
CS 112
Week11: Trees

1

General Trees

2

General Trees
• This week we discuss one of the most important non linear

data structures in computing, trees.

2

General Trees
• This week we discuss one of the most important non linear

data structures in computing, trees.

• Trees are indeed a breakthrough in data organization,
allowing us to implement a host of algorithms much faster
than when using linear data structures such as arrays or lists.

2

General Trees
• This week we discuss one of the most important non linear

data structures in computing, trees.

• Trees are indeed a breakthrough in data organization,
allowing us to implement a host of algorithms much faster
than when using linear data structures such as arrays or lists.

• Trees provide a natural organization for data, and are
ubiquitous structures in file systems, graphical user
interface, databases, web sites and other computer systems.

2

General Trees
• This week we discuss one of the most important non linear

data structures in computing, trees.

• Trees are indeed a breakthrough in data organization,
allowing us to implement a host of algorithms much faster
than when using linear data structures such as arrays or lists.

• Trees provide a natural organization for data, and are
ubiquitous structures in file systems, graphical user
interface, databases, web sites and other computer systems.

•

2

Non-linear?

3

Non-linear?
• When we say that trees are non linear we are referring to

an organizational relationship that is richer than the
simple “before” and “after” relationships between object
in sequences.

3

Non-linear?
• When we say that trees are non linear we are referring to

an organizational relationship that is richer than the
simple “before” and “after” relationships between object
in sequences.

• The relationships in tree are hierarchical, with some
objects being “above” and some “below” others.

3

Non-linear?
• When we say that trees are non linear we are referring to

an organizational relationship that is richer than the
simple “before” and “after” relationships between object
in sequences.

• The relationships in tree are hierarchical, with some
objects being “above” and some “below” others.

• Actually the main terminology for tree data structures
comes from family trees, with the terms “parent”, “child”,
“ancestor” and “descendants” being the most common
words used to describe relationships.

3

Tree

4

Tree definitions and
properties

5

Tree definitions and
properties

• A tree is an abstract data type that stores elements
hierarchically.

5

Tree definitions and
properties

• A tree is an abstract data type that stores elements
hierarchically.

• With the exception of the top element, each element in a tree has
a parent element and zero or more children.

5

Tree definitions and
properties

• A tree is an abstract data type that stores elements
hierarchically.

• With the exception of the top element, each element in a tree has
a parent element and zero or more children.

• A tree is usually visualized by placing elements inside ovals or
rectangles and by drawing the connections between parents
and children with straight lines.

5

Tree definitions and
properties

• A tree is an abstract data type that stores elements
hierarchically.

• With the exception of the top element, each element in a tree has
a parent element and zero or more children.

• A tree is usually visualized by placing elements inside ovals or
rectangles and by drawing the connections between parents
and children with straight lines.

• We typically call the top element the root of the tree, but it is
drawn as the highest element, with the other elements being
connected below (just the opposite of the real tree picture shown
on the previous slide).

5

6

Tree definitions and
properties

7

Tree definitions and
properties

8

Tree definitions and
properties

9

Tree definitions and
properties

10

Tree definitions and
properties

Tree is a recursive data
structure.

11

12

Tree is a recursive data
structure.

13

Edge

• An edge of a tree is a pair of nodes (u,v) such that
u is the parent of v or vice versa. In the above
example, the green line is an edge.

13

Edge

• An edge of a tree is a pair of nodes (u,v) such that
u is the parent of v or vice versa. In the above
example, the green line is an edge.

• It is an edge between (Sales, Domestic)
13

Edge

• A path of a tree is a sequence of nodes such that
any two consecutive nodes in the sequence form
an edge. For example in the picture above, the
path in pink is highlighted.

• (CS252/,projects/,demos/,market).

14

Path

Tree Abstract Data Type
• Lets assume that ’T’ refers to some Tree.

• Lets assume that ’n’ refers to some node in the Tree
’T’.

15

Tree Abstract Data Type

16

ZOOM IN VERSION

Preorder on binary tree

17

18

Post-order on binary tree that
is represented as list of list.

Lets get an intuition first…

19

Lets get an intuition first…

19

20

Lets get an intuition first…

21

Lets get an intuition first…

22

Lets get an intuition first…

Height of a node ’n'

• The height of a node ’n’ in a tree T is defined as:

• If ’n’ is a leaf node, then the height of ’n’ is 0.

• Otherwise the height of ’n’ is one more than the
maximum of the heights of ’n’s’ children.

23

Height of a node ’n'

• The height of a node ’n’ in a tree T is defined as:

• If ’n’ is a leaf node, then the height of ’n’ is 0.

• Otherwise the height of ’n’ is one more than the
maximum of the heights of ’n’s’ children.

23

