

CS 112—Midterm Exam—Summer I, 2017

There are 7 problems on the exam. The first and last are mandatory, and you may
eliminate any one of problems 2 – 6 by drawing an X through them. Problem 1 is worth
10 points, and all other problems are worth 18 points. Please write in pen if possible.
Circle answers when they occur in the midst of a bunch of work. If you need more room,
use the back of the sheet and tell me this on the front sheet.

Problem One. (True/False – MANDATORY) Write True or False to the left of each
statement. Solution: False statements are in red.

1. Python	is	an	example	of	a	“strongly-typed”	language.	

2. If	a	class	Pair	contains	a	method	getFirst()	and	you	see	an	expression	
Pair.getFirst(),	then	you	know	that	getFirst()	must	be	declared	as	static	
inside	the	class	Pair.		

3. The	code	in	the	box	will	print	out	a	6.	

4. In	the	Boolean	expression	(A	||	B),	if	the	
expression	A	evaluates	to	false,	then	the	expression	B	will	not	be	evaluated.	

5. If	a	linked	list	contains	an	sequence	of	integers	in	order,		then	you	can	use	
binary	search	to	find	whether	a	particular	integer	is	in	the	list.		

6. Insertion Sort is difficult to implement “in place” (i.e., without using an extra
array).

7. The worst case time of Insertion Sort is the same (in terms of O(....)) as the best
case time of Selection Sort. 	

8. When	performing	a	widening	conversion	you	must	cast	the	value	to	the	new	
type	or	else	you	will	get	an	error.		

9. The	type	String	is	a	reference	type.		

10. KISS	stands	for	“Kode	it	Soon,	Silly!”			(not	graded!)	

Name: ______________________________

int a = 5;
System.out.println(a++);

Problem Six. This problem is about Java and has two parts.

(A) What is the output of the following lines of Java code?

 int[] A = { 2, 1 };
 int[] B = { 6, 3 };
 int[] C = { 7, 5 };
 int[] D = { -2, 1 };

 D = C;
 A[1] = C[1] + B[1];
 C = A;
 B[1] = C[1] + A[1];
 A = D;
 C[1] = A[1] + B[1];

 System.out.println(A[1]); 5

 System.out.println(B[1]); 16

 System.out.println(C[0]); 2

(B) What is the output of the following lines of Java code?

int a = 5;
double b = a / 2.0;
int c = a / 2;
double d = a / 2;
String e = c + "c";
a = a % 6;

System.out.println("a = " + a); 5

System.out.println("b = " + b); 2.5

System.out.println("c = " + c); 2

System.out.println("d = " + d); 2.0

System.out.println("e = " + e); 2c

Problem Four. Consider this linked list:

Apply the following code to this linked list, and draw a picture of the data structure that
results, including what the variables head1, q, p, and head2 point to.

Node p = head1;
Node q = head1.next;
Node head2 = head1.next;

while(q != null) {
 p.next = q.next;
 q.next = p.next.next;
 q = q.next;
 p = p.next;
}

2 0 3 1 4 head1

0 1 head2

2 3 4 head1

p q

Problem Two. Consider the program shown below.

public class Mystery {

 public String a = “Hi there!”;

 private int f(int b, int c) {
 int d = 4;
 for(int e = 0; e < 10; ++e) {
 if(c < 30) {
 double f = 2.3
 }
 else if(c < 20) {
 System.out.println(_____); // first blank
 double g = 9;
 }
 }
 System.out.println(_____); // second blank
 }

 private int h = 9;

 public double g(int i) {
 while(i < 20) {
 double j = 9.8;
 }
 System.out.println(_____); // third blank
 }

 private int k = 0;
}

(A) Which of the variables a -- k could be used in the first blank?

 a, b, c, d, e, h, k

(B) Which of the variables a -- k could be used in the second blank?

 a, b, c, d, h, k

(C) Which of the variables a -- k could be used in the third blank?

 a, h, i, k

Problem Three. This is about Mergesort and has two parts.

(A) Perform Mergesort on the following array, according to the algorithm presented in
lecture.

 4 8 7 3 5 1 0 2

4 | 8 | 7 | 3 | 5 | 1 | 0 | 2

4 8 | 3 7 | 1 5 | 0 2

3 4 7 8 | 0 1 2 5

0 1 2 3 4 5 7 8

(B) What is the O(...N….) time complexity of just the merge operation of the algorithm?

 O(N)

(C) What is the O(…N….) time complexity of the algorithm in the worst case?

 O(N log(N))

(D) What is the O(…N….) time complexity of the algorithm in the average case?

 O(N log(N))

(E) Why does mergesort require an auxiliary array, that is, why can it not be done with

just a single array of size N?

A critical step in the algorithm is the merging of two sublists into a single list; in order to

do this, you have to leave the original sublists in place, and copy the values to an

auxiliary list as you merge them. This can not be done without auxiliary storage.

Problem Five. How many times does the following code print out “X”? Express your
answer in terms of O(...N...).

[Hint: Write the O(...N...) estimate for each loop first, and then consider all loops together
to get the final result. Partial credit will be given for the estimate for each loop!]

for(int a = 0; a < N; a = a + 2) { O(N)
 for(int b = 0; b < a; ++b) { O(N)
 for(int c = 1; c < N; c = c * 2) {O(log N)
 System.out.println(“X”);

 }

 }

}

for(int d = N; d >= 1; d = d / 2) { O(log N)
 for(int e = -N; e < N; ++e) { O(N)
 System.out.println(“X”);

 }

}

Therefore you have to figure out O(N * N * log(N) + log(N) * N)
 = O(N2 log(N))

Problem Seven. (MANDATORY) Suppose you have a queue data structure as
follows:

public class StringQueue {
 public String dequeue(){…}
 public void enqueue(String s) {…}
 public int size(){…}
 public boolean sameEnds() { //not implemented! }
}

You have implemented all but the last method, which returns true if the
integers at the front and the rear of the queue are equal, false if the front and
rear elements are not equal, and false if the queue has fewer than two elements,
e.g.,

 rear front

 “hi” “there” “hi” // sameEnds() would return true

 “hi” “there” // sameEnds() would return false

 “hi” // sameEnds() would return false (< 2 elements)

Show how to implement sameEnds() using ONLY the other three methods;
you may declare String variables but may not use an auxiliary array or create
another queue. NOTE: You must NOT destroy the data structure, i.e., it must
be in the same exact configuration after calling the method sameEnds() as
before.

Solution:

public boolean sameEnds() {
 if(size() < 2)
 return false;
 String first = dequeue();
 enqueue(first);
 String last;
 int s = size();
 for(int i = 0; i < s-1; ++i) {
 last = dequeue();
 enqueue(last);
 }
 return (first.equals(last));
}

Use equals(…) to
check for String
equality, e.g.,
s.equals(t).

