
Computer Science

CS 112 – Introduction to Computing II

Today:
Creating and Using Objects;
public vs private;
Object-Oriented Programming;
Abstract data types

Wayne Snyder
Computer Science Department

Boston University

Computer Science

2

Creating and Using Objects

Computer Science

3

Creating and Using Objects

The fundamental data type in Python is a list, which stores a list of
values:

Python:

Computer Science

4

Creating and Using Objects

The fundamental data type in Python is a list, which stores a list of
values:

Python:

Note: no static keyword

Computer Science

5

Creating and Using Objects

The fundamental data type in Python is a list, which stores a list of
values:

Python:

Remember: To access the members of a
static class, use

name-of-class . name-of-member

for example:

MyMath.logOfTwo

Remember: To access the members of an
object, use the variable you assigned it to:

variable-name . name-of-member

for example: p.x

Computer Science

6

Creating and Using Objects

We can initialize the fields in an object using declarations:

Point.java Geometry.java

CS112Homework

Computer Science

7

Creating and Using Objects

Point.java

Geometry.java

CS112Homework

But then all objects created will have the SAME initial values; it is
better to use a constructor, which allows you to create different initial
values in client program:

Computer Science

8

Creating and Using Objects

Point.java

Geometry.java

CS112Homework

But then all objects created will have the SAME initial values; it is
better to use a constructor, which allows you to create different initial
values in client program:

Computer Science

9

Creating and Using Objects

Point.java

Geometry.java

CS112Homework

keyword public

name of class

refer to field using this.

NO result type Client calls constructor
with initial values

But then all objects created will have the SAME initial values; it is
better to use a constructor, which allows you to create different initial
values: keyword new to create

new object

Computer Science

10

Creating and Using Objects

Point.java Geometry.java

CS112Homework

You can also create multiple instances of the object, with different
initial values:

Computer Science

11

Creating and Using Objects

Point.java Geometry.java

CS112Homework

You can even create an array of objects:

Computer Science

12

Creating and Using Objects

Static World Dynamic World

Geometry
figure

0:
1:
2:
3:
4:

Computer Science

13

Creating and Using Objects

Point.java Geometry.java

CS112Homework

You can overload the constructor method, providing different versions
that behave in different ways – all of which create a new object.

Computer Science

14

Creating and Using Objects

Point.java Geometry.java

CS112Homework

You can overload the constructor method, providing different versions
that behave in different ways – all of which create a new object.
If you do not provide a constructor, a default constructor is provided
which simply initializes the fields to their default values.

Computer Science

15

Creating and Using Objects

Finally, you can include (local) methods inside objects, and these
methods can access fields in the objects:

Computer Science

16

Creating and Using Objects

Finally, you can include (local) methods inside objects, and
these methods can access fields in the objects:

Computer Science

17

Creating and Using Objects

NOTE in particular the method toString(), which can be included in
any object. When the name of the object is used in a context where a
String is expected, it will use the String you return in the method. This
is how you display a String representation of the object, especially
useful for debugging!

Computer Science

18

Scope revisited: public and private members of classes

Recall that the scope of a declaration is the region of the program
where the declaration has meaning; we have seen two different rules
for scope:

Scope of field x is whole
class

Scope of local variable
xDist is until end of
closest enclosing block {
… }

Computer Science

Scope revisited: public and private members of classes

But scope also applies in the larger context of files and directories and
the whole computer memory! There are two keywords we will use to
define the scope of the members of a class: public and private:

The scope of a private
member of a class is only
the inside the class itself;

The scope of a public
member is the whole
computer: any piece of
code can access the
member using either:

name-of-class . member

variable-name . member

Can only refer to from inside class.

Can refer to from anywhere!

Computer Science

Scope revisited: public and private members of classes

But scope also applies in the larger context of files and directories and
the whole computer memory! There are two keywords we will use to
define the scope of the members of a class: public and private:

The scope of a private member of a class is only the inside the class itself; this
is the rule we learned previously for scope of members.

The scope of a public member is the whole computer: any piece of code can
access the member using either:

name-of-class . member

variable-name . member

LETS’ GO TO DR. JAVA TO SEE HOW THIS WORKS…..

Computer Science

21

Software Engineering and Object-Oriented Design

Our goals in writing software include the following:

ØThe program should be correct and as efficient as possible;

ØYou should understand and improve (whenever you can) its behavior in the worst
case and in the average case, both analytically and in practice;

ØYour code should be robust in that users can not misuse it (“defensive programming”);

ØYou (and, sometimes, your team) should develop the program as easily as you can
(while observing the first goal!);

ØWhen appropriate, you should reuse existing code and produce new code which can
be reused easily later (by you or others). When using others’ code, cite the source!

ØYou (or someone else) should be able to quickly understand the program when you
look at it years later, and to modify and maintain it easily.

Computer Science

22

Software Engineering and Object-Oriented Design

Our goals in writing software include the following:

ØThe program should be correct and as efficient as possible; be obsessive!

ØYou should understand (whenever you can) its behavior in the worst case and in the
average case; be pessimistic!

ØYour code should be robust in that users can not misuse it (“defensive programming”);
assume everyone else is stupid!

ØYou (and, sometimes, your team) should develop the program as easily as you can
(while observing the first goal!); be lazy!

ØWhen appropriate, you should reuse existing code and produce new code which can
be reused easily later (by you or others); even more lazy!

ØYou (or someone else) should be able to quickly understand the program when you
look at it years later, and to modify and maintain it easily; assume others are stupid
and lazy!

Computer Science

23

Software Engineering and Object-Oriented Design

The principles of Software Engineering (e.g., CS 411) help us poor programmers
achieve these goals:

Object-Oriented Design: break your problem (and its solution) into manageable-sized
pieces---we’ll talk about this in the rest of this lecture;

Abstraction: Simplify and generalize---solve the most general problem---we’ll talk about
this when we study Generics;

Step-wise Refinement: Develop your code a piece at a time, testing for correctness as
you go along---we’ll be developing this skill throughout the semester!

ALL of these principles will help you become excellent Java programmers by the end of
CS 112!

Computer Science

24

Object-Oriented Design

The basic goal of Object-Oriented Design is to control the complexity of software
development, and it can be summed up in one phrase:

Computer Science

Object-Oriented Design

Divide and Conquer means just what it says:

Divide the problem into manageable pieces (small enough for one person to understand
completely and solve quickly and efficiently):

?
??

???

???
?

? ??

??

? ? ?

Computer Science

26

Object-Oriented Design

Divide and Conquer means just what it says:

Divide the problem into manageable pieces (small enough for one person to understand
completely and solve quickly and efficiently):

Conquer each

problem
separately:

✔

✔

✔

✔✔

✔
✔

✔✔

?
??

???

???
?

? ??

??

? ? ?

Computer Science

27

Object-Oriented Design

Divide and Conquer means just what it says:

Divide the problem into manageable pieces (small enough for one person to understand
completely and solve quickly and efficiently):

Conquer each

problem
separately:

✔

✔

✔

✔✔

✔
✔

✔✔

✔

And then put it back together:

?
??

???

???
?

? ??

??

? ? ?

Computer Science

28

Object-Oriented Design

Critical to this process is the interaction between the parts of the solution:

Each part may be simple, but if the communication between the parts is complex, the whole
thing will still be too difficult to understand! Make the parts simple and their interaction
simple!

Question: If you have N people, how many possible conversations can you have?

Computer Science

29

Object-Oriented Design

Critical to this process is the interaction between the parts of the solution:

Each part may be simple, but if the communication between the parts is complex, the whole
thing will still be too difficult to understand! Make the parts simple and their interactions
simple!

Question: If you have N parts, how many possible connections can you have?

Answer: 1 -> 0, 2 -> 1, 3 -> 3, 4 -> 6, ..., N -> 1+ 2 + ... + N-1 = N(N-1)/2
= ~ N2/2 = Geometric growth!

Computer Science

30

Object-Oriented Design

Critical to this process is the interaction between the parts of the solution:

Each part may be simple, but if the communication between the parts is complex, the
whole thing will still be too difficult to understand! Make the parts simple and their
interactions simple!

Punchline: The difficulty of communication grows geometrically as the
number of parts increases. To “conquer” you must limit the number of
“conversations”!

Computer Science

31

Object-Oriented Design

This leads to the KISS principle of system development which has many different forms:

“Less is more” –
Mies van der Rohe

“Everything should be made
as simple as possible, but no
simpler” – A. Einstein

“Pluralitas non est
ponenda sine
necessitate” (Occam’s
Razor)

Computer Science

32

Object-Oriented Design

What does this mean for Java?
Part = Class

Interaction/conversation = Method call (or reference to a field)

Computer Science

33

Object-Oriented Design

The way we control communication is through the interface of a class:
Interface = collection of public methods and fields of a class

A class’s interaction with other classes is through its interface, so:

To Keep It Simple, Stupid:

Keep the Interactions Simple, Stupid, by

Keeping the Interfaces Simple, Stupid!

Computer Science

34

Object-Oriented Design

What does this mean for Java?
Part = Static Class or dynamic Object

Interaction = Method call (or variable reference)
Interface = public members of class

Computer Science

35

Object-Oriented Design

Two more principles of Software Engineering:

ONE: Separate the behavior of a class (defined by its interface) from it’s implementation
(the private methods and fields).

Behavior is
defined by
Interface =
collection of public
methods and
fields of a class

Implementation
= collection of
private methods
and fields of a
class.

Implementation:

void getDate(int key){
.....

}

void putDate(int key){
.....

}

Behavior

Computer Science

36

Object-Oriented Design

Two more principles of Software Engineering:

ONE: Separate the behavior of a class (defined by its interface) from it’s implementation
(the private methods and fields).

TWO: Protect your implementation by hiding as many details as possible from your
(stupid) user! ONLY give them access through the Interface. This is called Information
Hiding.

Interface =
collection of
public methods
and fields of a
classBehavior

Implementation:

void getDate(int key){
.....

}

void putDate(int key){
.....

}

Computer Science

37

Object-Oriented Design

The MOST IMPORTANT thing you can as a Java programmer, therefore, is:

ØWhen you divide, make the interactions as simple and easy to understand as possible;
ØMake the interface follow KISS -- provide as few public methods as possible;

ØUse Information Hiding: If you are not sure whether to make something public or
private, make it private;
The advantages of information hiding are:

ØYour code is easier to understand, and hence to use, and reuse;

ØUsers can’t screw up your beautifully-crafted KISS code with their “improvements”;
ØUsers can’t get used to “back-door” ad-hoc features of your code;

ØBy separating the (simple) behavior of your system from the messy details of its
implementation, you can change the actual implementation any time you want---
as long as it behaves the same, this is a huge advantage for maintenance and reuse.

Computer Science

38

Object-Oriented Design: Design Patterns

Over the years, system designers have defined a number of standard design patterns
for interaction between parts. One of the most useful is the

Client/Server Model:

The Client needs services; the Server provides these services.

The Client controls the interaction.

Client Server

Computer Science

39

Object-Oriented Design

There may, of course, be many servers:

Client
Servers

Computer Science

40

Object-Oriented Design

Very commonly, the client is the “main” program, where execution starts and ends, and
the servers store data and manipulate this data. The servers are usually called “Data
Types” or “Abstract Data Types”:

Client Class ADT

main(...){
...

}

2, 3, 4

Computer Science

41

Object-Oriented Design: The Collection ADT

The most basic Abstract Data Type is a Collection, which simply allows you to insert,
remove, and check for membership among a collection of integers; the interface of this
ADT simply contains public methods for these basic operations

Client Class

Collection ADT

main(...){
insert(4);
delete(5);
if(member(4))

......
}

private int[]
A =

Interface (public)
Implementation
(private)

public insert(int k)

public delete(int k)

public member(int k)

Computer Science

42

OOD: The Collection ADT

public class Client {
public static void main(String [] args) {

Collection C = new Collection();
C.insert(2);
C.insert(3);
C.delete(2)
if(C.member(2))

System.out.println(“Oh no....”);
}

}

Client.java
public class Collection {

private int [] A = new int[10];
private int next = 0;

public void insert(int k) {
A[next++] = k

}

public void delete(int k) {
... etc.

}

public boolean member(int k) {
..... etc.

}
}

Collection.java

Interface in Red

Implementation in Green

Computer Science

43

OOD: The Collection ADT

Client.java Collection.java

public interface Collectable {
public void insert(int k) ;
public void delete(int k) ;
public boolean member(int k) ;

}

Collectable.java

public class Client {
public static void main(String [] args) {

Collectable C = new Collection();
C.insert(2);
C.insert(3);
C.delete(2)
if(C.member(2))

System.out.println(“Oh no....”);
}

}

public class Collection implements Collectable
{

private int [] A = new int[10];
private int next = 0;

public void insert(int k) {
A[next++] = k

}

public void delete(int k) {
... etc.

}

public boolean member(int k) {
..... etc.

}
}

Computer Science

44

OOD: Java Interfaces

