
Computer Science

CS 112 – Introduction to Computing II

Today:

Efficiency of binary trees;
Balanced Trees

2-3 Trees

Next Time:

2-3 Trees continued

B-Trees and External Search

Wayne Snyder
Computer Science Department

Boston University

Computer Science

2

Efficiency of Binary Search Trees

So far, we have seen that the best case for a BST is a perfect triangle, and the worst case is
a linked list:

Of course it may not be possible to get a
perfect triangle, but we can always create a tree in which the leaves are always within two
levels of each other:
 Best case: Θ(Log N)

Worst case: Θ(N)

What happens on average?

Computer Science

3

Efficiency of Binary Search Trees

What happens on average? The scenario would be modeled on our experiments with
average case for sorting:

o  Create 1000 random BSTs for each size N = 1, 2, 3, 4, 100 (or similar parameters) by

creating a random array of size N and then inserting each key into an initially-empty tree;
o  Find the average cost of lookups in each tree (sum of cost of each node / N);
o  This simulates a situation where a random BST is created, then we repeatedly lookup

keys (we could alternately do a random series of inserts, lookups, and deletes on a single
tree and see what happens – results are similar).

 Cost of paths:
S: 1, E,X: 2, A,R: 3,
C,R: 4

Sum: 19

Average Cost: 19/7 =
2.71

Computer Science

4

Efficiency of Binary Search Trees

What happens on average? The scenario would be modeled on our experiments with
average case for sorting:

o  Create 1000 random BSTs for each size N = 1, 2, 3, 4, 100 (or similar parameters) by

creating a random array of size N and then inserting each key into an initially-empty tree;
o  Find the average cost of lookups in each tree (sum of cost of each node / N);
o  This simulates a situation where a random BST is created, then we repeatedly lookup

keys (we could alternately do a random series of inserts, lookups, and deletes on a single
tree and see what happens – results are similar).

 Result: Average case
behavior of a BST is

 Θ(Log N)

You determined the constant
C for the estimate ~(CN) in
lab! Note that C was very
small! This is an excellent
result!

Computer Science

5

Balanced BSTs

The next question is always: Can we do better?

Specifically, can we find a way to eliminate the worst case trees, and get Θ(Log N) for all
operations?

This amounts to the following problem: Can we restructure the tree during inserts and deletes
to prevent imbalanced trees?

The answer, of course, is YES, and one solution to creating balanced trees is called 2-3
Trees....

Computer Science

2-3 Trees generalize binary search trees by allowing “wider” nodes that can contain 1 or 2
keys, and 2 or 3 pointers:

Binary Search Tree:

6

2-3 Trees

23

10 34

15

 5 15 35

18 17

8

 6 2 3

12 20

2-3 Tree:

class Node {
 int K1, K2;
 Node left;
 Node mid;
 Node right;
}

Computer Science

Generalizing the basic idea of binary search trees, we have “trinary search trees” where the
two keys divide up the descendent nodes into three instead of two subtrees:

7

2-3 Trees

 5 15 35

18 17

8

 6 2 3

12 20

 K1 K2

< K1 K1 < x < K2 > K2

Computer Science

But we may consider normal BST nodes (1 key, 2 pointers) to be a special case, where the
second key does not exist:

8

2-3 Trees

 5 15 35

18 17

8

 6 2 3

12 20

 K1 K2

< K1 K1 < x < K2 > K2

 K1 --

< K1 > K1

 -- --

 --

Computer Science

But we may consider normal BST nodes (1 key, 2 pointers) to be a special case, where the
second key does not exist, and we will draw these as we would with normal BSTs:

9

2-3 Trees

 5

18 17

8

2 3

12 20

K1 K2

< K1 K1 < x < K2 > K2

< K > K

 K

15 35

 6

Computer Science

Searching such a tree is a simple generalization of search in BSTs: at each node you scan
from the left through the two keys and figure out where the search key k might be:

boolean member(int k, Node p) {
 if(p == null)
 return false;
 else if(k < p.K1)
 return find(k, p.left);
 else if(k == p.K1)
 return true;
 else if(p.K2 does not exist || k < p.K2)
 return find(k, p.mid);
 else if(k == K2)
 return true;
 else
 return find(k, p.right);
}

10

2-3 Trees

 5

18 17

8

2 3

12 20

15 35

 6

Computer Science

Insertion into a 2-3 tree is a little bit complicated, because we will want to maintain the trees
in balanced form (perfect triangles):

A 2-3 tree is balanced if every path from the root to a leaf node has the same length; note
that nodes may contain 2 keys and 3 pointers, or 1 key and 2 pointers:

11

2-3 Trees

 5 8

2 3

12 20

27 21 9 11 86 34

15

17 13 6

98 30

Computer Science

Rules for inserting a new key into a
2-3 tree:

1. As with BSTs, you search for the key; if
you find it, do nothing (don’t insert
duplicates); if you don’t find it, then insert
into the leaf node that you last looked in. If
there is room, you are done.

2-3 Trees

Example: Let’s insert a 12 into an
empty tree; when you insert into an
empty tree, you create a new node and
insert into the K1 slot:

12 --

Computer Science

Rules for inserting a new key into a
2-3 tree:

1.  As with BSTs, you search for the key; if

you find it, do nothing (don’t insert
duplicates); if you don’t find it, then
insert into the leaf node that you last
looked in. If there is room, you are
done.

2-3 Trees

Example: Let’s insert a 12 into an
empty tree; when you insert into an
empty tree, you create a new node and
insert into the K1 slot:

Now let’s insert an 8, which can fit into
the node if we move the 12 over:

12 --

 8 12

Computer Science

Rules for inserting a new key into a
2-3 tree:

1.  As with BSTs, you search for the key; if

you find it, do nothing (don’t insert
duplicates); if you don’t find it, then
insert into the leaf node that you last
looked in. If there is room, you are
done.

2.  But if there are already 2 keys, then
insert into the node anyway, creating an
“error node” containing 3 keys (too
many!).

2-3 Trees

Example: Let’s insert a 12 into an
empty tree; when you insert into an
empty tree, you create a new node and
insert into the K1 slot:

Now let’s insert an 8, which can fit into
the node if we move the 12 over:

Next let’s insert a 15, which expands
the node into an error node containing
too many keys:

12 --

 8 12

 8 12 15

Computer Science

Rules for inserting a new key into a
2-3 tree:

1.  As with BSTs, you search for the key; if

you find it, do nothing (don’t insert
duplicates); if you don’t find it, then insert
into the leaf node that you last looked in.
If there is room, stop.

2.  But if there are already 2 keys, then
insert into the node anyway, creating an
“error node” containing 3 keys (too
many!). Then apply the α-transformation
to change this into a legal configuration
of three nodes.

2-3 Trees

Next let’s insert a 15, which expands
the node into an error node containing
too many keys:

Immediately fix this error by
transforming this node into a balanced
three-node tree:

 8 12 15

12

 8 15

 8 12 15

α-transformation

Computer Science

2-3 Trees

 α-transformation:

 K1 K2 K3

K2

K1 K3

A B C D

A B C D

The subtrees A – D may be null!

Computer Science

Rules for inserting a new key into a
2-3 tree:

1.  As with BSTs, you search for the key; if

you find it, do nothing (don’t insert
duplicates); if you don’t find it, then insert
into the leaf node that you last looked in.
If there is room, stop.

2.  But if there are already 2 keys, then
insert into the node anyway, creating an
“error node” containing 3 keys (too
many!). Then apply the α-transformation
to change this into a legal configuration
of three nodes.

2-3 Trees

Immediately fix this error by
transforming this node into a balanced
three-node tree:

Next let’s insert a 20, which expands
the right-most leaf node:

12

 8 15

12

 8 15 20

Computer Science

Rules for inserting a new key into a
2-3 tree:

1.  As with BSTs, you search for the key; if

you find it, do nothing (don’t insert
duplicates); if you don’t find it, then insert
into the leaf node that you last looked in.
If there is room, stop.

2.  But if there are already 2 keys, then
insert into the node anyway, creating an
“error node” containing 3 keys (too
many!). Then apply the α-transformation
to change this into a legal configuration
of three nodes.

2-3 Trees

Next let’s insert a 20, which expands
the right-most leaf node:

Then let’s insert a 30, which creates
another error node:

12

 8 15 20

12

 8 15 20 30

Computer Science

Rules for inserting a new key into a 2-3
tree:

1.  As with BSTs, you search for the key; if you

find it, do nothing (don’t insert duplicates);
if you don’t find it, then insert into the leaf
node that you last looked in. If there is
room, stop.

2.  But if there are already 2 keys, then insert
into the node anyway, creating an “error
node” containing 3 keys (too many!). Then
apply the α-transformation to change this
into a legal configuration of three nodes.

2-3 Trees

Then let’s insert a 30, which creates
another error node:

But we immediately fix the error by
using the α-transformation:

12

 8 15 20 30

12

 8 20

15 30

Computer Science

Rules for inserting a new key into a 2-3
tree:

1.  As with BSTs, you search for the key; if you

find it, do nothing (don’t insert duplicates);
if you don’t find it, then insert into the leaf
node that you last looked in. If there is
room, stop.

2.  But if there are already 2 keys, then insert
into the node anyway, creating an “error
node” containing 3 keys (too many!). Then
apply the α-transformation to change this
into a legal configuration of three nodes.

3.  After applying the α-transformation, if there
is a parent node, then we must apply the
β-transformation to fix the imbalance
created by the α-transformation.

2-3 Trees

But we immediately fix the error by using
the α-transformation:

But this is imbalanced, so we will combine
the root of the new subtree with the parent
node:

12

 8 20

15 30

12

 8 20

15 30

Computer Science

Rules for inserting a new key into a 2-3
tree:

1.  As with BSTs, you search for the key; if you

find it, do nothing (don’t insert duplicates);
if you don’t find it, then insert into the leaf
node that you last looked in. If there is
room, stop.

2.  But if there are already 2 keys, then insert
into the node anyway, creating an “error
node” containing 3 keys (too many!). Then
apply the α-transformation to change this
into a legal configuration of three nodes.

3.  After applying the α-transformation, if there
is a parent node, then we must apply the
β-transformation to fix the imbalance
created by the α-transformation.

2-3 Trees

But this is imbalanced, so we will
combine the root of the new subtree
with the parent node:

 12

 8 20

15 30

 8 15 30

12 20

β-transformation

Computer Science

2-3 Trees

 β-transformation(s): If the parent has only 1 key, then insert the root into
the parent node and distribute the subtrees accordingly:

K2

K1 --

A

B C

K1 K2

A B C

Computer Science

2-3 Trees

K1

K2 --

C A B

K1 K2

A B C

 β-transformation(s): If the parent has only 1 key, then insert the root into
the parent node and distribute the subtrees accordingly:

Computer Science

2-3 Trees

 β-transformation(s): If the parent has 2 keys, then create an error
node and repeat the α-transformation (you may have to continue apply α-
and β-transformations up the tree):

D
A B C

K1 K2 K3

D

K1

K2 K3

C

A B

Computer Science

2-3 Trees

 β-transformation(s): If the parent has 2 keys, then create an error
node and go back to the α-transformation (you may have to continue apply α-
and β-transformations up the tree):

D
A B C

K1 K2 K3

D

K2

K1 K3

A

B C

Computer Science

2-3 Trees

 β-transformation(s): If the parent has 2 keys, then create an error
node and go back to the α-transformation (you may have to continue apply α-
and β-transformations up the tree):

B
A B C

K1 K2 K3

D

K3

K1 K2

A

C D

Computer Science

Rules for inserting a new key into a 2-3
tree:

1.  As with BSTs, you search for the key; if you

find it, do nothing (don’t insert duplicates);
if you don’t find it, then insert into the leaf
node that you last looked in. If there is
room, stop.

2.  But if there are already 2 keys, then insert
into the node anyway, creating an “error
node” containing 3 keys (too many!). Then
apply the α-transformation to change this
into a legal configuration of three nodes.

3.  After applying the α-transformation, if there
is a parent node, then we must apply the
β-transformation to fix the imbalance
created by the α-transformation.

4.  You may have to continue a series of α-
and β-transformations moving up the path
to the root, until a balanced tree with no
error nodes is obtained.

2-3 Trees

Let’s continue with our example….

Insert a 16 into the tree:

 8 15 30

12 20

 8 30

12 20

15 16

Computer Science

2-3 Trees

Insert 18:

 8 30

12 20

15 16 8 30

12 20

15 16 18

α

16

15 18

 8 30

12 20

β 12 16 20

15 8 30 18

Insert 16:

Computer Science

2-3 Trees

16

12 20

15 8 30 18

Summary of rules for inserting a new
key into a 2-3 tree:

1.  Insert new key into appropriate leaf node,

potentially creating an error node;
2.  If there is an error node, apply α- and β-

transformations moving up the path to
the root, until a balanced tree with no
error nodes is obtained.

16

15 18

 8 30

12 20

β 12 16 20

15 8 30 18

α

Computer Science

2-3 Trees

Worst-Case Time Complexity of 2-3 Trees (counting the number of
comparisons): Member(….)

Consider the following tree:
o  What is the cost (# of comparisons) for finding 2?
o  How about 27?
o  Which keys represent the worst case for this tree?

 5 8

2 3

12 20

27 21 9 11 46 35

15

17 13 6

50 34

66 54

Computer Science

2-3 Trees

Worst-Case Time Complexity of 2-3 Trees (counting the number of
comparisons): Member(….)

Consider the following tree:
o  What is the cost (# of comparisons) for finding 2? 3
o  How about 27? 5
o  Which keys represent the worst case for this tree? 46 or 66, with 6 comparisons

 5 8

2 3

12 20

27 21 9 11 46 35

15

17 13 6

50 34

66 54

Computer Science

2-3 Trees

Worst-Case Time Complexity of 2-3 Trees (counting the number of
comparisons): Member(….)

The worst-case for member(…) is to go all the way to a leaf node, and do 2
comparisons at each node; in a balanced tree with N keys, the height is Θ(Log N),
i.e., C * Log N + …. for some constant C, but if we have to do 2 comparisons at each node, this
becomes 2 * C * Log N + …. which is still Θ(Log N) comparisons.

 5 8

2 3

12 20

27 21 9 11 46 35

15

17 13 6

50 34

66 54

Computer Science

2-3 Trees

Worst-Case Time Complexity of 2-3 Trees (counting the number of
comparisons): Insert(….)

For insert(…), the worst thing that can happen is that you insert the new key at the
bottom of the tree, and it causes α- and β-transformations all the way back up the
tree. Each transformation takes a constant C amount of work, so the cost is Θ(Log
N) to find the location (as in member(…)), and C * Θ(Log N) transform the tree back
up to the root. (1 + C) * Θ(Log N) is still Θ(Log N).

 5 8

2 3

12 20

27 21 9 11 46 35

15

17 13 6

50 34

66 54

Computer Science

2-3 Trees

Worst-Case Time Complexity of 2-3 Trees (counting the number of
comparisons):

Member(….): Θ(Log N) Delete(….): Θ(Log N) (not described)

Insert(….): Θ(Log N)

 5 8

2 3

12 20

27 21 9 11 46 35

15

17 13 6

50 34

66 54

Computer Science

2-3 Trees

Code Complexity: 2-3 Trees are generally encoded as normal BSTs with two different
colored links (“Red-Black Trees”), and the code for insert is not as complicated as you would
imagine:

 private static Node insert(int key, Node t) {

 if (t == null)

 return new Node(key);

 else if (key < t.key) {

 t.left = insert(key, t.left);

 return applyTransformations(t);

 } else if (key > t.key) {

 t.right = insert(key, t.right);

 return applyTransformations(t);

 } else

 return t;

 }

private static Node leanRight(Node t) {

 Node newRoot = t.left;

 t.left = newRoot.right;

 newRoot.right = t;

 newRoot.red = t.red;

 t.red = true;

 return newRoot;

}

 private static Node rotateLeft(Node t) {

 Node newRoot = t.right;

 t.right = t.right.left;

 newRoot.left = t;

 newRoot.red = true;

 newRoot.left.red = false;

 newRoot.right.red = false;

 return newRoot;

 }

 private static Node applyTransformations(Node t) {

 if(t == null)

 return null;

 if(t.left != null && t.left.red)

 t = leanRight(t);

 if(t.right != null && t.right.red

 && t.right.right != null && t.right.right.red)

 t = rotateLeft(t);

 return t;

 }

