
6/21/17

1

Computer Science

CS 112 – Introduction to Computing II

Today:

Deletion in Binary Search Trees

Tree Traversals (recursive and non-recursive)

Next Time:

Efficiency of binary trees;
Balanced Trees

2-3 Trees

Wayne Snyder
Computer Science Department

Boston University

Computer Science

2

Deletion in BSTs

Deletion is somewhat more complicated than insertion or lookup. We will warm up by
considering a simple case first: How do we delete the minimal element in a BST?

 // reconstruct the tree r without its minimal element  
  
 public static Node deleteMin(Node r) {  
 if(r.left == null)  
 return r.right;  
 else {  
 r.left = deleteMin(r.left);  
 return r;  
 }  
 }

6/21/17

2

Computer Science

3

Deletion in BSTs

Note for later: If we want to keep track of the minimal node (say, to remove it and use it
later), we could write a simple helper function to look up the minimal element:
 
 public static Node findMin(Node r) {  
 if(r.left == null) // this is the minimal node  
 return r;  
 else  
 return findMin(r.left);  
 }  
  
 public static Node deleteMin(Node r) {  
 if(r.left == null)  
 return r.right;  
 else {  
 r.left = deleteMin(r.left);  
 return r;  
 }  
 }

// Remove the node containing the minimal element and store it as p

 Node p = findMin(root);

 root = deleteMin(root);

Computer Science

4

Deletion in BSTs

Ok, we know how to delete the minimal element; how to delete an arbitrary element?
As usual, the place to start with by enumerating all the cases, starting with null:

public static Node delete(int n, Node t) {  
 if (t == null) // Case 1: tree is null  
 return t;  

6/21/17

3

Computer Science

5

Deletion in BSTs

public static Node delete(int n, Node t) {  
 if (t == null) // Case 1: tree is null  
 return t;  

 else if (n < t.key) { // Case 2: key n is in left subtree  
 t.left = delete(n, t.left);  
 return t;  

 } else if (n > t.key) { // Case 3: key n is in right subtree  
 t.right = delete(n, t.right);  
 return t;  
 }

Computer Science

6

Deletion in BSTs

public static Node delete(int n, Node t) {  
 if (t == null) // Case 1: tree is null  
 return t;  
 else if (n < t.key) { // Case 2: key n is in left subtree  
 t.left = delete(n, t.left);  
 return t;  
 } else if (n > t.key) { // Case 3: key n is in right subtree  
 t.right = delete(n, t.right);  
 return t;  
 } else // Case 4: found key n at root;

6/21/17

4

Computer Science

7

Deletion in BSTs

public static Node delete(int n, Node t) {  
 if (t == null) // Case 1: tree is null  
 return t;  
 else if (n < t.key) { // Case 2: key n is in left subtree  
 t.left = delete(n, t.left);  
 return t;  
 } else if (n > t.key) { // Case 3: key n is in right subtree  
 t.right = delete(n, t.right);  
 return t;  
 }
 // Case 4: found key n at root;
 else if (t.left == null) // Case 4a: no left child, so reroute around  
 return t.right;  
 else if (t.right == null) // Case 4b: no right child, ditto  
 return t.left;  
 else {

Computer Science

8

Deletion in BSTs

public static Node delete(int n, Node t) {  
 if (t == null) // Case 1: tree is null  
 return t;  
 else if (n < t.key) { // Case 2: key n is in left subtree  
 t.left = delete(n, t.left);  
 return t;  
 } else if (n > t.key) { // Case 3: key n is in right subtree  
 t.right = delete(n, t.right);  
 return t;  
 } else // Case 4: found key n at root;
 if (t.left == null) // Case 4a: no left child, so reroute around  
 return t.right;  
 else if (t.right == null) // Case 4b: no right child, ditto  
 return t.left;  
 else { // Case 4c: both children exist, so replace
 // root by minimal element in right subtree  
 Node min = findMin(t.right); // Find minimal node
 t.right = deleteMin(t.right); // Reconstruct the right subtree without it  
 min.left = t.left; // Finally, replace root node with min node  
 min.right = t.right;  
 return min;  
 }  
 }

6/21/17

5

Computer Science

9

Tree Traversals

A Tree Traversal is an algorithm for visiting each node of a Binary Tree in some order; all
algorithms which perform some kind of operation on the tree as a whole usually follow one of
these traversals. We will later generalize these to traversals of arbitrary Graphs, and many
problems in computer science can be phrased as traversal of some kind of graph.

Let us begin by considering how you might “explore” a tree by walking around the links (for
the moment considering them as two-way) to “visit” each node at least once; one way to do
this is to use a version of the famous “right-hand rule” for solving a simple maze: just start at
the root, keep your right hand on the wall, and keep walking.

Computer Science

10

Tree Traversals

Instead, we will keep our left hand on the outside “wall” of the tree, and keep walking…..

6/21/17

6

Computer Science

11

Tree Traversals

Instead, we will keep our left-hand on the outside “wall” of the tree, and keep walking…..

Computer Science

12

Tree Traversals

NOTE: Each node is touched exactly three times:

The nodes are touched (for the first time) in this order: F, B, A, D, C, E, G, I, H

6/21/17

7

Computer Science

13

Tree Traversals

NOTE: Each node is touched exactly three times:

The nodes are touched (for the first time) in this order: F, B, A, D, C, E, G, I, H
The nodes are touched (for the second time) in this order: A, B, C, D, E, F, G, H, I

Computer Science

14

Tree Traversals

NOTE: Each node is touched exactly three times:

The nodes are touched (for the first time) in this order: F, B, A, D, C, E, G, I, H
The nodes are touched (for the second time) in this order: A, B, C, D, E, F, G, H, I
The nodes are touched (for the third time) in this order: A, C, E, D, B, H, I, G, F

6/21/17

8

Computer Science

15

Tree Traversals

Or, we could walk around “clock-wise” instead, by using our right hand:

The nodes are visited for the first time in this order: F, G, I, H, B, D, E, C, A
The nodes are visited for the second time in this order: I, H, G, F, E, D, C, B, A
The nodes are visited for the third time in this order: H, I, G, E, C, D, A, B, F

Computer Science

16

Tree Traversals

How could we do this using an algorithm (which---no surprise!—will be recursive)?
As usual, we use the recursive definition of a tree as a basis for our algorithm:

A Binary Tree is either

(1) null

or:

(2) A node pointing to two Binary Trees

key

6/21/17

9

Computer Science

17

Tree Traversals

The base case is easy (do nothing!);
For the recursive case, we have to do three things:

(V) Visit the root (say, by printing out the key);
(L) Recursively traverse the left subtree; and
(R) Recursively traverse the right subtree.

It does not matter which order we do these in,

as long as we do all three…..

 V

 R L

Computer Science

18

Tree Traversals

The base case is easy (do nothing!);
For the recursive case, we have to do three things:

(V) Visit the root (say, by printing out the key);
(L) Recursively traverse the left subtree; and
(R) Recursively traverse the right subtree.

It does not matter which order we do these in,

as long as we do all three…..

 V

 R L

There are 3! = 6 possible
orderings of these three lines,
giving us 6 possible recursive
traversals:

Preorder - Visit root first
Inorder - Visit root second
Postorder - Visit root last

Normally, you do L before R;
If you add “Reverse” do R
before L

Reverse Postorder:
 R
 L
 V

6/21/17

10

Computer Science

19

Tree Traversals

How could we do this using an algorithm? Here is a Preorder Traversal:

void traverse(Node t) {

 if(t != null) { // Base case is implicit

 visit(t); // V

 traverse(t.left); // L

 traverse(t.right); // R

 }

}

void visit(Node t) {

 System.out.print(t.key + “ “);

}

Computer Science

20

Tree Traversals

Which one is this?
void traverse(Node t) {

 if(t != null) { // Base case is implicit

 traverse(t.left); // L

 visit(t); // V

 traverse(t.right); // R

 }

}

void visit(Node t) {

 System.out.print(t.key + “ “);

}

6/21/17

11

Computer Science

21

Tree Traversals

Which one is this? Note: L before R, Visit root in middle: Inorder

void traverse(Node t) {

 if(t != null) { // Base case is implicit

 traverse(t.left); // L

 visit(t); // V

 traverse(t.right); // R

 }

}

void visit(Node t) {

 System.out.print(t.key + “ “);

}

Computer Science

22

Tree Traversals

How about this?

void traverse(Node t) {

 if(t != null) { // Base case is implicit

 traverse(t.right); // R

 traverse(t.left); // L

 visit(t); // V

}

}

void visit(Node t) {

 System.out.print(t.key + “ “);

}

6/21/17

12

Computer Science

23

Tree Traversals

How about this? R before S (so Reverse) and Visit root last: Reverse Postorder

void traverse(Node t) {

 if(t != null) { // Base case is implicit

 traverse(t.right); // R

 traverse(t.left); // L

 visit(t); // V

}

}

void visit(Node t) {

 System.out.print(t.key + “ “);

}

Computer Science

24

Tree Traversals: Non-Recursive Traversals

We can traverse a tree without recursion if we use an auxiliary data structure such as a stack
or queue to keep track of the path traversed.

Let’s try using a stack first:

void traverse(Node t) {
 Stack<Node> S = new Stack<Node>();
 S.push(t);
 while(!S.isEmpty()) {
 Node p = S.pop();
 visit(p);
 if(p.left != null)
 S.push(p.left);
 if(p.right != null)
 S.push(p.right);
 }
} What recursive traversal is this equivalent to?

6/21/17

13

Computer Science

25

Tree Traversals: Non-Recursive Traversals

We can traverse a tree without recursion if we use an auxiliary data structure such as a stack
or queue to keep track of the path traversed.

Let’s try using a stack first:

void traverse(Node t) {
 Stack<Node> S = new Stack<Node>();
 S.push(t);
 while(!S.isEmpty()) {
 Node p = S.pop();
 visit(p);
 if(p.left != null)
 S.push(p.left);
 if(p.right != null)
 S.push(p.right);
 }

} What recursive traversal is this equivalent to? Reverse Preorder

Computer Science

26

Tree Traversals: Non-Recursive Traversals

We can traverse a tree without recursion if we use an auxiliary data structure such as a stack
or queue to keep track of the path traversed.

Let’s try using a stack first:

void traverse(Node t) {
 Stack<Node> S = new Stack<Node>();
 S.push(t);
 while(!S.isEmpty()) {
 Node p = S.pop();
 visit(p);
 if(p.left != null)
 S.push(p.left);
 if(p.right != null)
 S.push(p.right);
 }
} How could we get a (normal) Preorder Traversal?

6/21/17

14

Computer Science

27

Tree Traversals: Non-Recursive Traversals

We can traverse a tree without recursion if we use an auxiliary data structure such as a stack
or queue to keep track of the path traversed.

Let’s try using a stack first:

void traverse(Node t) {
 Stack<Node> S = new Stack<Node>();
 S.push(t);
 while(!S.isEmpty()) {
 Node p = S.pop();
 visit(p);
 if(p.right!= null)
 S.push(p.right);
 if(p.left!= null)
 S.push(p.left);
 }
} How could we get a (normal) Preorder Traversal?

Computer Science

28

Tree Traversals: Non-Recursive Traversals

We can traverse a tree without recursion if we use an auxiliary data structure such as a stack
or queue to keep track of the path traversed.

What happens if we use a Queue instead of a stack?

void traverse(Node t) {
 Queue<Node> Q = new Queue<Node>();
 Q.enqueue(t);
 while(!Q.isEmpty()) {
 Node p = Q.dequeue();
 visit(p);
 if(p.left != null)
 Q.enqueue(p.left);
 if(p.right != null)

 Q.enqueue(p.right);
 }
} Does this correspond to any of our recursive traversals?

6/21/17

15

Computer Science

29

Tree Traversals: Non-Recursive Traversals

We can traverse a tree without recursion if we use an auxiliary data structure such as a stack
or queue to keep track of the path traversed.

What happens if we use a Queue instead of a stack?

void traverse(Node t) {
 Queue<Node> Q = new Queue<Node>();
 Q.enqueue(t);
 while(!Q.isEmpty()) {
 Node p = Q.dequeue();
 visit(p);
 if(p.left != null)
 Q.enqueue(p.left);
 if(p.right != null)

 Q.enqueue(p.right);
 }
} Does this correspond to any of our recursive traversals? NO!

Computer Science

30

Tree Traversals: Non-Recursive Traversals

We can traverse a tree without recursion if we use an auxiliary data structure such as a stack
or queue to keep track of the path traversed.

What happens if we use a Queue instead of a stack?

void traverse(Node t) {
 Queue<Node> Q = new Queue<Node>();
 Q.enqueue(t);
 while(!Q.isEmpty()) {
 Node p = Q.dequeue();
 visit(p);
 if(p.left != null)
 Q.enqueue(p.left);
 if(p.right != null)

 Q.enqueue(p.right);
 }

} This is called a Breadth-First or Level-Order Traversal.

6/21/17

16

Computer Science

31

Tree Traversals: Non-Recursive Traversals

We can traverse a tree without recursion if we use an auxiliary data structure such as a stack
or queue to keep track of the path traversed.

What happens if we use a Queue instead of a stack?

void traverse(Node t) {
 Queue<Node> Q = new Queue<Node>();
 Q.enqueue(t);
 while(!Q.isEmpty()) {
 Node p = Q.dequeue();
 visit(p);
 if(p.right != null)
 Q.enqueue(p.right);
 if(p.left != null)

 Q.enqueue(p.left);
 }
} What happens if we reverse the order we enqueue the children?

Computer Science

32

Tree Traversals: Non-Recursive Traversals

We can traverse a tree without recursion if we use an auxiliary data structure such as a stack
or queue to keep track of the path traversed.

What happens if we use a Queue instead of a stack?

void traverse(Node t) {
 Queue<Node> Q = new Queue<Node>();
 Q.enqueue(t);
 while(!Q.isEmpty()) {
 Node p = Q.dequeue();
 visit(p);
 if(p.right != null)
 Q.enqueue(p.right);
 if(p.left != null)

 Q.enqueue(p.left);
 }
}

6/21/17

17

Computer Science

33

Tree Traversals: Non-Recursive Traversals

In general, we can use any collection that supports adding and removing elements!
Suppose we have an arbitrary collection (call it Unvisited) which stores the nodes in some
order:

void traverse(Node t) {
 Unvisited<Node> Q = new Unvisited<Node>();
 Q.add(t);
 while(!Q.isEmpty()) {
 Node p = Q.removeNext();
 visit(p);
 if(p.left != null)
 Q.add(p.left);
 if(p.right != null)

 Q.add(p.right); We will traverse ALL the nodes, in SOME order.....
 We will talk more about this when we study games…

 }}

