
State here the problem you
are eliminating:

CS 112—Final Exam—Summer 1, 2017

There are 8 problems on the exam. The first and last are mandatory, and you must
eliminate any one of problems 2 – 7 by drawing an X through it. Problem 1 is worth
10 points, and all other problems are worth 15. Please write in pen if possible. Circle
answers when they occur in the midst of a bunch of calculations. If you need more room,
use the back of the sheet and tell me this on the front sheet.

Problem One. (True/False – MANDATORY – 10 points) Write True or False to the
left of each statement.

1. The largest key in a 2-3 tree always occurs at a leaf node.

2. A separate-chaining hash table can never have a load factor larger than 1.0.

3. Selection sort performs the same number of comparisons of keys for all possible
inputs.

4. A separate-chaining hash table containing N keys and M buckets (slots in the
array) must have a worst-case lookup time of O(N / M).

5. The smallest key in a Max Heap always occurs at a leaf node, if there are no
duplicates.

6. The smallest key in a binary search tree always occurs at a leaf node.

7. A perfect binary tree (perfect triangle) of height H will have 2H -1 nodes.

8. If a linear-probing hash table has a load factor of 0.5, then the worst-case lookup
time for a key will be O(N), where N is the number of keys.

9. For any binary tree, if we list the nodes using a preorder traversal, and then list the
nodes in postorder, these two lists will be the reverse of each other (i.e., if one
produces a, b, c, d, then the other will be d, c, b, a)

10. A recursive definition can have at most one base case, but can have any number
of recursive cases.

Name: _________________________________

Problem Two (Binary Search Trees – 15 points). This problem has multiple parts,
all referring to the diagram of the tree on the right; each part is independent and refers
to the original diagram, i.e., start all over again with the original tree diagram for
each part.

(A) Supposing that we can only insert integers into
this tree, and no duplicates, what keys could be
inserted to the immediate left of the node containing
54?

(B) Give a breadth-first (level order) traversal of this tree.

(C) As discussed in lecture, it is useful when deleting nodes from a BST that we
alternately move up nodes from the right and left subtrees of the node to be deleted;
draw the tree that results from deleting the root of the tree in the diagram four times,
alternately moving up a node from the right, left, right, and left subtrees of the root.

(D) We studied six different recursive tree traversals this semester. For of the
following listings of the keys in the tree given above, either give the name of the
traversal that produced it, or state that “no possible traversal exists” if it could not be
produced by one of the six.

(i) 76 67 54 72 19 23 14 9 12 17 50

(ii) 50 17 23 19 12 14 9 72 76 54 67

(iii) 9 14 12 19 23 17 54 67 76 72 50

(iv) 50 72 76 54 67 17 23 19 12 14 9

Problem Three (Hash Tables – 15 points). For a hash table implemented using the
technique of Linear Probing, assume that you have an array size of 7 and a hash
function

 int hash(int key) { return (3 * key % 7); }

Suppose that you want to perform the following sequence of operations:

insert(4);

insert(3);

insert(7);

insert(11);

insert(9);

insert(2);

delete(7);

delete(9);

insert(9);

(A) Show in the space above the result of performing these operations on an initially-
empty table. Use 0 as a sentinel for “never used” and -1 for “used but currently empty.”

(B) Recall that a hash function has the form (P * key % M) for suitable P and M. What
would be the effect on a separate-chaining hash table’s performance if P = 2 * M ? Be
specific about the structure of the table and give the O(.....) estimated cost for looking up
an item in such a table.

(C) Precisely how many slots in the array do you have to examine in each of the
following tests for the hash table you got at the end of (A)?

member(9)
member(2)

member(5) [unsuccessful test]
Problem Four (Max Heaps – 15 points). Show the Max Heap that would result after
the following series of operations; you should work this out by using a tree structure to do
the operations, and then (A) fill in the array representation for this final tree, (B) draw
your final tree, and (C) answer the general questions below.

1. insert(8);

2. insert (3);

3. insert (9);

4. insert (5);

5. insert (6);

6. n = getMax(); // delete the root and assign its key to n

7. insert(12);

8. insert(7);

9. m = getMax(); // delete the root and assign its key to m

(B) Draw your final tree:

 (C) Complete the following definitions, according to the presentation in lecture on
heaps:

// given index k in the array, return index of parent of this key

int parent(int k) { return }

// given index k in the array, return index of right child of this key

int rchild(int k) { return }

// given index k in the array, return index of left child of this key

int lchild(int k) { return }

 (A)

Note: The array may not be
entirely filled by the
operations given.

next:

Problem Five (Write an algorithm – 15 points). Let us say that two binary trees
are symmetric if they are mirror images of each other (i.e., one is reversed left to right
with respect to the other, as shown in the example at the bottom of the page). Write a
recursive function
 boolean isSymmetric(Node root1, Node root2) {
 ……

 }

which takes two binary trees and returns true if they are symmetric with respect to
each other. Note the following

o You may not use a loop (the function or the helper function must
be recursive).

o You may write a helper-function for this if you wish (meaning,
the function above is a wrapper around another function).

o The assumed Node class is shown at right.
o You must account for the null pointer; two null trees are symmetric with

respect to each other.
o You may NOT write a reverse function and then check for equality; you

may write at most one recursive function to solve this problem.

class Node {
 int key;
 Node left;
 Node right;
}

Problem Six (2-3 Trees -- 15 points). Assume you need to insert the integer keys 2,
8, 16, 11, 6, 4, 15, 9, 17, 23 in that order into an initially-empty 2-3 tree.

1. Show the data structure that would result after inserting these integers (use back
of previous page or scrap paper for preliminary steps, and CIRCLE your final
tree.

2. True or false? Suppose you have a key K < 21.
Is it true that inserting K into the tree on the right
could never cause its height to increase?

3. Give an example of a key which would make the height of this tree increase or
write that “no such key exists.”

4. In general what is the minimum number of keys we would need to insert into a 2-
3 tree to guarantee that the tree is of height at least 2?

Problem Seven (Algorithm Trace -- 15 points). Consider the following linked list:

Show what gets printed out by the following algorithm when applied to this list:

void mystery(Node p) {
 if (p == null) {
 System.out.println(“---”);
 }
 else if (p.item % 2 == 1) {
 mystery(p.next);
 System.out.println(p.item);
 }
 else {
 System.out.println(p.item);
 mystery(p.next);
 mystery(p.next);
 }
}

“Already-
ordered” means
that it is already
solved, i.e., in
the same order
as it would be at
the end of the
sorting process.

Problem Eight. (MANDATORY – 15 points) For the following algorithms, for the first
set, state the average- and worst-case time (in terms of Θ) for performing the indicating
operation. The number of items stored in each data structure is N. Assume that none of
the operations produces an error. Those entries in the table contain “X” do not have to be
answered. For this question, your Θ(......) estimate is counting the number of times you
must touch an element (e.g., to compare it or move it or print it out, etc.).

Algorithm/Problem Average Case O(......) Worst Case O(......)
Find an item in an ordered
array using Binary Search

X

Insert an item into an
unordered list if duplicates
are not permitted.

Insert an item into an
unordered list if duplicates
are allowed.

Print out all the nodes in a
Binary Search Tree using
preorder search.

Sort an already-ordered list
using Mergesort

Sort an arbitrary list using
Mergesort

Sort an already-sorted list
using Selection Sort

Sort an already-sorted list
using Insertion sort.

Delete an item from a max-
queue implemented as a
heap.

X

Dequeue an item from a
queue.

Enqueue an item into a
queue implemented as a
ring buffer with resizing.

X

Insert an item into a linear-
probing hash table with a
load factor of 1.0.

X

Delete an item from a
Binary Search Tree.

Insert an item into a 2-3
tree.

X

Delete an element from a
separate-chaining hash table
(with the assumptions from
lecture)

