CS 112 - Introduction to Computing II

Wayne Snyder
Computer Science Department
Boston University

Today:
Efficiency of binary trees;
Balanced Trees
2-3 Trees
Next Time:
2-3 Trees continued

B-Trees and External Search

Computer Science

Efficiency of Binary Search Trees

A o !
Computer Science

So far, we have seen that the best case for a BST is a perfect triangle, and the worst case is
a linked list:

worst case
best case

Of course it may not be possible to get a

perfect triangle, but we can always create a tree in which the leaves are always within two
levels of each other:

Best case: ©(Log N)

Worst case: O(N)

What happens on average?
2

Efficiency of Binary Search Trees

o) g e
g o

Computer Science

What happens on average? The scenario would be modeled on our experiments with
average case for sorting:

o Create 1000 random BSTs for each size N=1, 2, 3,4, 100 (or similar parameters) by
creating a random array of size N and then inserting each key into an initially-empty tree;

o Find the average cost of lookups in each tree (sum of cost of each node / N);

o This simulates a situation where a random BST is created, then we repeatedly lookup
keys (we could alternately do a random series of inserts, lookups, and deletes on a single
tree and see what happens — results are similar).

Cost of paths:
S:1,E,X: 2, AR: 3,

typical case CR: 4

Sum: 19

Average Cost: 19/7 =
2.71

Efficiency of Binary Search Trees

What happens on average? The scenario would be modeled on our experiments with

average case for sorting:

o Create 1000 random BSTs for each size N=1, 2, 3,4, 100 (or similar parameters) by
creating a random array of size N and then inserting each key into an initially-empty tree;

o Find the average cost of lookups in each tree (sum of cost of each node / N);

o This simulates a situation where a random BST is created, then we repeatedly lookup
keys (we could alternately do a random series of inserts, lookups, and deletes on a single
tree and see what happens — results are similar).

Result: Average case
behavior of a BST is

©(Log N)

You determined the constant
C for the estimate ~(CN) in
lab! Note that C was very
small! This is an excellent

result!

Average path length to a random node in a BST built from random keys

Balanced BSTs

The next question is always: Can we do better?

Specifically, can we find a way to eliminate the worst case trees, and get ©(Log N) for all
operations?

This amounts to the following problem: Can we restructure the tree during inserts and deletes
to prevent imbalanced trees?

The answer, of course, is YES, and one solution to creating balanced trees is called 2-3
Trees....

2-3 Trees

2-3 Trees generalize binary search trees by allowing “wider” nodes that can contain 1 or 2
keys, and 2 or 3 pointers:

Binary Search Tree:

class Node {
int K1, K2;

Node left;
2-3 Tree: Node mid:
Node right;

ot) e

2-3 Trees

SOy,
(®) [
S <
[Z
e L -
e g kTR <

Computer S‘cience
Generalizing the basic idea of binary search trees, we have “trinary search trees” where the
two keys divide up the descendent nodes into three instead of two subtrees:

K| Ko
v

K, <x <K,

Poc
T @]

7Tie)

2-3 Trees

S ON.Up;
(e) L
S <

w

-l

n
§ o~ ke ? -

Computer S;:ience
But we may consider normal BST nodes (1 key, 2 pointers) to be a special case, where the
second key does not exist:

2-3 Trees

Computer Smence

But we may consider normal BST nodes (1 key, 2 pointers) to be a special case, where the
second key does not exist, and we will draw these as we would with normal BSTs:

¢

/\ K, <x<K, > K,
12]20]

59/ ¢ \@

aslle e

2-3 Trees

A moo
. -{’- T ke

Corﬁguter.S;iénce
Searching such a tree is a simple generalization of search in BSTs: at each node you scan
from the left through the two keys and figure out where the search key k might be:

boolean member(int k, Node p) {
if(p == null)
return false;
else if(k < p.K1)

return find(k, p.left);
else if(k == p.K1)

(1220
return true; / \L \
else if(p.K2 does not exist || k < p.K2) 518 |
return find(k, p.mid);
else if(k == K2)

L4
return true; E 3 @ @D
else
return find(k, p.right);

oo

)
2-3 Trees ([ima®

v AP,

Computer Science

Insertion into a 2-3 tree is a little bit complicated, because we will want to maintain the trees
in balanced form (perfect triangles):

A 2-3 tree is balanced if every path from the root to a leaf node has the same length; note
that nodes may contain 2 keys and 3 pointers, or 1 key and 2 pointers:

30 |98

(21]27] (3486

11

2-3 Trees

Rules for inserting a new key into a Example: Let's insert a 12 into an

2-3 tree: empty tree; when you insert into an
empty tree, you create a new node and

1. As with BSTs, you search for the key; if insert into the K, slot:

you find it, do nothing (don’t insert

duplicates); if you don'’t find it, then insert

into the leaf node that you last looked in. If @3

there is room, you are done.

2-3 Trees

B 41 ko dbliiy <
Computer Science

Rules for inserting a new key into a
2-3 tree:

1.

As with BSTs, you search for the key; if
you find it, do nothing (don’t insert
duplicates); if you don'’t find it, then
insert into the leaf node that you last
looked in. If there is room, you are
done.

Example: Let’'s insert a 12 into an
empty tree; when you insert into an

empty tree, you create a new node and
insert into the K, slot:

(2[)

Now let’s insert an 8, which can fit into
the node if we move the 12 over:

(8]2

S ON Uy,
(7
2-3 Trees 5 | e &
WS Sasoall <
Computer Science
2-3 tree: empty tree; when you insert into an
empty tree, you create a new node and
1. As with BSTs, you search for the key; if insert into the K, slot:
you find it, do nothing (don’t insert
duplicates); if you don'’t find it, then | 12 | -- |
insert into the leaf node that you last
looked in. If there is room, you are

Now let’s insert an 8, which can fit into

done. the node if we move the 12 over:

2. Butif there are already 2 keys, then
insert into the node anyway, creating an [g8 |12]
“error node” containing 3 keys (too

many!).

Next let’s insert a 15, which expands
the node into an error node containing
too many keys:

- -

2-3 Trees b (1 e

bl i ~'_'.;_ ‘! L 4
Computer Science

Rules for inserting a new key into a

Next let’s insert a 15, which expands
2-3 tree:

the node into an error node containing

too many keys:

1. As with BSTs, you search for the key; if
you find it, do nothing (don’t insert P PP
duplicates); if you don’t find it, then insert !
into the leaf node that you last looked in.
If there is room, stop.

- -

Immediately fix this error by

2. Butif there are already 2 keys, then transforming this node into a balanced
insert into the node anyway, creating an three-node tree:

“error node” containing 3 keys (too o en
many!). Then apply the a-transformation , 8 112 115 |
to change this into a legal configuration ——eeeeecteees

of three nodes. .
a-transformation

2-3 Trees

- -
v N

a-transformation:

- —— -

The subtrees A — D may be null!

Computer Science

2-3 Trees b (1 e

bl i ~'_'.;_ ‘! L 4
Computer Science

Rules for inserting a new key into a

Immediately fix this error by
2-3 tree:

transforming this node into a balanced
three-node tree:
1. As with BSTs, you search for the key; if
you find it, do nothing (don’t insert @
duplicates); if you don'’t find it, then insert
into the leaf node that you last looked in.
If there is room, stop. e G
2. Butif there are already 2 keys, then
insert into the node anyway, creating an
“error node” containing 3 keys (too

many!). Then apply the a-transformation
to change this into a legal configuration

of three nodes. @
a 15| 20 |

Next let’s insert a 20, which expands
the right-most leaf node:

2-3 Trees

Rules for inserting a new key into a
2-3 tree:

As with BSTs, you search for the key; if
you find it, do nothing (don’t insert
duplicates); if you don'’t find it, then insert
into the leaf node that you last looked in.
If there is room, stop.

But if there are already 2 keys, then
insert into the node anyway, creating an
“error node” containing 3 keys (too
many!). Then apply the a-transformation
to change this into a legal configuration
of three nodes.

Next let’s insert a 20, which expands
the right-most leaf node:

e 15|20 |

Then let’s insert a 30, which creates
another error node:

2-3 Trees

Rules for inserting a new key into a 2-3
tree:

1. As with BSTs, you search for the key; if you
find it, do nothing (don’t insert duplicates);
if you don't find it, then insert into the leaf
node that you last looked in. If there is
room, stop.

2. Butif there are already 2 keys, then insert
into the node anyway, creating an “error
node” containing 3 keys (too many!). Then
apply the a-transformation to change this
into a legal configuration of three nodes.

Then let’s insert a 30, which creates
another error node:

But we immediately fix the error by
using the a-transformation:

2-3 Trees

Rules for inserting a new key into a 2-3 But we immediately fix the error by using
tree: the a-transformation:

1. As with BSTs, you search for the key; if you @
find it, do nothing (don’t insert duplicates);
if you don't find it, then insert into the leaf @
node that you last looked in. If there is
room, stop.

2. Butif there are already 2 keys, then insert @
into the node anyway, creating an “error

node” containing 3 keys (too many!). Then Byt this is imbalanced, so we will combine

apply the o-transformation to change this the root of the new subtree with the parent

into a legal configuration of three nodes. node: ==

3. After applying the a-transformation, if there
is a parent node, then we must apply the
B-transformation to fix the imbalance
created by the a-transformation.

2-3 Trees

Rules for inserting a new key into a 2-3

But this is imbalanced, so we will
tree:

combine the root of the new subtree
with the parent node:

——

1. As with BSTs, you search for the key; if you =
find it, do nothing (don’t insert duplicates);
if you don't find it, then insert into the leaf
node that you last looked in. If there is
room, stop.

2. Butif there are already 2 keys, then insert
into the node anyway, creating an “error
node” containing 3 keys (too many!). Then
apply the a-transformation to change this
into a legal configuration of three nodes.

3. After applying the a-transformation, if there B-transformation
is a parent node, then we must apply the
B-transformation to fix the imbalance [12 | 20]

created by the a-transformation.

2-3 Trees

Py

Cohguter Sé:ience
B-transformation(s): If the parent has only 1 key, then insert the root into
the parent node and distribute the subtrees accordingly:

K]

anr

2-3 Trees

Py

Cohguter Sé:ience
B-transformation(s): If the parent has only 1 key, then insert the root into
the parent node and distribute the subtrees accordingly:

2-3 Trees

v N

Computer S.cience
B-transformation(s): If the parent has 2 keys, then create an error

node and repeat the a-transformation (you may have to continue apply a-
and B-transformations up the tree):

2-3 Trees

v N

Computer S.cience
B-transformation(s): If the parent has 2 keys, then create an error

node and go back to the a-transformation (you may have to continue apply a-
and B-transformations up the tree):

2-3 Trees

v N

Computer S.cience
B-transformation(s): If the parent has 2 keys, then create an error

node and go back to the a-transformation (you may have to continue apply a-
and B-transformations up the tree):

2-3 Trees

Rules for inserting a new key into a 2-3
tree:

4.

As with BSTs, you search for the key; if you
find it, do nothing (don’t insert duplicates);
if you don’t find it, then insert into the leaf
node that you last looked in. If there is
room, stop.

But if there are already 2 keys, then insert
into the node anyway, creating an “error
node” containing 3 keys (too many!). Then
apply the a-transformation to change this
into a legal configuration of three nodes.

After applying the a-transformation, if there
is a parent node, then we must apply the
B-transformation to fix the imbalance
created by the a-transformation.

You may have to continue a series of a-
and B-transformations moving up the path
to the root, until a balanced tree with no
error nodes is obtained.

Let’s continue with our example....

12

20

Insert a 16 into the tree:

12

20

(15

A4
)

2-3 Trees

Ty e L
-

Insert 16: 12 | 20

Computer Science _

Insert 18:

16

(=
o
(&)

2-3 Trees

12120

Summary of rules for inserting a new
key into a 2-3 tree:

1. Insert new key into appropriate leaf node,
potentially creating an error node;

2. If there is an error node, apply a- and -
transformations moving up the path to

e @ @ @ the root, until a balanced tree with no
error nodes is obtained.

N
06"0 UN/L
3 &
2-3 Trees [o -
N s " _:-_.‘. ? -
Computer Science

Worst-Case Time Complexity of 2-3 Trees (counting the number of
comparisons): Member(....)

Consider the following tree:

o What is the cost (# of comparisons) for finding 27
o How about 277

o Which keys represent the worst case for this tree?

@ 34 |50
11 | @ a (21 |27) (35 |46 | [54 |66 |

2-3 Trees

Worst-Case Time Complexity of 2-3 Trees (counting the number of
comparisons): Member(....)

Consider the following tree:

o What is the cost (# of comparisons) for finding 27 3
o How about 277 5

o Which keys represent the worst case for this tree? 46 or 66, with 6 comparisons

@ 34 |50
11 | @ a (21 |27] [35 |46] 54 |66 |

2-3 Trees

Worst-Case Time Complexity of 2-3 Trees (counting the number of
comparisons): Member(....)

The worst-case for member(...) is to go all the way to a leaf node, and do 2

comparisons at each node; in a balanced tree with N keys, the heightis ©(Log N),

i.e., C * Log N + for some constant C, but if we have to do 2 comparisons at each node, this
becomes 2 * C *Log N + which is still ©(Log N) comparisons.

@ 34 |50
11 | @ a (21 |27) (35 |46 | [54 |66 |

2-3 Trees

Worst-Case Time Complexity of 2-3 Trees (counting the number of
comparisons): Insert(....)

For insert(...), the worst thing that can happen is that you insert the new key at the
bottom of the tree, and it causes a- and B-transformations all the way back up the
tree. Each transformation takes a constant C amount of work, so the cost is ©(Log

N) to find the location (as in member(...)), and C * ©(Log N) transform the tree back
up to the root. (1 + C) * ©(Log N) is still ©(Log N).

@ 34 |50
11 | @ a (21 |27) (35 |46 | [54 |66 |

S <
2-3 Trees |

oy ‘ﬂ?
Computer Science

Worst-Case Time Complexity of 2-3 Trees (counting the number of
comparisons):

Member(....): ©(Log N)

Insert(....): O(LogN)

34 |50

27] [35 |46 | [54 |66 |

2-3 Trees

Computer Science

Code Complexity: 2-3 Trees are generally encoded as normal BSTs with two different
colored links (“Red-Black Trees”), and the code for insert is not as complicated as you would
imagine:

private static Node rotateLeft(Node t) {

private static Node insert(int key, Node t) ({ Node newRoot = t.right;

if (t == null) t.right = t.right.left;
return new Node(key); newRoot.left = t;

else if (key < t.key) { newRoot.red = true;
t.left = insert(key, t.left); newRoot.left.red = false;
return applyTransformations(t); newRoot.right.red = false;

} else if (key > t.key) { return newRoot;
t.right = insert(key, t.right); }

return applyTransformations(t);

} else private static Node applyTransformations(Node t) {
return t; if(t == null)
} return null;

if(t.left != null && t.left.red)

private static Node leanRight(Node t) { t = leanRight(t);
Node newRoot = t.left; if(t.right != null && t.right.red
t.left = newRoot.right; && t.right.right != null && t.right.right.red)
newRoot.right = t; t = rotateLeft(t);
newRoot.red = t.red; return t;
t.red = true; }

return newRoot;

