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~ 2. X'X = X! (X1 X2|= XIx, xix | ¢ partitions of X7 and x .

automatically conformable for block multiplication because the columns of x7 are
the rows of X. This partition of X”X is used in several computer algorithms for
matrix computations.

MATRIX FACTORIZATIONS

A factorization of a matrix A is an equation that expresses A as a product of two or mog
matrices. Whereas matrix multiplication involves a synthesis of data (combining the
effect of two or more linear transformations into a single matrix), matrix factorizatioy
is an analysis of data. In the language of computer science, the expression of A a,
product amounts to a preprocessing of the data in A, organizing that data into two
more parts whose structures are more useful in some way, perhaps more accessible for
computation.

Matrix factorizations and, later, factorizations of linear transformations will appear
atanumber of key points throughout the text. This section focuses on a factorization tha

lies at the heart of several important computer programs widely used in applications, such
N as the airflow problem described in the chapter introduction. Several other factorizations,
§ to be studied later, are introduced in the exercises.

. The LU Factorization

The LU factorization, described below, is motivated by the fairly common industril
b and business problem of solving a sequence of equations, all with the same coefficien
matrix:

Ax=b1, Ax=b2, ey AX:bp (l)

See Exercise 32, for example. Also see Section 5.8, where the inverse power method is
used to estimate eigenvalues of a matrix by solving equations like those in (1), oneata
time.

When A is invertible, one could compute A~! and then compute A~ 'b,, A~'by, and
soon. However, it is more efficient to solve the first equation in (1) by row reduction and
obtain an LU factorization of A at the same time. Thereafter, the remaining equations
in (1) are solved with the LU factorization.

At first, assume that A is an m x n matrix that can be row reduced to echelon form
without row interchanges. (Later, we will treat the general case.) Then A can be written
inthe form A = LU, where L is an m x m lower triangular matrix with 1’s on the diagond
and U is an m x n echelon form of A. For instance, see Fig. 1. Such a factorization i
called an LU factorization of A. The matrix L is invertible and is called a unit lowe!

triangular matrix.

N
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FIGURE1 An LU factorization. X
&
W Before studying how to construct L and U, we should look at why they are so useful. ;
henA=LU, th.e equation Ax = b can be written as L(Ux) = b. Writing y for Ux, we !
can find x by solving the pair of equations !
[ |
| Ly=b I
Ux=y @ :
{— |
First solve Ly = b for y, and then solve Ux =y for x. See Fig. 2. Each equation is easy
to solve because L and U are triangular.
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FIGURE2 Factorization of the mépping X > AX. ‘
il
i EXAMPLE 1 It can be verified that
3 -7 =2 2 1 o o0 of{3 -7 -2 2
-3 5 1 o _ | -1 1 0O 0|0 =2 -1 2
A= ¢ 4 0o -5|=| 2-5 1 oflo o -1 1|TY
-9 5 =5 12 -3 8 3 1 0O 0 0 -1 il
_9 ‘
. 5 :
Use this LU factorization of A to solve Ax =b, whereb= | = |. !

11

— b needs only 6 multiplications and 6 additions, because

luti The solution of Ly
e it 5. (The zeros below each pivot in L are created

the arithmetic takes place only in column 5.
automatically by the choice of row operations.)
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I 0 0 0 -9 I 0 0 0 -9
11 0 0 s|_|o 1 0 0 -4f_

(L b]=1"H5 s | o 7 o 0o 1 o s|=[1 y
308 3 1 1l 0o 0 0 1 1

Then, for Ux =y, the “backward” phase of row reduction requires 4 divisiong, ¢ my

tiplications, and 6 additions. (For instance, creating the zeros in column 4 of [ ¢/ |
requires 1 division in row 4 and 3 multiplication—addmon pairs to add multiples of row 4

to the rows above.)

327 2 2 -9 I 0 0 0 3 ;
0 -2 -1 2 -4 o 1 0 0 4 :
[V ¥]=]g 0-1 1 5[ ]o o 1 0 -6 *=|_
0 0 0 -1 1 0o 0 0 1 —1I N

To find x requires 28 arithmetic operations, or “flops” (ﬂpating point Operation)
excluding the cost of finding L and U. In contrast, row reductionof [A blto[y "i

takes 62 operations. M

The computational efficiency of the LU factorization depends on knowing L and /.
The next algorithm shows that the row reduction of A to an echelon form U amouns to
an LU factorization because it produces L with essentially no extra work. After the firy
row reduction, L and U are available for solving additional equations whose coefficiey

matrix is A.

An LU Factorization Algorithm

Suppose A can be reduced to an echelon form U using only row replacements that add:
multiple of one row to another row below it. In this case, there exist unit lower triangulx
elementary matrices E}, ..., E, such that

E, - EiA=U €]
Then
A=(E,---E)"'U=LU
where

L=(Ep...El)'“l (4

It can be shown that products and inverses of unit lower triangular matrices are also un
lower triangular. (For instance, see Exercise 19.) Thus L is unit lower triangular.

Note that the row operations in (3), which reduce A to U, also reduce the L
to 7, because E -+ E\L = (E,--- E{)(E, --- E;)~! = I. This observation is the K
to constructing L.
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ALGORITHM FOR AN LU FACTORIZATION

1. Reduce A to an echelon form U by a sequence of row replacement operations,
if possible.

2. Place entries in L such that the same seauence of row operations reduces L
to /.

Step 1 is not always possible, but when it is, the argument above shows that an LU
factorization exists. Example 2 will show how to implement step 2. By construction, L
will satisfy

(E,---E)L=1

using the same E|, ..., E, as in (3). Thus L will be invertible, by the Invertible Matrix
Theorem, with (E,--- E;) = L~". From (3), L™'A=U, and A= LU. So step 2 will
produce an acceptable L.

EXAMPLE 2 Find an LU factorization of

2 4 -1 5 =2
-4 -5 3 -8 1
2 -5 —4 1 8
-6 0 7 =3 1

A=

Solution Since A has four rows, L should be 4 x 4. The first column of L is the first
column of A divided by the top pivot entry:

0
-2 1 0 0
1 1 0

1
Compare the first columns of A and L. The row operations that create zeros in the
first column of A will also create zeros in the first column of L. We want this same
correspondence of row operations to hold for the rest of L, so we watch a row reduction
of A to an echelon form U:

5 4 -1 5 -2 2 4 -1 5 -2
4 -5 3-8 1| _lo 3 1 2 —3|_
A=| 5 5 4 1 8 0 —9 -3 —4 10|=% O
6 0 7 -3 1 0 12 4 12 -5
2 4 -1 5 =2 2 4 -1 5 =2
o 3 1 2-3| _|o 3 1 23] o
~4m=|p o 0 2 | o 0 0 2 1|~
o 0 0 4 7 o 0 0 0 5
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The highlighted entries above determine the row reduction of A to U : At each Pivey
column, divide the highlighted entries by the pivot and place the result into L:

2
4|03
2(1-91[2
| -6 12]|4][5]
B 10 0 o0
-2 1 4 L= -2 1 0 0
=3 1 oan =l 1 -3 1 o0
-3 4 2 1 -3 4 2 1
An easy calculation verifies that this L and U satisfy LU = A. =

In practical work, row interchanges are nearly always needed, because partia| piv-
oting is used for high accuracy. (Recall that this procedure selects, among the possib;
choices for a pivot, an entry in the column having the largest absolute value.) To hangj,
row interchanges, the LU factorization above can be modified easily to produce an |,
that is permuted lower triangular, in the sense that a rearrangement (called a perm.
tation) of the rows of L can make L (unit) lower triangular. The resulting permute
LU factorization solves Ax = b in the same way as before, except that the reduction of
[L blto[l y]follows the order of the pivots in L from left to right, starting wil
the pivot in the first column. A reference to an “LU factorization” usually includes th
possibility that L might be permuted lower triangular. For details, see the Study Guide.

" NUMERICAL NOTES

The following operation counts apply to an n x n dense matrix A (with most entries
nonzero) for n moderately large, say, n > 30.!

1. Computing an LU factorization of A takes about 213 /3 flops (about the same
~ as row reducing [A  b]), whereas finding A~ requires about 2n° flops.

2. Solving Ly = b and Ux =y requires about 2n? flops, because any n xn trian-
gular system can be solved in about n? flops.

3. Multiplication of b by A~! also requires about 212 flops, but the result may not
be as accurate as that obtained from L and U (because of roundoff error when
computing both A~! and A~'b).

4. If A'is sparse (with mostly zero entries), then L and U may be sparse, 100
whereas f?_l is likely to be dense. In this case, a solution of Ax = b with &
LU factorization is much faster than using A~". See Exercise 31.

] . . . .
See Section 3.8 in Applied Linear Algebra, 3rd ed.. by Ben Noble and James W. Daniel (Engle"®
Cliffs, NJ: Prentice-Hall, 1988). Recall that for our purposes, a flop is +, —, x, Or +.






