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Efficiency of Binary Search Trees 

So far, we have seen that the best case for a BST is a perfect triangle, and the worst case is 
a linked list: 
 
 
 
 
 
 
Of course it may not be possible to get a  
perfect triangle, but we can always create a tree in which the leaves are always within two 
levels of each other: 
 Best case: Θ( Log N ) 

 
Worst case:  Θ( N ) 
 
 
What happens on average? 
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Efficiency of Binary Search Trees 

What happens on average? The scenario would be modeled on our experiments with 
average case for sorting: 
 
o  Create 1000 random BSTs for each size N = 1, 2, 3, 4, .... 100   (or similar parameters) by 

creating a random array of size N and then inserting each key into an initially-empty tree;  
o  Find the average cost of lookups in each tree (sum of cost of each node / N); 
o  This simulates a situation where a random BST is created, then we repeatedly lookup 

keys (we could alternately do a random series of inserts, lookups, and deletes on a single 
tree and see what happens – results are similar). 

 Cost of paths: 
S: 1, E,X: 2, A,R: 3,  
C,R: 4 
 
Sum: 19 
 
Average Cost: 19/7 = 
2.71   
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Efficiency of Binary Search Trees 

What happens on average? The scenario would be modeled on our experiments with 
average case for sorting: 
 
o  Create 1000 random BSTs for each size N = 1, 2, 3, 4, .... 100   (or similar parameters) by 

creating a random array of size N and then inserting each key into an initially-empty tree;  
o  Find the average cost of lookups in each tree (sum of cost of each node / N); 
o  This simulates a situation where a random BST is created, then we repeatedly lookup 

keys (we could alternately do a random series of inserts, lookups, and deletes on a single 
tree and see what happens – results are similar). 

 Result: Average case 
behavior of a BST is  
 
      Θ( Log N ) 
 
You determined the constant 
C for the estimate ~(CN) in 
lab!  Note that C was very 
small! This is an excellent 
result! 
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Balanced BSTs 

The next question is always:       Can we do better? 
 
Specifically, can we find a way to eliminate the worst case trees, and get  Θ( Log N ) for all 
operations? 
 
This amounts to the following problem: Can we restructure the tree during inserts and deletes 
to prevent imbalanced trees? 
 
The answer, of course, is YES, and one solution to creating balanced trees is called 2-3 
Trees.... 
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2-3 Trees generalize binary search trees by allowing “wider” nodes that can contain 1 or 2 
keys, and 2 or 3 pointers: 
 
Binary Search Tree: 
 
 

6 

2-3 Trees 

23 

10 34 

15 

 5 15 35 

18 17 

8 

 6 2 3 

12 20 

2-3 Tree: 

class Node { 
      int K1, K2; 
      Node left; 
      Node mid; 
      Node right; 
} 
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Generalizing the basic idea of binary search trees, we have “trinary search trees” where the 
two keys divide up the descendent nodes into three instead of two subtrees: 
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2-3 Trees 

 5 15 35 

18 17 

8 

 6 2 3 

12 20 

 K1  K2 

< K1 K1 < x < K2 > K2 
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But we may consider normal BST nodes (1 key, 2 pointers) to be a special case, where the 
second key does not exist: 
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2-3 Trees 

 5 15 35 

18 17 

8 

 6 2 3 

12 20 

 K1  K2 

< K1 K1 < x < K2 > K2 

 K1  -- 

< K1 > K1 

 --  -- 

 -- 
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But we may consider normal BST nodes (1 key, 2 pointers) to be a special case, where the 
second key does not exist, and we will draw these as we would with normal BSTs: 
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2-3 Trees 

 5 

18 17 

8 

2 3 

12 20 

K1 K2 

< K1 K1 < x < K2 > K2 

< K > K 

 K 

15 35 

 6 
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Searching such a tree is a simple generalization of search in BSTs: at each node you scan 
from the left through the two keys and figure out where the search key k might be: 
 
boolean member(int k, Node p) { 
       if(p == null) 
             return false; 
       else if(k < p.K1) 
             return find(k, p.left); 
       else if(k == p.K1) 
             return true; 
       else if(p.K2 does not exist || k < p.K2) 
             return find(k, p.mid); 
       else if(k == K2) 
             return true; 
       else  
             return find(k, p.right); 
}  
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2-3 Trees 
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18 17 
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2 3 

12 20 

15 35 
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Insertion into a 2-3 tree is a little bit complicated, because we will want to maintain the trees 
in balanced form (perfect triangles): 
 
A 2-3 tree is balanced if every path from the root to a leaf node has the same length; note 
that nodes may contain 2 keys and 3 pointers, or 1 key and 2 pointers: 
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2-3 Trees 

 5 8 

2 3 

12 20 

27 21 9 11 86 34 

15 

17 13  6 

98 30 
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Rules for inserting a new key into a 
2-3 tree: 
 
1. As with BSTs, you search for the key; if 
you find it, do nothing (don’t insert 
duplicates);  if you don’t find it, then insert 
into the leaf node that you last looked in. If 
there is room, you are done.   
 
 
 

2-3 Trees 

Example: Let’s insert a 12 into an 
empty tree; when you insert into an 
empty tree, you create a new node and 
insert into the K1 slot: 

12  -- 
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Rules for inserting a new key into a 
2-3 tree: 
 
1.  As with BSTs, you search for the key; if 

you find it, do nothing (don’t insert 
duplicates);  if you don’t find it, then 
insert into the leaf node that you last 
looked in. If there is room, you are 
done. 

  
 
 
 

2-3 Trees 

Example: Let’s insert a 12 into an 
empty tree; when you insert into an 
empty tree, you create a new node and 
insert into the K1 slot: 
 
 
 
 
Now let’s insert an 8, which can fit into 
the node if we move the 12 over: 
 
 

12  -- 

 8 12 



Computer Science 

Rules for inserting a new key into a 
2-3 tree: 
 
1.  As with BSTs, you search for the key; if 

you find it, do nothing (don’t insert 
duplicates);  if you don’t find it, then 
insert into the leaf node that you last 
looked in. If there is room, you are 
done. 

2.  But if there are already 2 keys, then 
insert into the node anyway, creating an 
“error node” containing 3 keys (too 
many!).  

 
 
 

2-3 Trees 

Example: Let’s insert a 12 into an 
empty tree; when you insert into an 
empty tree, you create a new node and 
insert into the K1 slot: 
 
 
 
Now let’s insert an 8, which can fit into 
the node if we move the 12 over: 
 
 
 
Next let’s insert a 15, which expands 
the node into an error node containing 
too many keys: 
 
 
 

12  -- 

 8 12 

 8 12 15 
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Rules for inserting a new key into a 
2-3 tree: 
 
1.  As with BSTs, you search for the key; if 

you find it, do nothing (don’t insert 
duplicates);  if you don’t find it, then insert 
into the leaf node that you last looked in. 
If there is room, stop.  

2.  But if there are already 2 keys, then 
insert into the node anyway, creating an 
“error node” containing 3 keys (too 
many!). Then apply the α-transformation 
to change this into a legal configuration 
of three nodes.  

 
 
 

2-3 Trees 

Next let’s insert a 15, which expands 
the node into an error node containing 
too many keys: 
 
 
 
 
Immediately fix this error by 
transforming this node into a balanced 
three-node tree: 
 
 

 8 12 15 

12 

 8 15 

 8 12 15 

α-transformation  
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2-3 Trees 

 α-transformation: 
 

 K1 K2 K3 

K2 

K1 K3 

A B C D 

A B C D 

The subtrees A – D may be null! 
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Rules for inserting a new key into a 
2-3 tree: 
 
1.  As with BSTs, you search for the key; if 

you find it, do nothing (don’t insert 
duplicates);  if you don’t find it, then insert 
into the leaf node that you last looked in. 
If there is room, stop.  

2.  But if there are already 2 keys, then 
insert into the node anyway, creating an 
“error node” containing 3 keys (too 
many!). Then apply the α-transformation 
to change this into a legal configuration 
of three nodes.  

 
 
 

2-3 Trees 

Immediately fix this error by 
transforming this node into a balanced 
three-node tree: 
 
 
 
 
 
 
Next let’s insert a 20, which expands 
the right-most leaf node: 
 
 

12 

 8 15 

12 

 8 15 20 
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Rules for inserting a new key into a 
2-3 tree: 
 
1.  As with BSTs, you search for the key; if 

you find it, do nothing (don’t insert 
duplicates);  if you don’t find it, then insert 
into the leaf node that you last looked in. 
If there is room, stop.  

2.  But if there are already 2 keys, then 
insert into the node anyway, creating an 
“error node” containing 3 keys (too 
many!). Then apply the α-transformation 
to change this into a legal configuration 
of three nodes.  

 
 
 

2-3 Trees 

Next let’s insert a 20, which expands 
the right-most leaf node: 
 
 
 
 
 
 
 
Then let’s insert a 30, which creates 
another error node: 
 
 

12 

 8 15 20 

12 

 8 15 20 30 



Computer Science 

Rules for inserting a new key into a 2-3 
tree: 
 
1.  As with BSTs, you search for the key; if you 

find it, do nothing (don’t insert duplicates);  
if you don’t find it, then insert into the leaf 
node that you last looked in. If there is 
room, stop.  

2.  But if there are already 2 keys, then insert 
into the node anyway, creating an “error 
node” containing 3 keys (too many!). Then 
apply the α-transformation to change this 
into a legal configuration of three nodes.  

 
 
 

2-3 Trees 

Then let’s insert a 30, which creates 
another error node: 
 
 
 
 
 
 
 
But we immediately fix the error by 
using the α-transformation: 
 
 

12 

 8 15 20 30 

12 

 8 20 

15 30 
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Rules for inserting a new key into a 2-3 
tree: 
 
1.  As with BSTs, you search for the key; if you 

find it, do nothing (don’t insert duplicates);  
if you don’t find it, then insert into the leaf 
node that you last looked in. If there is 
room, stop.  

2.  But if there are already 2 keys, then insert 
into the node anyway, creating an “error 
node” containing 3 keys (too many!). Then 
apply the α-transformation to change this 
into a legal configuration of three nodes.  

3.  After applying the α-transformation, if there 
is a parent node, then we must apply the 
β-transformation to fix the imbalance 
created by the  α-transformation.  

 
 
 

2-3 Trees 

But we immediately fix the error by using 
the α-transformation: 
 
 
 
 
 
 
 
 
But this is imbalanced, so we will combine 
the root of the new subtree with the parent 
node: 
 
 

12 

 8 20 

15 30 

12 

 8 20 

15 30 
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Rules for inserting a new key into a 2-3 
tree: 
 
1.  As with BSTs, you search for the key; if you 

find it, do nothing (don’t insert duplicates);  
if you don’t find it, then insert into the leaf 
node that you last looked in. If there is 
room, stop.  

2.  But if there are already 2 keys, then insert 
into the node anyway, creating an “error 
node” containing 3 keys (too many!). Then 
apply the α-transformation to change this 
into a legal configuration of three nodes.  

3.  After applying the α-transformation, if there 
is a parent node, then we must apply the 
β-transformation to fix the imbalance 
created by the  α-transformation.  

 
 
 

2-3 Trees 

But this is imbalanced, so we will 
combine the root of the new subtree 
with the parent node: 
 
 12 

 8 20 

15 30 

 8 15 30 

12 20 

β-transformation  
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2-3 Trees 

 β-transformation(s):  If the parent has only 1 key, then insert the root into 
the parent node and distribute the subtrees accordingly: 
 

K2 

K1 -- 

A 

B C 

K1 K2 
 

A B C 
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2-3 Trees 

K1 

K2 -- 

C A B 

K1 K2 
 

A B C 

 β-transformation(s):  If the parent has only 1 key, then insert the root into 
the parent node and distribute the subtrees accordingly: 
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2-3 Trees 

 β-transformation(s):  If the parent has 2 keys, then create an error 
node and repeat the α-transformation (you may have to continue apply α-  
and β-transformations up the tree): 
 

D 
A B C 

K1 K2 K3 

D 

K1 

K2 K3 

C 

A B 
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2-3 Trees 

 β-transformation(s):  If the parent has 2 keys, then create an error 
node and go back to the α-transformation (you may have to continue apply α-  
and β-transformations up the tree): 
 

D 
A B C 

K1 K2 K3 

D 

K2 

K1 K3 

A 

B C 
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2-3 Trees 

 β-transformation(s):  If the parent has 2 keys, then create an error 
node and go back to the α-transformation (you may have to continue apply α-  
and β-transformations up the tree): 
 

B 
A B C 

K1 K2 K3 

D 

K3 

K1 K2 

A 

C D 
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Rules for inserting a new key into a 2-3 
tree: 
 
1.  As with BSTs, you search for the key; if you 

find it, do nothing (don’t insert duplicates);  
if you don’t find it, then insert into the leaf 
node that you last looked in. If there is 
room, stop.  

2.  But if there are already 2 keys, then insert 
into the node anyway, creating an “error 
node” containing 3 keys (too many!). Then 
apply the α-transformation to change this 
into a legal configuration of three nodes.  

3.  After applying the α-transformation, if there 
is a parent node, then we must apply the 
β-transformation to fix the imbalance 
created by the  α-transformation.  

4.  You may have to continue a series of α- 
and β-transformations moving up the path 
to the root, until a balanced tree with no 
error nodes is obtained.   

 
 
 

2-3 Trees 

Let’s continue with our example…. 
 
 
 
 
 
 
 
 
Insert a 16 into the tree: 
 
 

 8 15 30 

12 20 

 8 30 

12 20 

15 16 
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2-3 Trees 

Insert 18: 

 8 30 

12 20 

15 16  8 30 

12 20 

15 16 18 

α 

16 

15 18 

 8 30 

12 20 

β 12 16 20 

15  8 30 18 

Insert 16: 
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2-3 Trees 

16 

12 20 

15  8 30 18 

Summary of rules for inserting a new 
key into a 2-3 tree: 
 
1.  Insert new key into appropriate leaf node, 

potentially creating an error node; 
2.  If there is an error node, apply α- and β-

transformations moving up the path to 
the root, until a balanced tree with no 
error nodes is obtained. 

16 

15 18 

 8 30 

12 20 

β 12 16 20 

15  8 30 18 

α 
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2-3 Trees 

Worst-Case Time Complexity of 2-3 Trees (counting the number of 
comparisons): Member(….) 
 
Consider the following tree:  
o  What is the cost (# of comparisons) for finding 2?  
o  How about 27?  
o  Which keys represent the worst case for this tree? 

 5 8 

2 3 

12 20 

27 21 9 11 46 35 

15 

17 13  6 

50 34 

66 54 
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2-3 Trees 

Worst-Case Time Complexity of 2-3 Trees (counting the number of 
comparisons): Member(….) 
 
Consider the following tree:  
o  What is the cost (# of comparisons) for finding 2?          3 
o  How about 27?        5 
o  Which keys represent the worst case for this tree?   46 or  66, with 6 comparisons 

 5 8 

2 3 

12 20 

27 21 9 11 46 35 

15 

17 13  6 

50 34 

66 54 
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2-3 Trees 

Worst-Case Time Complexity of 2-3 Trees (counting the number of 
comparisons): Member(….) 
 
The worst-case for member(…) is to go all the way to a leaf node, and do 2 
comparisons at each node; in a balanced tree with N keys, the height is  Θ( Log N ), 
i.e., C * Log N + …. for some constant C, but if we have to do 2 comparisons at each node, this 
becomes 2 * C * Log N + ….  which is still Θ( Log N ) comparisons.  

 5 8 

2 3 

12 20 

27 21 9 11 46 35 

15 

17 13  6 

50 34 

66 54 
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2-3 Trees 

Worst-Case Time Complexity of 2-3 Trees (counting the number of 
comparisons): Insert(….) 
 
For insert(…), the worst thing that can happen is that you insert the new key at the 
bottom of the tree, and it causes α- and β-transformations all the way back up the 
tree. Each transformation takes a constant C amount of work, so the cost is Θ( Log 
N ) to find the location (as in member(…)), and C * Θ( Log N ) transform the tree back 
up to the root. (1 + C) * Θ( Log N ) is still Θ( Log N ).  
 
 
 
 

 5 8 

2 3 

12 20 

27 21 9 11 46 35 

15 

17 13  6 

50 34 

66 54 
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2-3 Trees 

Worst-Case Time Complexity of 2-3 Trees (counting the number of 
comparisons): 
 
Member(….):  Θ( Log N )                   Delete(….): Θ( Log N ) (not described) 
 
Insert(….):      Θ( Log N ) 
 
 
 
 
 
 
 

 5 8 

2 3 

12 20 

27 21 9 11 46 35 

15 

17 13  6 

50 34 

66 54 
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2-3 Trees 

Code Complexity:  2-3 Trees are generally encoded as normal BSTs with two different 
colored links (“Red-Black Trees”), and the code for insert is not as complicated as you would 
imagine:
 

 private static Node insert(int key, Node t) {

    if (t == null)

      return new Node(key);

    else if (key < t.key) {

      t.left = insert(key, t.left);

      return applyTransformations(t);

    } else if (key > t.key) {

      t.right = insert(key, t.right);

      return applyTransformations(t);

    } else

      return t;

  }

private static Node leanRight( Node t ) {

    Node newRoot = t.left;

    t.left = newRoot.right;

    newRoot.right = t;

    newRoot.red = t.red;

    t.red = true;                

    return newRoot;

}

 

  

   

 

 

 

 

 

 

  

  

 private static Node rotateLeft( Node t ) {

    Node newRoot = t.right;

    t.right = t.right.left;

    newRoot.left = t;

    newRoot.red = true;

    newRoot.left.red = false;

    newRoot.right.red = false; 

    return newRoot;  

  }

  

  private static Node applyTransformations( Node t ) {

    if(t == null)

      return null; 

    if(t.left != null && t.left.red)             

      t = leanRight( t ); 

    if(   t.right != null && t.right.red 

       && t.right.right != null && t.right.right.red) 

       t = rotateLeft( t );

    return t;    

  }


