Lecture 17: Queueing Theory and Discrete-Event Simulation

Note: The QT slides are due to Harry Perros who has good taste in ideas but bad taste in slide background colors….
Queue ADT (Review from CS 112!)

The **Queue ADT** is a simple variant of a stack which makes a simple change which in fact changes everything: instead of moving items in and out of the same “end” of the list, as in a stack:

![Diagram of Push and Pop operations for a stack](image1)

Instead you use different ends of the list:

![Diagram of Enqueue and Dequeue operations for a queue](image2)
Queue ADT (Review from CS 112!)

This means that instead of reversing the order of the items, as with a stack, they remain in the same order; since you have stood in lines many times at Starbucks (or outside my office!), I’ll only give a brief example:

Enqueue → Queue → Dequeue
Queue ADT

This means that instead of reversing the order of the items, as with a stack, they remain in the same order; since you have stood in lines many times at Starbucks (or outside my office), I’ll only give a brief example:

enqueue(5);
Queue ADT

This means that instead of reversing the order of the items, as with a stack, they remain in the same order; since you have stood in lines many times at Starbucks (or outside my office), I’ll only give a brief example:

enqueue(5);
enqueue(7);

Enqueue 7 5 Dequeue
Queue ADT

This means that instead of reversing the order of the items, as with a stack, they remain in the same order; since you have stood in lines many times at Starbucks (or outside my office), I’ll only give a brief example:

enqueue(5);
enqueue(7);
enqueue(2);
Queue ADT

This means that instead of reversing the order of the items, as with a stack, they remain in the same order; since you have stood in lines many times at Starbucks (or outside my office), I’ll only give a brief example:

enqueue(5);
enqueue(7);
enqueue(2);
int k = dequeue();

enqueue

2 7
dequeue

k = 5
Queue ADT

This means that instead of reversing the order of the items, as with a stack, they remain in the same order; since you have stood in lines many times at Starbucks (or outside my office), I’ll only give a brief example:

enqueue(5);
enqueue(7);
enqueue(2);
int k = dequeue();
enqueue(8);

Enqueue 8 2 7 Dequeue

k = 5
Queue ADT

This means that instead of reversing the order of the items, as with a stack, they remain in the same order; since you have stood in lines many times at Starbucks (or outside my office), I’ll only give a brief example:

enqueue(5);
enqueue(7);
enqueue(2);
int k = dequeue();
enqueue(8);
enqueue(dequeue())

Enqueue 7 8 2 Dequeue

k = 5
Queue ADT

Queues occur all the time, in real life:

And in computer systems (CPUs and Networks):

In fact, anywhere where one service is desired by many, and must be fairly distributed... there is a whole branch of math called “queueing theory” which you will learn about in CS 237 and CS 350.....
• There are also queues that we cannot see (unless we use a software/hardware system), such as:
 – *Streaming a video*: Video is delivered to the computer in the form of packets, which go through a number of routers. At each router they have to waiting to be transmitted out
 – *Web services*: A request issued by a user has to be executed by various software components. At each component there is a queue of such requests.
 – *On hold at a call center*
Notation - single queueing systems

- Queue → Single Server
- Queue → Multiple Servers
- Multi-Queue → Single Server
- Multi-Queue → Multiple Servers
Notation - Networks of queues

Tandem queues

Arbitrary topology of queues
Parameters of interest

You define a queueing system by specifying the following:

- **Service discipline**: How is the queue organized, i.e., FIFO, Priority Queue, etc. (typically FIFO queue).
- **How many servers?** (typically 1)
- **How many queues?** (typically 1)
- **Distribution of arrivals**: Poisson (with exponential inter-arrival times) or general (any distribution) with some mean and standard deviation.
- **Distribution of service times** (how long does each task need the server): Typically Exponential with some mean.
Measures of interest

You measure the performance of a queueing system using metrics such as the following:

- **Wait time**: How long does a task wait in the queue?
- **Mean wait time (per task)**.
- **Mean queue length** (\(=\) average number of tasks waiting).
- **Server utilization**: What percentage of time is server busy?
- **System throughput**: How many tasks complete per unit time?

One can also characterize these in terms of distribution, e.g., distribution of the queue length.
The single server queue

Calling population: finite or infinite

Queue: Finite or infinite capacity

Service discipline: FIFO
Queue formation

- A queue is formed when customers arrive faster than they can get served.

- Examples:
 - Service time = 10 minutes, a customer arrives every 15 minutes ---> No queue will ever be formed!
 - Service time = 15 minutes, a customer arrives every 10 minutes ---> Queue will grow for ever (bad for business!)
• Service times and inter-arrival times are rarely constant.
• From real data we can construct a histogram of the service time and the inter-arrival time.
• If real data is not available, then we assume a theoretical distribution.
• A commonly used theoretical distribution in queueing theory is the exponential distribution.
The M/M/1 queue

- M implies the exponential distribution (Markovian)
- The M/M/1 notation implies:
 - a single server queue
 - exponentially distributed inter-arrival times
 - exponentially distributed service times.
 - Infinite population of potential customers
 - FIFO service discipline
Stability condition

- A queue is stable, when it does not grow to become infinite over time.
- The single-server queue is stable if on the average, the service time is less than the inter-arrival time, i.e.

 $\text{mean service time} < \text{mean inter-arrival time}$
Behavior of a stable queue
Mean service time < mean inter-arrival time

When the queue is stable, we will observe busy and idle periods continuously alternating
Behavior of an unstable queue
Mean service time > mean inter-arrival time

Queue continuously increases..
This is the case when a car accident occurs on the highway
Arrival and service rates: definitions

- **Arrival rate is the mean number of arrivals per unit time** = \(\frac{1}{(\text{mean inter-arrival time})} \)
 - If the mean inter-arrival = 5 minutes, then the arrival rate is \(\frac{1}{5} \) per minute, i.e. 0.2 per minute, or 12 per hour.

- **Service rate is the mean number of customers served per unit time** = \(\frac{1}{(\text{mean service time})} \)
 - If the mean service time = 10 minutes, then the service rate is \(\frac{1}{10} \) per minute, i.e. 0.1 per minute, or 6 per hour.
Throughput

- This is average number of completed jobs per unit.
- Example:
 - The throughput of a production system is the average number of finished products per unit time.
- Often, we use the *maximum throughput* as a measure of performance of a system.
Throughput of a single server queue

• This is the average number of jobs that depart from the queue per unit time (after they have been serviced)

• Example: The mean service time = 10 mins.
 – What is the maximum throughput (per hour)?
 – What is the throughput (per hour) if the mean inter-arrival time is:
 • 5 minutes?
 • 20 minutes?
Throughput vs the mean inter-arrival time.
Service rate = 6

Throughput

\[\text{Throughput} \]

Arrival rate -->

6

Max. throughput

Stable queue: whatever comes in goes out!

Unstable queue: More comes in than goes out!
Server Utilization =
Percent of time server is busy =
(arrival rate) x (mean service time)

- Example:
 - Mean inter-arrival = 5 mins, or arrival rate is $1/5 = 0.2$ per min. Mean service time is 2 minutes
 - Server Utilization = Percent of time the server is busy:
 $0.2 \times 2 = 0.4$ or 40% of the time.
 - Percent of time server is idle?
 - Percent of time no one is in the system (either waiting or being served)?
Little’s Law

Denote the mean number of customers in the system as \(L \) and the mean waiting time in the system as \(W \). Then:

\[\lambda W = L \]