Flips
{
 public static void main(String[] args)
 {
 int T = Integer.parseInt(args[0]);
 Counter heads = new Counter("heads");
 Counter tails = new Counter("tails");
 for (int t = 0; t < T; t++)
 if (StdRandom.bernoulli(0.5))
 heads.increment();
 else tails.increment();
 StdOut.println(heads);
 StdOut.println(tails);
 int d = heads.tally() - tails.tally();
 StdOut.println("delta: " + Math.abs(d));
 }
}

Counter client that simulates T coin flips

% java Flips 10
5 heads
5 tails
delta: 0

% java Flips 10
8 heads
2 tails
delta: 6

% java Flips 1000000
499710 heads
500290 tails
delta: 580

Counter c1;
c1 = new Counter("ones");
c1.increment();
Counter c2 = c1;
c2.increment();

811

 2

 c2 811

 c1 811 references to
same object

reference to
"ones"

Aliasing

70 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

 Objects as arguments. You can pass objects as arguments to methods. This ability typi-
cally simplifies client code. For example, when we use a Counter as an argument, we are
essentially passing both a name and a tally, but need only specify one variable. When
we call a method with arguments, the effect in Java is as if each argument value were
to appear on the right-hand side of an assignment statement with the corresponding
argument name on the left. That is, Java passes a copy of the argument value from the
calling program to the method. This arrangement is known as pass by value (see page
24). One important consequence is that the method cannot change the value of a caller’s
variable. For primitive types, this policy is what we expect (the two variables are inde-
pendent), but each time that we use a reference type as a method argument we create
an alias, so we must be cautious. In other words, the convention is to pass the reference
by value (make a copy of it) but to pass the object by reference. For example, if we pass
a reference to an object of type Counter, the method cannot change the original refer-
ence (make it point to a different Counter), but it can change the value of the object,
for example by using the reference to call increment().

 Objects as return values. Naturally, you can also use an object as a return value from
a method. The method might return an object passed to it as an argument, as in the
example below, or it might create an object and return a reference to it. This capa-
bility is important because
Java methods allow only one
return value—using objects
enables us to write code that,
in effect, returns multiple
values.

public class FlipsMax
{
 public static Counter max(Counter x, Counter y)
 {
 if (x.tally() > y.tally()) return x;
 else return y;
 }

 public static void main(String[] args)
 {
 int T = Integer.parseInt(args[0]);
 Counter heads = new Counter("heads");
 Counter tails = new Counter("tails");
 for (int t = 0; t < T; t++)
 if (StdRandom.bernoulli(0.5))
 heads.increment();
 else tails.increment();

 if (heads.tally() == tails.tally())
 StdOut.println("Tie");
 else StdOut.println(max(heads, tails) + " wins");
 }
}

Example of a static method with object arguments and return values

% java FlipsMax 1000000
500281 tails wins

711.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

 Arrays are objects. In Java, every value of any nonprimitive type is an object. In par-
ticular, arrays are objects. As with strings, there is special language support for certain
operations on arrays: declarations, initialization, and indexing. As with any other ob-
ject, when we pass an array to a method or use an array variable on the right hand side
of an assignment statement, we are making a copy of the array reference, not a copy
of the array. This convention is appropriate for the typical case where we expect the
method to be able to modify the array, by rearranging its entries, as, for example, in
java.util.Arrays.sort() or the shuffle() method that we considered on page 32.

 Arrays of objects. Array entries can be of any type, as we have already seen: args[] in
our main() implementations is an array of String objects. When we create an array of
objects, we do so in two steps:

■ Create the array, using the bracket syntax for array constructors.
■

Create each object in the array, using a standard constructor for each.
For example, the code below simulates rolling a die, using an array of Counter objects
to keep track of the number of occurrences of each possible value. An array of objects
in Java is an array of references to objects, not the objects themselves. If the objects are
large, then we may gain efficiency by not having to move them around, just their refer-
ences. If they are small, we may lose efficiency by having to follow a reference each time
we need to get to some information.

public class Rolls
{
 public static void main(String[] args)
 {
 int T = Integer.parseInt(args[0]);
 int SIDES = 6;
 Counter[] rolls = new Counter[SIDES+1];
 for (int i = 1; i <= SIDES; i++)
 rolls[i] = new Counter(i + "'s");

 for (int t = 0; t < T; t++)
 {
 int result = StdRandom.uniform(1, SIDES+1);
 rolls[result].increment();
 }
 for (int i = 1; i <= SIDES; i++)
 StdOut.println(rolls[i]);
 }
}

Counter client that simulates T rolls of a die

% java Rolls 1000000
167308 1's
166540 2's
166087 3's
167051 4's
166422 5's
166592 6's

72 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

With this focus on objects, writing code that embraces data abstraction (defining
and using data types, with data-type values held in objects) is widely referred to as
object-oriented programming. The basic concepts that we have just covered are the start-
ing point for object-oriented programming, so it is worthwhile to briefly summarize
them. A data type is a set of values and a set of operations defined on those values. We
implement data types in independent Java class modules and write client programs
that use them. An object is an entity that can take on a data-type value or an instance of
a data type. Objects are characterized by three essential properties: state, identity, and
behavior. A data-type implementation supports clients of the data type as follows:

■ Client code can create objects (establish identity) by using the new construct to
invoke a constructor that creates an object, initializes its instance variables, and
returns a reference to that object.

 ■ Client code can manipulate data-type values (control an object’s behavior, pos-
sibly changing its state) by using a variable associated with an object to invoke
an instance method that operates on that object’s instance variables.

■

Client code can manipulate objects by creating arrays of objects and passing them
and returning them to methods, in the same way as for primitive-type values,
except that variables refer to references to values, not the values themselves.

These capabilities are the foundation of a flexible, modern, and widely useful program-
ming style that we will use as the basis for studying algorithms in this book.

731.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

Examples of abstract data types The Java language has thousands of built-in
ADTs, and we have defined many other ADTs to facilitate the study of algorithms. In-
deed, every Java program that we write is a data-type implementation (or a library of
static methods). To control complexity, we will specifically cite APIs for any ADT that
we use in this book (not many, actually).

In this section, we introduce as examples several data types, with some examples
of client code. In some cases, we present excerpts of APIs that may contain dozens of
instance methods or more. We articulate these APIs to present real-world examples, to
specify the instance methods that we will use in the book, and to emphasize that you
do not need to know the details of an ADT implementation in order to be able to use it.

For reference, the data types that we use and develop in this book are shown on the
facing page. These fall into several different categories:

■ Standard system ADTs in java.lang.*, which can be used in any Java program.
■ Java ADTs in libraries such as java.awt, java.net, and java.io, which can also

be used in any Java program, but need an import statement.
■ Our I/O ADTs that allow us to work with multiple input/output streams similar

to StdIn and StdOut.
■ Data-oriented ADTs whose primary purpose is to facilitate organizing and pro-

cessing data by encapsulating the representation. We describe several examples
for applications in computational geometry and information processing later in
this section and use them as examples in client code later on.

■ Collection ADTs whose primary purpose is to facilitate manipulation collections
of data of the same. We describe the basic Bag, Stack, and Queue types in Sec-
tion 1.3, PQ types in Chapter 2, and the ST and SET types in Chapters 3 and 5.

■ Opertions-oriented ADTs that we use to analyze algorithms, as described in Sec-
tion 1.4 and Section 1.5.

■

ADTs for graph algorithms, including both data-oriented ADTs that focus on
encapsulating representations of various kinds of graphs and operations-orient-
ed ADTs that focus on providing specifications for graph-processing algorithms.

This list does not include the dozens of types that we consider in exercises, which may
be found in the index. Also, as described on page 90, we often distinguish multiple imple-
mentations of various ADTs with a descriptive prefix. As a group, the ADTs that we
use demonstrate that organizing and understanding the data types that you use is an
important factor in modern programming.

A typical application might use only five to ten of these ADTs. A prime goal in the
development and organization of the ADTs in this book is to enable programmers to
easily take advantage of a relatively small set of them in developing client code.

74 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

standard Java system types in java.lang

Integer int wrapper

Double double wrapper

String indexed chars

StringBuilder builder for strings

other Java types

java.awt.Color colors

java.awt.Font fonts

java.net.URL URLs

java.io.File files

our standard I/O types

In input stream

Out output stream

Draw drawing

data-oriented types for client examples

Point2D point in the plane

Interval1D 1D interval

Interval2D 2D interval

Date date

Transaction transaction

types for the analysis of algorithms

Counter counter

Accumulator accumulator

VisualAccumulator visual version

Stopwatch stopwatch

collection types

Stack pushdown stack

Queue FIFO queue

Bag bag

MinPQ MaxPQ priority queue

IndexMinPQ IndexMinPQ priority queue (indexed)

ST symbol table

SET set

StringST symbol table (string keys)

data-oriented graph types

Graph graph

Digraph directed graph

Edge edge (weighted)

EdgeWeightedGraph graph (weighted)

DirectedEdge edge (directed, weighted)

EdgeWeightedDigraph graph (directed, weighted)

operations-oriented graph types

UF dynamic connectivity

DepthFirstPaths DFS path searcher

CC connected components

BreadthFirstPaths BFS path search

DirectedDFS DFS digraph path search

DirectedBFS BFS digraph path search

TransitiveClosure all paths

Topological topological order

DepthFirstOrder DFS order

DirectedCycle cycle search

SCC strong components

MST minimum spanning tree

SP shortest paths

Selected ADTs used in this book

751.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

 Geometric objects. A natural example of object-oriented programming is design-
ing data types for geometric objects. For example, the APIs on the facing page define

abstract data types for three familiar
geometric objects: Point2D (points
in the plane), Interval1D (intervals
on the line), and Interval2D (two-
dimensional intervals in the plane, or
axis-aligned rectangles). As usual, the
APIs are essentially self-documenting
and lead immediately to easily under-
stood client code such as the example
at left, which reads the boundaries
of an Interval2D and an integer T
from the command line, generates T
random points in the unit square, and
counts the number of points that fall
in the interval (an estimate of the area
of the rectangle). For dramatic effect,
the client also draws the interval and
the points that fall outside the inter-
val. This computation is a model for
a method that reduces the problem
of computing the area and volume
of geometric shapes to the problem
of determining whether a point falls

within the shape or not (a less difficult but not trivial prob-
lem). Of course, we can define APIs for other geometric ob-
jects such as line segments, triangles, polygons, circles, and
so forth, though implementing operations on them can be
challenging. Several examples are addressed in the exercises
at the end of this section.

Programs that process geometric objects have wide
application in computing with models of the natural world,
in scientific computing, video games, movies, and many
other applications. The development and study of such pro-
grams and applications has blossomed into a far-reaching
field of study known as computational geometry, which is a

public static void main(String[] args)
{
 double xlo = Double.parseDouble(args[0]);
 double xhi = Double.parseDouble(args[1]);
 double ylo = Double.parseDouble(args[2]);
 double yhi = Double.parseDouble(args[3]);
 int T = Integer.parseInt(args[4]);

 Interval1D x = new Interval1D(xlo, xhi);
 Interval1D y = new Interval1D(ylo, yhi);
 Interval2D box = new Interval2D(x, y);
 box.draw();

 Counter c = new Counter(“hits”);
 for (int t = 0; t < T; t++)
 {
 double x = Math.random();
 double y = Math.random();
 Point p = new Point(x, y);
 if (box.contains(p)) c.increment();
 else p.draw();
 }

 StdOut.println(c);
 StdOut.println(box.area());
}

Interval2D test client

% java Interval2D .2 .5 .5 .6 10000
297 hits
.03

76 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

fertile area of examples for the application of the algorithms that we address in this
book, as you will see in examples throughout the book. In the present context, our
interest is to suggest that abstract data types that directly represent geometric abstrac-
tions are not difficult to define and can lead to simple and clear client code. This idea is
reinforced in several exercises at the end of this section and on the booksite.

public class Point2D

Point2D(double x, double y) create a point

double x() x coordinate

double y() y coordinate

double r() radius (polar coordinates)

double theta() angle (polar coordinates)

double distTo(Point2D that) Euclidean distance from this point to that

void draw() draw the point on StdDraw

 An API for points in the plane

public class Interval1D

Interval1D(double lo, double hi) create an interval

double length() length of the interval

boolean contains(double x) does the interval contain x?

boolean intersects(Interval1D that) does the interval intersect that?

void draw() draw the interval on StdDraw

An API for intervals on the line

public class Interval2D

Interval2D(Interval1D x, Interval1D y) create a 2D interval

double area() area of the 2D interval

boolean contains(Point p) does the 2D interval contain p?

boolean intersects(Interval2D that) does the 2D interval intersect that?

void draw() draw the 2D interval on StdDraw

An API for two dimensional intervals in the plane

771.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

Information processing Whether it be a bank processing millions of credit card trans-
actions or a web analytics company processing billions of touchpad taps or a scien-
tific research group processing millions of experimental observations, a great many
applications are centered around processing and organizing information. Abstract data
types provide a natural mechanism for organizing the information. Without getting
into details, the two APIs on the facing page suggest a typical approach for a commer-
cial application. The idea is to define data types that allow us to keep information in
objects that correspond to things in the real world. A date is a day, a month, and a year
and a transaction is a customer, a date, and an amount. These two are just examples: we
might also define data types that can hold detailed information for customers, times,
locations, goods and services, or whatever. Each data type consists of constructors that
create objects containing the data and methods for use by client code to access it. To
simplify client code, we provide two constructors for each type, one that presents the
data in its appropriate type and another that parses a string to get the data (see Exer-
cise 1.2.19 for details). As usual, there is no reason for client code to know the rep-
resentation of the data. Most often, the reason to organize the data in this way is to
treat the data associated with an object as a single entity: we can maintain arrays of
Transaction values, use Date values as a argument or a return value for a method, and
so forth. The focus of such data types is on encapsulating the data, while at the same
time enabling the development of client code that does not depend on the representa-
tion of the data. We do not dwell on organizing information in this way, except to take
note that doing so and including the inherited methods toString(), compareTo(),
equals(), and hashCode() allows us to take advantage of algorithm implementations
that can process any type of data. We will discuss inherited methods in more detail
on page 100. For example, we have already noted Java’s convention that enables clients
to print a string representation of every value if we include toString() implemen-
tation in a data type. We consider conventions corresponding to the other inherited
methods in Section 1.3, Section 2.5, Section 3.4, and Section 3.5, using Date and
Transaction as examples. Section 1.3 gives classic examples of data types and a Java
language mechanism known as parameterized types, or generics, that takes advantage of
these conventions, and Chapter 2 and Chapter 3 are also devoted to taking advantage
of generic types and inherited methods to develop implementations of sorting and
searching algorithms that are effective for any type of data.

Whenever you have data of different types that logically belong together, it is
worthwhile to contemplate defining an ADT as in these examples. The ability to do so
helps to organize the data, can greatly simplify client code in typical applications, and
is an important step on the road to data abstraction.

78 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

public class Date implements Comparable<Date>

Date(int month, int day, int year) create a date

Date(String date) create a date (parse constructor)

int month() month

int day() day

int year() year

String toString() string representation

boolean equals(Object that) is this the same date as that?

int compareTo(Date that) compare this date to that

int hashCode() hash code

public class Transaction implements Comparable<Transaction>

Transaction(String who, Date when, double amount)

Transaction(String transaction) create a transaction (parse constructor)

String who() customer name

Date when() date

double amount() amount

String toString() string representation

boolean equals(Object that) is this the same transaction as that?

int compareTo(Transaction that) compare this transaction to that

int hashCode() hash code

 Sample APIs for commercial applications (dates and transactions)

791.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

 Strings. Java’s String is an important and useful ADT. A String is an indexed se-
quence of char values. String has dozens of instance methods, including the following:

public class String

String() create an empty string
int length() length of the string
int charAt(int i) ith character
int indexOf(String p) first occurrence of p (-1 if none)
int indexOf(String p, int i) first occurrence of p after i (-1 if none)

String concat(String t) this string with t appended
String substring(int i, int j) substring of this string (ith to j-1st chars)

String[] split(String delim) strings between occurrences of delim
int compareTo(String t) string comparison

boolean equals(String t) is this string’s value the same as t’s ?
int hashCode() hash code

 Java String API (partial list of methods)

String values are similar to arrays of characters, but the two are not the same. Ar-
rays have built-in Java language syntax for accessing a character; String has instance
methods for indexed access, length, and many other operations. On the other hand,
String has special language support for initialization and concatenation: instead of
creating and initializing a string with a constructor, we can use a string literal; instead
of invoking the method concat() we can use the + operator. We do not need to con-
sider the details of the implementation, though
understanding performance characteristics of
some of the methods is important when develop-
ing string-processing algorithms, as you will see
in Chapter 5. Why not just use arrays of charac-
ters instead of String values? The answer to this
question is the same as for any ADT: to simplify
and clarify client code. With String, we can write
clear and simple client code that uses numerous
convenient instance methods without regard to
the way in which strings are represented (see fac-
ing page). Even this short list contains powerful
operations that require advanced algorithms such

String a = "now is ";
String b = "the time ";
String c = "to"

a.length()
a.charAt(4)
a.concat(c)

a.indexOf("is")
a.substring(2, 5)

a.split(" ")[0]
a.split(" ")[1]

b.equals(c)

7
i
"now is to"
4
"w i"
"now"
"is"
false

call value

Examples of string operations

80 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

task implementation

is the string
a palindrome?

public static boolean isPalindrome(String s)
{
 int N = s.length();
 for (int i = 0; i < N/2; i++)
 if (s.charAt(i) != s.charAt(N-1-i))
 return false;
 return true;
}

extract file name
and extension from a

command-line
argument

String s = args[0];
int dot = s.rank(".");
String base = s.substring(0, dot);
String extension = s.substring(dot + 1, s.length());

print all lines in
 standard input that

 contain a string
specified on the
command line

String query = args[0];
while (!StdIn.isEmpty())
{
 String s = StdIn.readLine();
 if (s.contains(query)) StdOut.println(s);
}

create an array
of the strings on StdIn
delimited by whitespace

String input = StdIn.readAll();
String[] words = input.split("\\s+");

check whether an array
of strings is in

 alphabetical order

public boolean isSorted(String[] a)
{
 for (int i = 1; i < a.length; i++)
 {
 if (a[i-1].compareTo(a[i]) > 0)
 return false;
 }
 return true;
}

 Typical string-processing code

811.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

as those considered in Chapter 5. For example, the argument of split() can be a
 regular expression (see Section 5.4)—the split() example on page 81 uses the argu-
ment "\\s+", which means “one or more tabs, spaces, newlines, or returns.”

 Input and output revisited. A disadvantage of the StdIn, StdOut, and StdDraw stan-
dard libraries of Section 1.1 is that they restrict us to working with just one input file,
one output file, and one drawing for any given program. With object-oriented pro-
gramming, we can define similar mechanisms that allow us to work with multiple input
streams, output streams, and drawings within one program. Specifically, our standard
libary includes the data types In, Out, and Draw with the APIs shown on the facing page,
When invoked with a constructor having a String argument, In and Out will first try
to find a file in the current directory of your computer that has that name. If it cannot

do so, it will assume the argu-
ment to be a website name and
will try to connect to that web-
site (if no such website exists, it
will issue a runtime exception).
In either case, the specified file
or website becomes the source/
target of the input/output for
the stream object thus created,
and the read*() and print*()
methods will refer to that file or
website. (If you use the no-argu-
ment constructor, then you ob-
tain the standard streams.) This
arrangement makes it possible
for a single program to process

multiple files and drawings. You also can assign such
objects to variables, pass them as arguments or re-
turn values from methods, create arrays of them, and
manipulate them just as you manipulate objects of
any type. The program Cat shown at left is a sample
client of In and Out that uses multiple input streams
to concatenate several input files into a single out-
put file. The In and Out classes also contain static
methods for reading files containing values that are
all int, double, or String types into an array (see
page 126 and Exercise 1.2.15).

public class Cat
{
 public static void main(String[] args)
 { // Copy input files to out (last argument).
 Out out = new Out(args[args.length-1]);
 for (int i = 0; i < args.length - 1; i++)
 { // Copy input file named on ith arg to out.
 In in = new In(args[i]);
 String s = in.readAll();
 out.println(s);
 in.close();
 }
 out.close();
 }
}

A sample In and Out client

% more in1.txt
This is

% more in2.txt
a tiny
test.

% java Cat in1.txt in2.txt out.txt

% more out.txt
This is
a tiny
test.

82 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

public class In

In() create an input stream from standard input

In(String name) create an input stream from a file or website

boolean isEmpty() true if no more input, false otherwise

int readInt() read a value of type int

double readDouble() read a value of type double

...

void close() close the input stream

Note: all operations supported by StdIn are also supported for In objects.

API for our data type for input streams

public class Out

Out() create an output stream to standard output

Out(String name) create an output stream to a file

void print(String s) append s to the output stream

void println(String s) append s and a newline to the output stream

void println() append a newline to the output stream

void printf(String f, ...) formatted print to the output steam

void close() close the output stream

Note: all operations supported by StdOut are also supported for Out objects.

API for our data type for output streams

public class Draw

Draw()

void line(double x0, double y0, double x1, double y1)

void point(double x, double y)

...

Note: all operations supported by StdDraw are also supported for Draw objects.

API for our data type for drawings

831.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

Implementing an abstract data type. As with libraries of static methods, we
implement ADTs with a Java class, putting the code in a file with the same name as
the class, followed by the .java extension. The first statements in the file declare in-
stance variables that define the data-type values. Following the instance variables are the
constructor and the instance methods that implement operations on data-type values.
Instance methods may be public (specified in the API) or private (used to organize the
computation and not available to clients). A data-type definition may have multiple
constructors and may also include definitions of static methods. In particular, a unit-
test client main() is normally useful for testing and debugging. As a first example, we
consider an implementation of the Counter ADT that we defined on page 65. A full
annotated implementation is shown on the facing page, for reference as we discuss its
constituent parts. Every ADT implementation that you will develop has the same basic
ingredients as this simple example.

 Instance variables. To define data-type
values (the state of each object), we de-
clare instance variables in much the same
way as we declare local variables. There is a
critical distinction between instance vari-
ables and the local variables within a static
method or a block that you are accustomed to: there is just one value corresponding to
each local variable at a given time, but there are numerous values corresponding to each
instance variable (one for each object that is an instance of the data type). There is no
ambiguity with this arrangement, because each time that we access an instance variable,
we do so with an object name—that object is the one whose value we are accessing.
Also, each declaration is qualified by a visibility modifier. In ADT implementations, we
use private, using a Java language mechansim to enforce the idea that the representa-
tion of an ADT is to be hidden from the client, and also final, if the value is not to be
changed once it is initialized. Counter has two instance variables: a String value name
and an int value count. If we were to use public instance variables (allowed in Java)
the data type would, by definition, not be abstract, so we do not do so.

 Constructors. Every Java class has at least one constructor that establishes an object’s
identity. A constructor is like a static method, but it can refer directly to instance vari-
ables and has no return value. Generally, the purpose of a constructor is to initialize
the instance variables. Every constructor creates an object and provides to the client a
reference to that object. Constructors always share the same name as the class. We can
overload the name and have multiple constructors with different signatures, just as
with methods. If no other constructor is defined, a default no-argument constructor is

 public class Counter
 {
 private final String name;
 private int count;
 ...
 }

Instance variables in ADTs are private

instance
variable

declarations

84 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

public class Counter
{
 private final String name;
 private int count;

 public Counter(String id)
 { name = id; }

 public void increment()
 { count++; }

 public int tally()
 { return count; }

 public String toString()
 { return count + " " + name; }

 public static void main(String[] args)
 {
 Counter heads = new Counter("heads");
 Counter tails = new Counter("tails");

 heads.increment();
 heads.increment();
 tails.increment();

 StdOut.println(heads + " " + tails);
 StdOut.println(heads.tally() + tails.tally());
 }
}

Anatomy of a class that defines a data type

instance
variables

instance
methods

constructor

test client

invoke
constructor

invoke
method

automatically invoke
toString()

instance
variable
 name

create
and

initialize
objects

object
name

class
name

851.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

implicit, has no arguments, and initializes instance values to default values. The default
values of instance variables are 0 for primitive numeric types, false for boolean, and
null for reference types. These defaults
may be changed by using initializing
declarations for instance variables. Java
automatically invokes a constructor
when a client program uses the keyword
new. Overloaded constructors are typi-
cally used to initialize instance variables
to client-supplied values other than the
defaults. For example, Counter has a
one-argument constructor that initial-
izes the name instance variable to the
value given as argument (leaving the
count instance variable to be initialized
to the default value 0).

 Instance methods. To implement data-type instance methods (the behavior of each
object), we implement instance methods with code that is precisely like the code that you
learned in Section 1.1 to implement static methods (functions). Each instance method
has a return type, a signature (which specifies its name and the types and names of its
parameter variables), and a body (which
consists of a sequence of statements, in-
cluding a return statement that provides
a value of the return type back to the cli-
ent). When a client invokes a method, the
parameter values (if any) are initialized
with client values, the statements are ex-
ecuted until a return value is computed,
and the value is returned to the client,
with the same effect as if the method in-
vocation in the client were replaced with that value. All of this action is the same as for
static methods, but there is one critical distinction for instance methods: they can access
and perform operations on instance variables. How do we specify which object’s instance
variables we want to use? If you think about this question for a moment, you will see
the logical answer: a reference to a variable in an instance method refers to the value
for the object that was used to invoke the method. When we say heads.increment() the
code in increment() is referring to the instance variables for heads. In other words,

method
name

returnvisibility
typemodifier signature

instance variable name

Anatomy of an instance method

public void increment()

{ count++; }

public class Counter
{
 private final String name;
 private int count;
 ...

 ...
}

code to initialize instance variables
(count initialized to 0 by default)

visibility
modifier

NO return
type

constructor name
(same as class name)

signature

parameter
variable

Anatomy of a constructor

 public Counter (String id)

 { name = id; }

86 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

object-oriented programming adds one critically important additional way to use vari-
ables in a Java program:

■ to invoke an instance method that operates on the object’s values.
The difference from working solely with static methods is semantic (see the Q&A),
but has reoriented the way that modern programmers think about developing code in
many situations. As you will see, it also dovetails well with the study of algorithms and
data structures.

 Scope. In summary, the Java code that we write to implement instance methods uses
three kinds of variables:

■ Parameter variables
■ Local variables
■

Instance variables
The first two of these are the same as for static methods: parameter variables are spec-
ified in the method signature and initialized with client values when the method is
called, and local variables are declared and initialized within the method body. The
scope of parameter variables is the entire method; the scope of local variables is the
following statements in the block where they are defined. Instance variables are com-
pletely different: they hold data-type values for objects in a class, and their scope is the
entire class (whenever there is an ambiguity, you can use the this prefix to identify in-
stance variables). Understanding the distinctions among these three kinds of variables
in instance methods is a key to success in object-oriented programming.

public class Example
{
 private int var;
 ...

 private void method1()
 {
 int var;

 ... var ...
 ... this.var ...

 }

 private void method2()
 {
 ... var ...
 }
 ...
}

Scope of instance and local variables in an instance method

instance
variable

refers to local variable, NOT instance variable

refers to instance variable

refers to instance variable

local variable

871.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

API, clients, and implementations. These are the basic components that you need
to understand to be able to build and use abstract data types in Java. Every ADT im-
plementation that we will consider will be a Java class with private instance variables,
constructors, instance methods, and a client. To fully understand a data type, we need
the API, typical client code, and an implementation, summarized for Counter on the
facing page. To emphasize the separation of client and implementation, we normally
present each client as a separate class containing a static method main() and reserve
test client’s main() in the data-type definition for minimal unit testing and develop-
ment (calling each instance method at least once). In each data type that we develop,
we go through the same steps. Rather than thinking about what action we need to take
next to accomplish a computational goal (as we did when first learning to program), we
think about the needs of a client, then accommodate them in an ADT, following these
three steps:

■

Specify an API. The purpose of the API is to separate clients from implementa-
tions, to enable modular programming. We have two goals when specifying an
API. First, we want to enable clear and correct client code. Indeed, it is a good
idea to write some client code before finalizing the API to gain confidence that
the specified data-type operations are the ones that clients need. Second, we
want to be able to implement the operations. There is no point specifying opera-
tions that we have no idea how to implement.

■ Implement a Java class that meets the API specifications. First we choose the
instance variables, then we write constructors and the instance methods.

■ Develop multiple test clients, to validate the design decisions made in the first
two steps.

What operations do clients need to perform, and what data-type values can best sup-
port those operations? These basic decisions are at the heart of every implementation
that we develop.

88 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

public class Counter
{
 private final String name;
 private int count;

 public Counter(String id)
 { name = id; }

 public void increment()
 { count++; }

 public int tally()
 { return count; }

 public String toString()
 { return count + " " + name; }

}

 An abstract data type for a simple counter

API

typical client

applicationimplementation

public class Flips
{
 public static void main(String[] args)
 {
 int T = Integer.parseInt(args[0]);

 Counter heads = new Counter("heads");
 Counter tails = new Counter("tails");

 for (int t = 0; t < T; t++)
 if (StdRandom.bernoulli(0.5))
 heads.increment();
 else tails.increment();

 StdOut.println(heads);
 StdOut.println(tails);
 int d = heads.tally() - tails.tally();
 StdOut.println("delta: " + Math.abs(d));
 }
}

public class Counter

Counter(String id) create a counter named id
void increment() increment the counter
int tally() number of increments since creation

String toString() string representation

% java Flips 1000000
500172 heads
499828 tails
delta: 344

891.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

More ADT implementations As with any programming concept, the best way
to understand the power and utility of ADTs is to consider carefully more examples
and more implementations. There will be ample opportunity for you to do so, as much
of this book is devoted to ADT implementations, but a few more simple examples will
help us lay the groundwork for addressing them.

Date. Shown on the facing page are two implementations of the Date ADT that we con-
sidered on page 79. To reduce clutter, we omit the parsing constructor (which is described
in Exercise 1.2.19) and the inherited methods equals() (see page 103), compareTo() (see
page 247), and hashCode() (see Exercise 3.4.22). The straightforward implementation
on the left maintains the day, month, and year as instance variables, so that the instance
methods can just return the appropriate value; the more space-efficient implementa-
tion on the right uses only a single int value to represent a date, using a mixed-radix
number that represents the date with day d, month m, and year y as 512y + 32m + d.
One way that a client might notice the difference between these implementations is by
violating implicit assumptions: the second implementation depends for its correctness
on the day being between 0 and 31, the month being between 0 and 15, and the year be-
ing positive (in practice, both implementations should check that months are between
1 and 12, days are between 1 and 31, and that dates such as June 31 and February 29,
2009, are illegal, though that requires a bit more work). This example highlights the
idea that we rarely fully specify implementation requirements in an API (we normally
do the best we can, and could do better here). Another way that a client might notice the
difference between the two implementations is performance: the implementation on the
right uses less space to hold data-type values at the cost of more time to provide them to
the client in the agreed form (one or two arithmetic operations are needed). Such trad-
eoffs are common: one client may prefer one of the implementations and another client
might prefer the other, so we need to accommodate both. Indeed, one of the recurring
themes of this book is that we need to understand the space and time requirements of
various implementations and their suitability for use by various clients. One of the key
advantages of using data abstraction in our implementations is that we can normally
change from one implementation to another without changing any client code.

 Maintaining multiple implementations. Multiple implementations of the same API
can present maintainence and nomenclature issues. In some cases, we simply want to
replace an old implementation with an improved one. In others, we may need to main-
tain two implementations, one suitable for some clients, the other suitable for others.
Indeed, a prime goal of this book is to consider in depth several implementations of
each of a number of fundamental ADTs, generally with different performance charac-
teristics. In this book, we often compare the performance of a single client using two

90 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

public static void main(String[] args)
{
 int m = Integer.parseInt(args[0]);
 int d = Integer.parseInt(args[1]);
 int y = Integer.parseInt(args[2]);
 Date date = new Date(m, d, y);
 StdOut.println(date);
}

public class Date
{
 private final int month;
 private final int day;
 private final int year;

 public Date(int m, int d, int y)
 { month = m; day = d; year = y; }

 public int month()
 { return month; }

 public int day()
 { return day; }

 public int year()
 { return day; }

 public String toString()
 { return month() + "/" + day()
 + "/" + year(); }

}

public class Date
{
 private final int value;

 public Date(int m, int d, int y)
 { value = y*512 + m*32 + d; }

 public int month()
 { return (value / 32) % 16; }

 public int day()
 { return value % 32; }

 public int year()
 { return value / 512; }

 public String toString()
 { return month() + "/" + day()
 + "/" + year(); }

}

% java Date 12 31 1999
12/31/1999

 public class Date

Date(int month, int day, int year) create a date
int month() month
int day() day
int year() year

String toString() string representation

test client

implementation

application

alternate implementation

API

 An abstract data type to encapsulate dates, with two implementations

911.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

different implementations of the same API. For this reason, we generally adopt an in-
formal naming convention where we:

■

Identify different implementations of the same API by prepending a descrip-
tive modifier. For example, we might name our Date implementations on the
previous page BasicDate and SmallDate, and we might wish to develop a
SmartDate implementation that can validate that dates are legal.

■

Maintain a reference implementation with no prefix that makes a choice that
should be suitable for most clients. That is, most clients should just use Date.

In a large system, this solution is not ideal, as it might involve changing client code. For
example, if we were to develop a new implementation ExtraSmallDate, then our only
options are to change client code or to make it the reference implementation for use by
all clients. Java has various advanced language mechanisms for maintaining multiple
implementations without needing to change client code, but we use them sparingly
because their use is challenging (and even controversial) even for experts, especially in
conjuction with other advanced language features that we do value (generics and itera-
tors). These issues are important (for example, ignoring them led to the celebrated Y2K
problem at the turn of the millennium, because many programs used their own imple-
mentations of the date abstraction that did not take into account the first two digits of
the year), but detailed consideration of these issues would take us rather far afield from
the study of algorithms.

 Accumulator. The accumulator API shown on the facing page defines an abstract data
type that provides to clients the ability to maintain a running average of data values. For
example, we use this data type frequently in this book to process experimental results
(see Section 1.4). The implementation is straightforward: it maintains a int instance
variable counts the number of data values seen so far and a double instance variable
that keeps track of the sum of the values seen so far; to compute the average it divides
the sum by the count. Note that the implementation does not save the data values—it
could be used for a huge number of them (even on a device that is not capable of
holding that many), or a huge number of accumulators could be used on a big system.
This performance characteristic is subtle and might be specified in the API, because
an implementation that does save the values might cause an application to run out of
memory.

92 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

public class TestAccumulator
{
 public static void main(String[] args)
 {
 int T = Integer.parseInt(args[0]);
 Accumulator a = new Accumulator();
 for (int t = 0; t < T; t++)
 a.addDataValue(StdRandom.random());
 StdOut.println(a);
 }
}

public class Accumulator
{
 private double total;
 private int N;

 public void addDataValue(double val)
 {
 N++;
 total += val;
 }

 public double mean()
 { return total/N; }

 public String toString()
 { return "Mean (" + N + " values): "
 + String.format("%7.5f", mean()); }

}

% java TestAccumulator 1000
Mean (1000 values): 0.51829

% java TestAccumulator 1000000
Mean (1000000 values): 0.49948

% java TestAccumulator 1000000
Mean (1000000 values): 0.50014

An abstract data type for accumulating data values

 public class Accumulator

Accumulator() create an accumulator
void addDataValue(double val) add a new data value

double mean() mean of all data values
String toString() string representation

typical client

implementation

application

API

931.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

Visual accumulator. The visual accumulator implementation shown on the facing
page extends Accumulator to present a useful side effect: it draws on StdDraw all the
data (in gray) and the running average (in red).
The easiest way to do so is to add a constructor
that provides the number of points to be plotted
and the maximum value, for rescaling the plot.
VisualAccumulator is not technically an imple-
mentation of the Accumulator API (its construc-
tor has a different signature and it causes a differ-
ent prescribed side effect). Generally, we are
careful to fully specify APIs and are loath to make
any changes in an API once articulated, as it might
involve changing an unknown amount of client (and implementation) code, but add-
ing a constructor to gain functionality can sometimes be defended because it involves
changing the same line in client code that we change when changing a class name. In
this example, if we have developed a client that uses an Accumulator and perhaps has
many calls to addDataValue() and avg(), we can enjoy the benefits of
VisualAccumulator by just changing one line of client code.

Visual accumulator plot

height of gray dot
is the data point value

height of Nth red dot from the left
is the average of the heights
of the leftmost N gray dots

application

% java TestVisualAccumulator 2000
Mean (2000 values): 0.509789

94 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

public class TestVisualAccumulator
{
 public static void main(String[] args)
 {
 int T = Integer.parseInt(args[0]);
 VisualAccumulator a = new VisualAccumulator(T, 1.0);
 for (int t = 0; t < T; t++)
 a.addDataValue(StdRandom.random());
 StdOut.println(a);
 }
}

public class VisualAccumulator
{
 private double total;
 private int N;

 public VisualAccumulator(int trials, double max)
 {
 StdDraw.setXscale(0, trials);
 StdDraw.setYscale(0, max);
 StdDraw.setPenRadius(.005);
 }

 public void addDataValue(double val)
 {
 N++;
 total += val;
 StdDraw.setPenColor(StdDraw.DARK_GRAY);
 StdDraw.point(N, val);
 StdDraw.setPenColor(StdDraw.RED);
 StdDraw.point(N, total/N);
 }

 public double mean()
 public String toString()
 // Same as Accumulator.

}

 An abstract data type for accumulating data values (visual version)

 public class VisualAccumulator

VisualAccumulator(int trials, double max)

void addDataValue(double val) add a new data value
double avg() average of all data values
String toString() string representation

typical client

implementation

API

951.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

 Data-type design An abstract data type is a data type whose representation is hid-
den from the client. This idea has had a powerful effect on modern programming. The
various examples that we have considered give us the vocabulary to address advanced
characteristics of ADTs and their implementation as Java classes. Many of these topics
are, on the surface, tangential to the study of algorithms, so it is safe for you to skim
this section and refer to it later in the context of specific implementation problems. Our
goal is to put important information related to designing data types in one place for
reference and to set the stage for implementations throughout this book.

 Encapsulation. A hallmark of object-oriented programming is that it enables us to
encapsulate data types within their implementations, to facilitate separate development
of clients and data type implementations. Encapsulation enables modular program-
ming, allowing us to

■ Independently develop of client and implementation code
■ Substitute improved implementations without affecting clients
■ Support programs not yet written (the API is a guide for any future client)

Encapsulation also isolates data-type operations, which leads to the possibility of
■ Limiting the potential for error
■ Adding consistency checks and other debugging tools in implementations
■ Clarifying client code

An encapsulated data type can be used by any client, so it extends the Java language.
The programming style that we are advocating is predicated on the idea of breaking
large programs into small modules that can be developed and debugged independently.
This approach improves the resiliency of our software by limiting and localizing the ef-
fects of making changes, and it promotes code reuse by making it possible to substitute
new implementations of a data type to improve performance, accuracy, or memory
footprint. The same idea works in many settings. We often reap the benefits of encap-
sulation when we use system libraries. New versions of the Java system often include
new implementations of various data types or static method libraries, but the APIs do
not change. In the context of the study of algorithms and data structures, there is strong
and constant motivation to develop better algorithms because we can improve perfor-
mance for all clients by substituting an improved ADT implementation without chang-
ing the code of any client. The key to success in modular programming is to maintain
independence among modules. We do so by insisting on the API being the only point of
dependence between client and implementation. You do not need to know how a data
type is implemented in order to use it and you can assume that a client knows nothing but
the API when implementing a data type. Encapsulation is the key to attaining both of
these advantages.

96 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

 Designing APIs. One of the most important and most challenging steps in building
modern software is designing APIs. This task takes practice, careful deliberation, and
many iterations, but any time spent designing a good API is certain to be repaid in time
saved debugging or code reuse. Articulating an API might seem to be overkill when
writing a small program, but you should consider writing every program as though you
will need to reuse the code someday. Ideally, an API would clearly articulate behavior
for all possible inputs, including side effects, and then we would have software to check
that implementations meet the specification. Unfortunately, a fundamental result from
theoretical computer science known as the specification problem implies that this goal
is actually impossible to achieve. Briefly, such a specification would have to be written
in a formal language like a programming language, and the problem of determining
whether two programs perform the same computation is known, mathematically, to be
undecidable. Therefore, our APIs are brief English-language descriptions of the set of
values in the associated abstract data type along with a list of constructors and instance
methods, again with brief English-language descriptions of their purpose, including
side effects. To validate the design, we always include examples of client code in the text
surrounding our APIs. Within this broad outline, there are numerous pitfalls that every
API design is susceptible to:

■

An API may be too hard to implement, implying implementations that are dif-
ficult or impossible to develop.

■ An API may be too hard to use, leading to client code that is more complicated
than it would be without the API.

■ An API may be too narrow, omitting methods that clients need.
■

An API may be too wide, including a large number of methods not needed
by any client. This pitfall is perhaps the most common, and one of the most
difficult to avoid. The size of an API tends to grow over time because it is not
difficult to add methods to an existing API, but it is difficult to remove methods
without breaking existing clients.

■ An API may be too general, providing no useful abstractions.
■ An API may be too specific, providing abstractions so detailed or so diffuse as to

be useless.
■

An API may be too dependent on a particular representation, therefore not serv-
ing the purpose of freeing client code from the details of using that representa-
tion. This pitfall is also difficult to avoid, because the representation is certainly
central to the development of the implementation.

These considerations are sometimes summarized in yet another motto: provide to cli-
ents the methods they need and no others.

971.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

Algorithms and abstract data types. Data abstraction is naturally suited to the study
of algorithms, because it helps us provide a framework within which we can precisely
specify both what an algorithm needs to accomplish and how a client can make use of
an algorithm. Typically, in this book, an algorithm is an implementation of an instance
method in an abstract data type. For example, our whitelisting example at the begin-
ning of the chapter is naturally cast as an ADT client, based on the following operations:

■ Construct a SET from an array of given values.
■ Determine whether a given value is in the set.

These operations are encapsulated in the StaticSETofInts ADT, shown on the facing
page along with Whitelist, a typical client. StaticSETofInts is a special case of the
more general and more useful symbol table ADT that is the focus of Chapter 3. Binary
search is one of several algorithms that we study that is suitable for implementing these
ADTs. By comparison with the BinarySearch implementation on page 47, this imple-
mentation leads to clearer and more useful client code. For example, StaticSETofInts
enforces the idea that the array must be sorted before rank() is called. With the abstract
data type, we separate the client from the implementation making it easier for any client
to benefit from the ingenuity of the binary search algorithm, just by following the API
(clients of rank() in BinarySearch have to know to sort the array first). Whitelisting is
one of many clients that can take advantage of binary search.

Every Java program is a set of
static methods and/or a data type
implementation. In this book, we
focus primarily on abstract data
type implementations such as
StaticSETofInts, where the focus
is on operations and the representa-
tion of the data is hidden from the
client. As this example illustrates,
data abstraction enables us to

■ Precisely specify what algorithms can provide for clients
■ Separate algorithm implementations from the client code
■ Develop layers of abstraction, where we make use of well-understood algorithms

to develop other algorithms
These are desirable properties of any approach to describing algorithms, whether it be
an English-language description or pseudo-code. By embracing the Java class mecha-
nism in support of data abstraction, we have little to lose and much to gain: working
code that we can test and use to compare performance for diverse clients.

% java Whitelist largeW.txt < largeT.txt
499569
984875
295754
207807
140925
161828
 ...

application

98 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

public class Whitelist
{
 public static void main(String[] args)
 {
 int[] w = In.readInts(args[0]);
 StaticSETofInts set = new StaticSETofInts(w);
 while (!StdIn.isEmpty())
 { // Read key, print if not in whitelist.
 int key = StdIn.readInt();
 if (set.rank(key) == -1)
 StdOut.println(key);
 }
 }
}

import java.util.Arrays;

public class StaticSETofInts
{
 private int[] a;

 public StaticSETofInts(int[] keys)
 {
 a = new int[keys.length];
 for (int i = 0; i < keys.length; i++)
 a[i] = keys[i]; // defensive copy
 Arrays.sort(a);
 }

 public boolean contains(int key)
 { return rank(key) != -1; }

 private int rank(int key)
 { // Binary search.
 int lo = 0;
 int hi = a.length - 1;
 while (lo <= hi)
 { // Key is in a[lo..hi] or not present.
 int mid = lo + (hi - lo) / 2;
 if (key < a[mid]) hi = mid - 1;
 else if (key > a[mid]) lo = mid + 1;
 else return mid;
 }
 return -1;
 }
}

 Binary search recast as an object-oriented program (an ADT for search in a set of integers)

typical client

implementation

API public class StaticSETofInts

StaticSETofInts(int[] a) create a set from the values in a[]
boolean contains(int key) is key in the set?

991.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

 Interface inheritance. Java provides language support for defining relationships
among objects, known as inheritance. These mechanisms are widely used by software
developers, so you will study them in detail if you take a course in software engineer-
ing. The first inheritance mechanism that we consider is known as subtyping, which
allows us to specify a relationship between otherwise unrelated classes by specifying in
an interface a set of common methods that each implementing class must contain. An
interface is nothing more than a list of instance methods. For example, instead of using
our informal API, we might have articulated an interface for Date:

public interface Datable
{
 int month();
 int day();
 int year();
}

and then referred to the interface in our implementation code

public class Date implements Datable
{
 // implementation code (same as before)
}

so that the Java compiler will check that it matches the interface. Adding the code
implements Datable to any class that implements month(), day(), and year() pro-
vides a guarantee to any client that an object of that class can invoke those methods.
This arrangement is known as interface inheritance—an implementing class inherits the
interface. Interface inheritance allows us to write client programs that can manipulate

objects of any type that implements
the interface (even a type to be creat-
ed in the future), by invoking meth-
ods in the interface. We might have
used interface inheritance in place of
our more informal APIs, but chose
not to do so to avoid dependence on
specific high-level language mecha-
nisms that are not critical to the
understanding of algorithms and
to avoid the extra baggage of inter-
face files. But there are a few situa-
tions where Java conventions make

interface methods section

comparison

java.lang.Comparable compareTo() 2.1

java.util.Comparator compare() 2.5

iteration

java.lang.Iterable iterator() 1.3

java.util.Iterator

hasNext()

next()

remove()
1.3

 Java interfaces used in this book

100 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

it worthwhile for us to take advantage of interfaces: we use them for comparison and for
iteration, as detailed in the table at the bottom of the previous page, and will consider
them in more detail when we cover those concepts.

 Implementation inheritance. Java also supports another inheritence mechanism
known as subclassing, which is a powerful technique that enables a programmer to
change behavior and add functionality without rewriting an entire class from scratch.
The idea is to define a new class (subclass, or derived class) that inherits instance meth-
ods and instance variables from another class (superclass, or base class). The subclass
contains more methods than the superclass. Moreover, the subclass can redefine or
 override methods in the superclass. Subclassing is widely used by systems programmers
to build so-called extensible libraries—one programmer (even you) can add methods to
a library built by another programmer (or, perhaps, a team of systems programmers),
effectively reusing the code in a potentially huge library. For example, this approach is
widely used in the development of graphical user interfaces, so that the large amount of
code required to provide all the facilities that users expect (drop-down menus, cut-and-
paste, access to files, and so forth) can be reused. The use of subclassing is controversial
among systems and applications programmers (its advantages over interface inheri-
tance are debatable), and we avoid it in this book because it generally works against
encapsulation. Certain vestiges of the approach are built in to Java and therefore un-
avoidable: specifically, every class is a subtype of Java’s Object class. This structure
enables the “convention” that every class includes an implementation of getClass(),
toString(), equals(), hashCode(), and several other methods that we do not use in
this book. Actually, every class inherits these methods from Object through subclassing,
so any client can use them for any object. We usually override toString(), equals(),
hashCode() in new classes because the default Object implementation generally does
not lead to the desired behavior. We now will consider toString() and equals(); we
discuss hashCode() in Section 3.4.

method purpose section

Class getClass() what class is this object? 1.2

String toString() string representation of this object 1.1

boolean equals(Object that) is this object equal to that? 1.2

int hashCode() hash code for this object 3.4

 Inherited methods from Object used in this book

1011.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

 String conversion. By convention, every Java type inherits toString() from Object,
so any client can invoke toString() for any object. This convention is the basis for Ja-
va’s automatic conversion of one operand of the concatenation operator + to a String
whenever the other operand is a String. If an object’s data type does not include an
implementation of toString(), then the default implementation in Object is invoked,
which is normally not helpful, since it typically returns a string representation of the
memory address of the object. Accordingly, we generally include implementations of
toString() that override the default in every class that we develop, as highlighted for
Date on the facing page. As illustrated in this code, toString() implementations are
often quite simple, implicitly (through +) using toString() for each instance variable.

 Wrapper types. Java supplies built-in reference types known as wrapper types, one for
each of the primitive types: Boolean, Byte, Character, Double, Float, Integer, Long,
and Short correspond to boolean, byte, char, double, float, int, long, and short,
respectively. These classes consist primarily of static methods such as parseInt() but
they also include the inherited instance methods toString(), compareTo(), equals(),
and hashCode(). Java automatically converts from primitive types to wrapper types
when warranted, as described on page 122. For example, when an int value is concat-
enated with a String, it is converted to an Integer that can invoke toString().

 Equality. What does it mean for two objects to be equal? If we test equality with
(a == b) where a and b are reference variables of the same type, we are testing whether
they have the same identity : whether the references are equal. Typical clients would
rather be able to test whether the data-type values (object state) are the same, or to
implement some type-specific rule. Java gives us a head start by providing implementa-
tions both for standard types such as Integer, Double, and String and for more com-
plicated types such as File and URL. When using these types of data, you can just use the
built-in implementation. For example, if x and y are String values, then x.equals(y)
is true if and only if x and y have the same length and are identical in each character
position. When we define our own data types, such as Date or Transaction, we need
to override equals(). Java’s convention is that equals() must be an equivalence rela-
tion. It must be

■ Reflexive : x.equals(x) is true.
■ Symmetric : x.equals(y) is true if and only if y.equals(x).
■ Transitive : if x.equals(y) and y.equals(z) are true, then so is x.equals(z).

In addition, it must take an Object as argument and satisfy the following properties.
■ Consistent : multiple invocations of x.equals(y) consistently return the same

value, provided neither object is modified.
■ Not null : x.equals(null) returns false.

102 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

 These are natural definitions, but ensuring that these properties hold, adhering to Java
conventions, and avoiding unnecessary work in an implementation can be tricky, as il-
lustrated for Date below. It takes the following step-by-step approach:

■ If the reference to this object is the same as the reference to the argument object,
return true. This test saves the work of doing all the other checks in this case.

■ If the argument is null, return false, to adhere to the convention (and to avoid
following a null reference in code to follow).

■ If the objects are not from the same class, return false. To determine an object’s
class, we use getClass(). Note that we can use == to tell us whether two objects
of type Class are equal because getClass() is guaranteed to return the same
reference for all objects in any given class.

■ Cast the argument
from Object to Date
(this cast must succeed
because of the previous
test).

■

Return false if any
instance variables do
not match. For other
classes, some other
definition of equality
might be appropriate.
For example, we might
regard two Counter
objects as equal if their
count instance variables
are equal.

This implementation is a
model that you can use to
implement equals() for any
type that you implement.
Once you have implemented
one equals(), you will not
find it difficult to implement
another.

public class Date
{
 private final int month;
 private final int day;
 private final int year;

 public Date(int m, int d, int y)
 { month = m; day = d; year = y; }

 public int month()
 { return month; }

 public int day()
 { return day; }

 public int year()
 { return year; }

 public String toString()
 { return month() + "/" + day() + "/" + year(); }

 public boolean equals(Object x)
 {
 if (this == x) return true;
 if (x == null) return false;
 if (this.getClass() != x.getClass()) return false;
 Date that = (Date) x;
 if (this.day != that.day) return false;
 if (this.month != that.month) return false;
 if (this.year != that.year) return false;
 return true;
 }

}

 Overriding toString() and equals() in a data-type definition

1031.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

 Memory management. The ability to assign a new value to a reference variable cre-
ates the possibility that a program may have created an object that can no longer be
referenced. For example, consider the three assignment statements in the figure at left.
After the third assignment statement, not only do a and b refer to the same Date object
(1/1/2011), but also there is no longer a reference to the Date object that was created

and used to initialize b. The only reference to that object
was in the variable b, and this reference was overwritten
by the assignment, so there is no way to refer to the object
again. Such an object is said to be orphaned. Objects are
also orphaned when they go out of scope. Java programs
tend to create huge numbers of objects (and variables that
hold primitive data-type values), but only have a need for a
small number of them at any given point in time. Accord-
ingly, programming languages and systems need mecha-
nisms to allocate memory for data-type values during the
time they are needed and to free the memory when they
are no longer needed (for an object, sometime after it is
orphaned). Memory management turns out to be easier
for primitive types because all of the information needed
for memory allocation is known at compile time. Java (and
most other systems) takes care of reserving space for vari-
ables when they are declared and freeing that space when
they go out of scope. Memory management for objects is
more complicated: the system can allocate memory for an
object when it is created, but cannot know precisely when
to free the memory associated with each object because
the dynamics of a program in execution determines when
objects are orphaned. In many languages (such as C and
C++) the programmer is responsible for both allocating
and freeing memory. Doing so is tedious and notoriously

error-prone. One of Java’s most significant features is its ability to automatically man-
age memory. The idea is to free the programmers from the responsibility of managing
memory by keeping track of orphaned objects and returning the memory they use to
a pool of free memory. Reclaiming memory in this way is known as garbage collection.
One of Java’s characteristic features is its policy that references cannot be modified.
This policy enables Java to do efficient automatic garbage collection. Programmers still
debate whether the overhead of automatic garbage collection justifies the convenience
of not having to worry about memory management.

Date a = new Date(12, 31, 1999);
Date b = new Date(1, 1, 2011);
b = a;

811 1

812 1

813 2011

 b 811

 a 811

655 12

656 31

657 1999

New Year’s
 Eve 1999

New Year’s
 Day 2011

orphaned
object

references to
same object

An orphaned object

104 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

Immutability. An immutable data type, such as Date, has the property that the value
of an object never changes once constructed. By contrast, a mutable data type, such as
Counter or Accumulator, manipulates object values that are intended to change. Java’s
language support for helping to enforce immutability is the final modifier. When you
declare a variable to be final, you are promising to assign it a value only once, either
in an initializer or in the constructor. Code that could modify the value of a final
variable leads to a compile-time error. In our code, we use the modifier final with
instance variables whose values never change. This policy serves as documentation that
the value does not change, prevents accidental changes, and makes programs easier
to debug. For example, you do not have to include a final value in a trace, since you
know that its value never changes. A data type such as Date whose instance variables
are all primitive and final is immutable (in code that does not use implementation
inheritence, our convention). Whether to make a data type immutable is an important
design decision and depends on the application at hand. For data
types such as Date, the purpose of the abstraction is to encap-
sulate values that do not change so that we can use them in as-
signment statements and as arguments and return values from
functions in the same way as we use primitive types (without hav-
ing to worry about their values changing). A programmer imple-
menting a Date client might reasonably expect to write the code
d = d0 for two Date variables, in the same way as for double or
int values. But if Date were mutable and the value of d were to
change after the assignment d = d0, then the value of d0 would also change (they are
both references to the same object)! On the other hand, for data types such as Counter
and Accumulator, the very purpose of the abstraction is to encapsulate values as they
change. You have already encountered this distinction as a client programmer, when
using Java arrays (mutable) and Java’s String data type (immutable). When you pass
a String to a method, you do not worry about that method changing the sequence of
characters in the String, but when you pass an array to a method, the method is free to
change the contents of the array. String objects are immutable because we generally do
not want String values to change, and Java arrays are mutable because we generally do
want array values to change. There are also situations where we want to have mutable
strings (that is the purpose of Java’s StringBuilder class) and where we want to have
immutable arrays (that is the purpose of the Vector class that we consider later in this
section). Generally, immutable types are easier to use and harder to misuse than muta-
ble types because the scope of code that can change their values is far smaller. It is easier
to debug code that uses immutable types because it is easier to guarantee that variables
in client code that uses them remain in a consistent state. When using mutable types,

mutable immutable

Counter Date

Java arrays String

Mutable/immutable examples

1051.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

you must always be concerned about where and when their values change. The down-
side of immutability is that a new object must be created for every value. This expense is
normally manageable because Java garbage collectors are typically optimized for such
situations. Another downside of immutability stems from the fact that, unfortunately,
final guarantees immutability only when instance variables are primitive types, not
reference types. If an instance variable of a reference type has the final modifier, the
value of that instance variable (the reference to an object) will never change—it will
always refer to the same object—but the value of the object itself can change. For ex-
ample, this code does not implement an immutable type:

public class Vector
{
 private final double[] coords;

 public Vector(double[] a)
 { coords = a; }
 ...
}

A client program could create a Vector by specifying the entries in an array, and then
(bypassing the API) change the elements of the Vector after construction:

double[] a = { 3.0, 4.0 };
Vector vector = new Vector(a);
a[0] = 0.0; // Bypasses the public API.

The instance variable coords[] is private and final, but Vector is mutable because
the client holds a reference to the data. Immutability needs to be taken into account in
any data-type design, and whether a data type is immutable should be specified in the
API, so that clients know that object values will not change. In this book, our primary
interest in immutability is for use in certifying the correctness of our algorithms. For
example, if the type of data used for a binary search algorithm were mutable, then cli-
ents could invalidate our assumption that the array is sorted for binary search.

106 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

Design by contract. To conclude, we briefly discuss Java language mechanisms that
enables you to verify assumptions about your program as it is running. We use two Java
language mechanisms for this purpose:

■ Exceptions, which generally handle unforeseen errors outside our control
■

Assertions, which verify assumptions that we make within code we develop
Liberal use of both exceptions and assertions is good programming practice. We use
them sparingly in the book for economy, but you will find them throughout the code
on the booksite. This code aligns with a substantial amount of the surrounding com-
mentary about each algorithm in the text that has to do with exceptional conditions
and with asserted invariants.

Exceptions and errors. Exceptions and errors are disruptive events that occur while a
program is running, often to signal an error. The action taken is known as throwing an
exception or throwing an error. We have already encountered exceptions thrown by Java
system methods in the course of learning basic features of Java: StackOverflowError,
 ArithmeticException, ArrayIndexOutOfBoundsException, OutOfMemoryError,
and NullPointerException are typical examples. You can also create your own ex-
ceptions. The simplest kind is a RuntimeException that terminates execution of the
program and prints an error message

throw new RuntimeException("Error message here.");

A general practice known as fail fast programming suggests that an error is more easily
pinpointed if an exception is thrown as soon as an error is discovered (as opposed to
ignoring the error and deferring the exception to sometime in the future).

assertion is a boolean expression that you are affirming is true at that Assertions. An
point in the program. If the expression is false, the program will terminate and re-
port an error message. We use assertions both to gain confidence in the correctness of
programs and to document intent. For example, suppose that you have a computed
value that you might use to index into an array. If this value were negative, it would
cause an ArrayIndexOutOfBoundsException sometime later. But if you write the code
assert index >= 0; you can pinpoint the place where the error occurred. You can
also add an optional detail message such as

assert index >= 0 : "Negative index in method X";

to help you locate the bug. By default, assertions are disabled. You can enable them from
the command line by using the -enableassertions flag (-ea for short). Assertions are
for debugging: your program should not rely on assertions for normal operation since
they may be disabled. When you take a course in systems programming, you will learn
to use assertions to ensure that your code never terminates in a system error or goes into

1071.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

an infinite loop. One model, known as the design-by-contract model of programming
expresses the idea. The designer of a data type expresses a precondition (the condition
that the client promises to satisfy when calling a method), a postcondition (the condi-
tion that the implementation promises to achieve when returning from a method), and
side effects (any other change in state that the method could cause). During develop-
ment, these conditions can be tested with assertions.

Summary. The language mechanisms discussed throughout this section illustrate that
effective data-type design leads to nontrivial issues that are not easy to resolve. Ex-
perts are still debating the best ways to support some of the design ideas that we are
discussing. Why does Java not allow functions as arguments? Why does Matlab copy
arrays passed as arguments to functions? As mentioned early in Chapter 1, it is a slip-
pery slope from complaining about features in a programming language to becoming
a programming-language designer. If you do not plan to do so, your best strategy is
to use widely available languages. Most systems have extensive libraries that you cer-
tainly should use when appropriate, but you often can simplify your client code and
protect yourself by building abstractions that can easily transport to other languages.
Your main goal is to develop data types so that most of your work is done at a level of
abstraction that is appropriate to the problem at hand.

The table on the facing page summarizes the various kinds of Java classes that we
have considered.

108 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

kind of class examples characteristics

static methods Math StdIn StdOut no instance variables

immutable
abstract data type

Date Transaction

String Integer

instance variables all private
instance variables all final

defensive copy for reference types
Note: these are necessary but not sufficient.

mutable
abstract data type Counter Accumulator

instance variables all private
not all instance variables final

abstract data type
with I/O side effects

VisualAccumulator

In Out Draw
instance variables all private

instance methods do I/O

Java classes (data-type implementations)

1091.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

Q & A

Q. Why bother with data abstraction?

A. It helps us produce reliable and correct code. For example, in the 2000 presidential
election, Al Gore received –16,022 votes on an electronic voting machine in Volusia
County, Florida—the tally was clearly not properly encapsulated in the voting machine
software!

Q. Why the distinction between primitive and reference types? Why not just have refer-
ence types?

A. Performance. Java provides the reference types Integer, Double, and so forth that
correspond to primitive types that can be used by programmers who prefer to ignore
the distinction. Primitive types are closer to the types of data that are supported by
computer hardware, so programs that use them usually run faster than programs that
use corresponding reference types.

Q. Do data types have to be abstract?

A. No. Java also allows public and protected to allow some clients to refer directly
to instance variables. As described in the text, the advantages of allowing client code to
directly refer to data are greatly outweighed by the disadvantages of dependence on a
particular representation, so all instance variables are private in our code. We also oc-
casionally use private instance methods to share code among public methods.

Q. What happens if I forget to use new when creating an object?

A. To Java, it looks as though you want to call a static method with a return value of the
object type. Since you have not defined such a method, the error message is the same as
anytime you refer to an undefined symbol. If you compile the code

Counter c = Counter("test");

you get this error message:

cannot find symbol
symbol : method Counter(String)

You get the same kind of error message if you provide the wrong number of arguments
to a constructor.

110 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

Q. What happens if I forget to use new when creating an array of objects?

A. You need to use new for each object that you create, so when you create an array of
N objects, you need to use new N+1 times: once for the array and once for each of the
objects. If you forget to create the array:

Counter[] a;
a[0] = new Counter("test");

you get the same error message that you would get when trying to assign a value to any
uninitialized variable:

variable a might not have been initialized
 a[0] = new Counter("test");
 ^

but if you forget to use new when creating an object within the array and then try to use
it to invoke a method:

Counter[] a = new Counter[2];
a[0].increment();

you get a NullPointerException.

Q. Why not write StdOut.println(x.toString()) to print objects?

A. That code works fine, but Java saves us the trouble of writing it by automatically
invoking the toString() method for any object, since println() has a method that
takes an Object as argument.

 Q. What is a pointer ?

A. Good question. Perhaps that should be NullReferenceException. Like a Java ref-
erence, you can think of a pointer as a machine address. In many programming lan-
guages, the pointer is a primitive data type that programmers can manipulate in many
ways. But programming with pointers is notoriously error-prone, so operations pro-
vided for pointers need to be carefully designed to help programmers avoid errors.
Java takes this point of view to an extreme (that is favored by many modern program-
ming-language designers). In Java, there is only one way to create a reference (new) and
only one way to change a reference (with an assignment statement). That is, the only
things that a programmer can do with references are to create them and copy them. In

1111.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

programming-language jargon, Java references are known as safe pointers, because Java
can guarantee that each reference points to an object of the specified type (and it can
determine which objects are not in use, for garbage collection). Programmers used to
writing code that directly manipulates pointers think of Java as having no pointers at
all, but people still debate whether it is really desirable to have unsafe pointers.

Q. Where can I find more details on how Java implements references and does garbage
collection?

A. One Java system might differ completely from another. For example, one natural
scheme is to use a pointer (machine address); another is to use a handle (a pointer to
a pointer). The former gives faster access to data; the latter provides for better garbage
collection.

Q. What exactly does it mean to import a name?

A. Not much: it just saves some typing. You could type java.util.Arrays instead of
Arrays everywhere in your code instead of using the import statement.

Q. What is the problem with implementation inheritance?

A. Subtyping makes modular programming more difficult for two reasons. First, any
change in the superclass affects all subclasses. The subclass cannot be developed inde-
pendently of the superclass; indeed, it is completely dependent on the superclass. This
problem is known as the fragile base class problem. Second, the subclass code, hav-
ing access to instance variables, can subvert the intention of the superclass code. For
example, the designer of a class like Counter for a voting system may take great care
to make it so that Counter can only increment the tally by one (remember Al Gore’s
problem). But a subclass, with full access to the instance variable, can change it to any
value whatever.

Q. How do I make a class immutable?

A. To ensure immutability of a data type that includes an instance variable of a mu-
table type, we need to make a local copy, known as a defensive copy. And that may not be
enough. Making the copy is one challenge; ensuring that none of the instance methods
change values is another.

Q. What is null?

Q & A (continued)

112 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

A. It is a literal value that refers to no object. Invoking a method using the null ref-
erence is meaningless and results in a NullPointerException. If you get this error
message, check to make sure that your constructor properly initializes all of its instance
variables.

Q. Can I have a static method in a class that implements a data type?

A. Of course. For example, all of our classes have main(). Also, it is natural to consider
adding static methods for operations that involve multiple objects where none of them
naturally suggests itself as the one that should invoke the method. For example, we
might define a static method like the following within Point:

public static double distance(Point a, Point b)
{
 return a.distTo(b);
}

Often, including such methods can serve to clarify client code.

Q. Are there other kinds of variables besides parameter, local, and instance variables?

A. If you include the keyword static in a class declaration (outside of any type) it
creates a completely different type of variable, known as a static variable. Like instance
variables, static variables are accessible to every method in the class; however, they are
not associated with any object. In older programming languages, such variables are
known as global variables, because of their global scope. In modern programming, we
focus on limiting scope and therefore rarely use such variables. When we do, we will call
attention to them.

Q. What is a deprecated method?

A. A method that is no longer fully supported, but kept in an API to maintain compat-
ibility. For example, Java once included a method Character.isSpace(), and pro-
grammers wrote programs that relied on using that method’s behavior. When the de-
signers of Java later wanted to support additional Unicode whitespace characters, they
could not change the behavior of isSpace() without breaking client programs, so,
instead, they added a new method, Character.isWhiteSpace(), and deprecated the
old method. As time wears on, this practice certainly complicates APIs. Sometimes, en-
tire classes are deprecated. For example, Java deprecated its java.util.Date in order
to better support internationalization.

1131.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

EXERCISES

1.2.1 Write a Point2D client that takes an integer value N from the command line,
generates N random points in the unit square, and computes the distance separating
the closest pair of points.

1.2.2 Write an Interval1D client that takes an int value N as command-line argu-
ment, reads N intervals (each defined by a pair of double values) from standard input,
and prints all pairs that intersect.

1.2.3 Write an Interval2D client that takes command-line arguments N, min, and max
and generates N random 2D intervals whose width and height are uniformly distributed
between min and max in the unit square. Draw them on StdDraw and print the number
of pairs of intervals that intersect and the number of intervals that are contained in one
another.

1.2.4 What does the following code fragment print?

String string1 = "hello";
String string2 = string1;
string1 = "world";
StdOut.println(string1);
StdOut.println(string2);

1.2.5 What does the following code fragment print?

String s = "Hello World";
s.toUpperCase();
s.substring(6, 11);
StdOut.println(s);

Answer : "Hello World". String objects are immutable—string methods return
a new String object with the appropriate value (but they do not change the value
of the object that was used to invoke them). This code ignores the objects returned
and just prints the original string. To print "WORLD", use s = s.toUpperCase() and
s = s.substring(6, 11).

1.2.6 A string s is a circular rotation of a string t if it matches when the characters
are circularly shifted by any number of positions; e.g., ACTGACG is a circular shift of
TGACGAC, and vice versa. Detecting this condition is important in the study of genomic
sequences. Write a program that checks whether two given strings s and t are circular

114 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

shifts of one another. Hint : The solution is a one-liner with indexOf(), length(), and
string concatenation.

1.2.7 What does the following recursive function return?

public static String mystery(String s)
{
 int N = s.length();
 if (N <= 1) return s;
 String a = s.substring(0, N/2);
 String b = s.substring(N/2, N);
 return mystery(b) + mystery(a);
}

1.2.8 Suppose that a[] and b[] are each integer arrays consisting of millions of inte-
gers. What does the follow code do? Is it reasonably efficient?

int[] t = a; a = b; b = t;

Answer. It swaps them. It could hardly be more efficient because it does so by copying
references, so that it is not necessary to copy millions of elements.

1.2.9 Instrument BinarySearch (page 47) to use a Counter to count the total number
of keys examined during all searches and then print the total after all searches are com-
plete. Hint : Create a Counter in main() and pass it as an argument to rank().

1.2.10 Develop a class VisualCounter that allows both increment and decrement
operations. Take two arguments N and max in the constructor, where N specifies the
maximum number of operations and max specifies the maximum absolute value for
the counter. As a side effect, create a plot showing the value of the counter each time its
tally changes.

1.2.11 Develop an implementation SmartDate of our Date API that raises an excep-
tion if the date is not legal.

1.2.12 Add a method dayOfTheWeek() to SmartDate that returns a String value
Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, or Sunday, giving the ap-
propriate day of the week for the date. You may assume that the date is in the 21st
century.

1151.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

1.2.13 Using our implementation of Date as a model (page 91), develop an implementa-
tion of Transaction.

1.2.14 Using our implementation of equals() in Date as a model (page 103), develop
implementations of equals() for Transaction.

EXERCISES (continued)

116 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

CREATIVE PROBLEMS

1.2.15 File input. Develop a possible implementation of the static readInts() meth-
od from In (which we use for various test clients, such as binary search on page 47) that
is based on the split() method in String.

Solution:

public static int[] readInts(String name)
{
 In in = new In(name);
 String input = StdIn.readAll();
 String[] words = input.split("\\s+");
 int[] ints = new int[words.length;
 for int i = 0; i < word.length; i++)
 ints[i] = Integer.parseInt(words[i]);
 return ints;
}

We will consider a different implementation in Section 1.3 (see page 126).

1.2.16 Rational numbers. Implement an immutable data type Rational for rational
numbers that supports addition, subtraction, multiplication, and division.

public class Rational

Rational(int numerator. int denominator)

Rational plus(Rational b) sum of this number and b

Rational minus(Rational b) difference of this number and b

Rational times(Rational b) product of this number and b

Rational divides(Rational b) quotient of this number and b

boolean equals(Rational that) is this number equal to that ?

String toString() string representation

You do not have to worry about testing for overflow (see Exercise 1.2.17), but use as
instance variables two long values that represent the numerator and denominator to
limit the possibility of overflow. Use Euclid’s algorithm (see page 4) to ensure that the
numerator and denominator never have any common factors. Include a test client that
exercises all of your methods.

1171.2 ■ Data Abstraction

From <www.wowebook.com>

ptg

1.2.17 Robust implementation of rational numbers. Use assertions to develop an im-
plementation of Rational (see Exercise 1.2.16) that is immune to overflow.

1.2.18 Variance for accumulator. Validate that the following code, which adds the
methods var() and stddev() to Accumulator, computes both the mean and variance
of the numbers presented as arguments to addDataValue():

public class Accumulator
{
 private double m;
 private double s;
 private int N;

 public void addDataValue(double x)
 {
 N++;
 s = s + 1.0 * (N-1) / N * (x - m) * (x - m);
 m = m + (x - m) / N;
 }

 public double mean()
 { return m; }

 public double var()
 { return s/(N - 1); }

 public double stddev()
 { return Math.sqrt(this.var()); }

}

This implementation is less susceptible to roundoff error than the straightforward im-
plementation based on saving the sum of the squares of the numbers.

CREATIVE PROBLEMS (continued)

118 CHAPTER 1 ■ Fundamentals

From <www.wowebook.com>

ptg

1.2.19 Parsing. Develop the parse constructors for your Date and Transaction im-
plementations of Exercise 1.2.13 that take a single String argument to specify the
initialization values, using the formats given in the table below.

Partial solution:

public Date(String date)
{
 String[] fields = date.split("/");
 month = Integer.parseInt(fields[0]);
 day = Integer.parseInt(fields[1]);
 year = Integer.parseInt(fields[2]);
}

type format example

Date integers separated by slashes 5/22/1939

Transaction
customer, date, and amount,

separated by whitespace Turing 5/22/1939 11.99

 Formats for parsing

1191.2 ■ Data Abstraction

From <www.wowebook.com>

	Contents
	Preface
	1 Fundamentals
	1.1 Basic Programming Model
	1.2 Data Abstraction
	1.4 Analysis of Algorithms
	1.5 Case Study: Union-Find

	2 Sorting
	2.1 Elementary Sorts
	2.2 Mergesort
	2.3 Quicksort
	2.4 Priority Queues
	2.5 Applications

	3 Searching
	3.1 Symbol Tables
	3.2 Binary Search Trees
	3.3 Balanced Search Trees
	3.4 Hash Tables
	3.5 Applications

	4 Graphs
	4.1 Undirected Graphs
	4.2 Directed Graphs
	4.3 Minimum Spanning Trees
	4.4 Shortest Paths

	5 Strings
	5.1 String Sorts
	5.2 Tries
	5.3 Substring Search
	5.4 Regular Expressions
	5.5 Data Compression

	6 Context
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Algorithms
	Clients

