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Week11: Trees
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Non-linear? 
• When we say that trees are non linear we are referring to 

an organizational relationship that is richer than the 
simple “before” and “after” relationships between object 
in sequences. 

• The relationships in tree are hierarchical, with some 
objects being “above” and some “below” others. 

• Actually the main terminology for tree data structures 
comes from family trees, with the terms “parent”, “child”, 
“ancestor” and “descendants” being the most common 
words used to describe relationships. 
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Tree definitions and 
properties

• A tree is an abstract data type that stores elements 
hierarchically. 

• With the exception of the top element, each element in a tree has 
a parent element and zero or more children. 

• A tree is usually visualized by placing elements inside ovals or 
rectangles and by drawing the connections between parents 
and children with straight lines. 

• We typically call the top element the root of the tree, but it is 
drawn as the highest element, with the other elements being 
connected below (just the opposite of the real tree picture shown 
on the previous slide). 
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• An edge of a tree is a pair of nodes (u,v) such that 
u is the parent of v or vice versa. In the above 
example, the green line is an edge. 
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• An edge of a tree is a pair of nodes (u,v) such that 
u is the parent of v or vice versa. In the above 
example, the green line is an edge. 

• It is an edge between (Sales, Domestic)
13

Edge 



• A path of a tree is a sequence of nodes such that 
any two consecutive nodes in the sequence form 
an edge. For example in the picture above, the 
path in pink is highlighted.  

• (CS252/,projects/,demos/,market). 
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Tree Abstract Data Type
• Lets assume that ’T’ refers to some Tree.  

• Lets assume that ’n’ refers to some node in the Tree 
’T’. 
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Tree Abstract Data Type
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Preorder on binary tree
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Post-order on binary tree that 
is represented as list of list. 
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Height of a node ’n'

• The height of a node ’n’ in a tree T is defined as: 

• If ’n’ is a leaf node, then the height of ’n’ is 0.  

• Otherwise the height of ’n’ is one more than the 
maximum of the heights of ’n’s’ children. 
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