
Haskell Cheat Sheet

This cheat sheet lays out the fundamental ele-
ments of the Haskell language: syntax, keywords
and other elements. It is presented as both an ex-
ecutable Haskell file and a printable document.
Load the source into your favorite interpreter to
play with code samples shown.

Basic Syntax

Comments

A single line comment starts with ‘--’ and extends
to the end of the line. Multi-line comments start
with ’{-’ and extend to ’-}’. Comments can be
nested.

Comments above function definitions should
start with ‘{- |’ and those next to parameter types
with ‘-- ^’ for compatibility with Haddock, a sys-
tem for documenting Haskell code.

Reserved Words

The following words are reserved in Haskell. It is
a syntax error to give a variable or a function one
of these names.

• case
• class
• data
• deriving
• do
• else
• if

• import
• in
• infix
• infixl
• infixr
• instance
• let

• of
• module
• newtype
• then
• type
• where

Strings

• "abc" – Unicode string, sugar for
[’a’,’b’,’c’].
• ’a’ – Single character.

Multi-line Strings Normally, it is a syntax error
if a string has any newline characters. That is, this
is a syntax error:

string1 = "My long
string."

Backslashes (‘\’) can “escape” a newline:

string1 = "My long \
\string."

The area between the backslashes is ignored.
Newlines in the string must be represented explic-
itly:

string2 = "My long \n\
\string."

That is, string1 evaluates to:

My long string.

While string2 evaluates to:

My long
string.

Escape Codes The following escape codes can
be used in characters or strings:
• \n, \r, \f, etc. – The standard codes for new-

line, carriage return, form feed, etc. are sup-
ported.
• \72, \x48, \o110 – A character with the value

72 in decimal, hex and octal, respectively.

• \& – A “null” escape character which allows
numeric escape codes next to numeric liter-
als. For example, \x2C4 is ∧ (in Unicode)
while \x2C\&4 is ,4. This sequence cannot
be used in character literals.

Numbers

• 1 – Integer or floating point value.
• 1.0, 1e10 – Floating point value.
• 0o1, 0O1 – Octal value.
• 0x1, 0X1 – Hexadecimal value.
• -1 – Negative number; the minus sign (“-”)

cannot be separated from the number.

Enumerations

• [1..10] – List of numbers – 1, 2, . . ., 10.
• [100..] – Infinite list of numbers – 100,
101, 102,
• [110..100] – Empty list, but
[110, 109 .. 100] will give a list from 110
to 100.
• [0, -1 ..] – Negative integers.
• [-110..-100] – Syntax error; need
[-110.. -100] for negatives.
• [1,3..99], [-1,3..99] – List from 1 to 99

by 2, -1 to 99 by 4.
In fact, any value which is in the Enum class can be
used:
• [’a’ .. ’z’] – List of characters – a, b,

. . ., z.
• [’z’, ’y’ .. ’a’] – z, y, x, . . ., a.
• [1.0, 1.5 .. 2] – [1.0,1.5,2.0].
• [UppercaseLetter ..] – List of
GeneralCategory values (from Data.Char).

c© 2010 Justin Bailey. 1 jgbailey@codeslower.com

mailto:jgbailey@codeslower.com

Lists & Tuples

• [] – Empty list.
• [1,2,3] – List of three numbers.
• 1 : 2 : 3 : [] – Alternate way to write

lists using “cons” (:) and “nil” ([]).
• "abc" – List of three characters (strings are

lists).
• ’a’ : ’b’ : ’c’ : [] – List of characters

(same as "abc").
• (1,"a") – 2-element tuple of a number and

a string.
• (head, tail, 3, ’a’) – 4-element tuple of

two functions, a number and a character.

“Layout” rule, braces and semi-colons.

Haskell can be written using braces and semi-
colons, just like C. However, no one does. Instead,
the “layout” rule is used, where spaces represent
scope. The general rule is: always indent. When
the compiler complains, indent more.

Braces and semi-colons Semi-colons termi-
nate an expression, and braces represent scope.
They can be used after several keywords: where,
let, do and of. They cannot be used when defin-
ing a function body. For example, the below will
not compile.

square2 x = { x * x; }

However, this will work fine:

square2 x = result
where { result = x * x; }

Function Definition Indent the body at least
one space from the function name:

square x =
x * x

Unless a where clause is present. In that case, in-
dent the where clause at least one space from the
function name and any function bodies at least
one space from the where keyword:

square x =
x2

where x2 =
x * x

Let Indent the body of the let at least one space
from the first definition in the let. If let appears
on its own line, the body of any definition must
appear in the column after the let:

square x =
let x2 =

x * x
in x2

As can be seen above, the in keyword must also be
in the same column as let. Finally, when multiple
definitions are given, all identifiers must appear in
the same column.

Declarations, Etc.

The following section details rules on function
declarations, list comprehensions, and other areas
of the language.

Function Definition

Functions are defined by declaring their name,
any arguments, and an equals sign:

square x = x * x

All functions names must start with a lowercase
letter or “_”. It is a syntax error otherwise.

Pattern Matching Multiple “clauses” of a func-
tion can be defined by “pattern-matching” on the
values of arguments. Here, the agree function has
four separate cases:

-- Matches when the string "y" is given.
agree1 "y" = "Great!"
-- Matches when the string "n" is given.
agree1 "n" = "Too bad."
-- Matches when string beginning
-- with ’y’ given.
agree1 (’y’:_) = "YAHOO!"
-- Matches for any other value given.
agree1 _ = "SO SAD."

Note that the ‘_’ character is a wildcard and
matches any value.

Pattern matching can extend to nested values.
Assuming this data declaration:

data Bar = Bil (Maybe Int) | Baz

and recalling the definition of Maybe from page 7
we can match on nested Maybe values when Bil is
present:

f (Bil (Just _)) = ...
f (Bil Nothing) = ...
f Baz = ...

c© 2010 Justin Bailey. 2 jgbailey@codeslower.com

mailto:jgbailey@codeslower.com

Pattern-matching also allows values to be as-
signed to variables. For example, this function de-
termines if the string given is empty or not. If not,
the value bound to str is converted to lower case:

toLowerStr [] = []
toLowerStr str = map toLower str

Note that str above is similer to _ in that it will
match anything; the only difference is that the
value matched is also given a name.

Argument Capture Argument capture is use-
ful for pattern-matching a value and using it, with-
out declaring an extra variable. Use an ‘@’ symbol
in between the pattern to match and the variable
to bind the value to. This facility is used below to
bind the head of the list in l for display, while also
binding the entire list to ls in order to compute its
length:

len ls@(l:_) = "List starts with " ++
show l ++ " and is " ++
show (length ls) ++ " items long."

len [] = "List is empty!"

Guards Boolean functions can be used as
“guards” in function definitions along with pat-
tern matching. An example without pattern
matching:

which n
| n == 0 = "zero!"
| even n = "even!"
| otherwise = "odd!"

Notice otherwise – it always evaluates to True
and can be used to specify a “default” branch.

Guards can be used with patterns. Here is a
function that determines if the first character in a
string is upper or lower case:

what [] = "empty string!"
what (c:_)

| isUpper c = "upper case!"
| isLower c = "lower case"
| otherwise = "not a letter!"

Matching & Guard Order Pattern-matching
proceeds in top to bottom order. Similarly, guard
expressions are tested from top to bottom. For ex-
ample, neither of these functions would be very
interesting:

allEmpty _ = False
allEmpty [] = True

alwaysEven n
| otherwise = False
| n ‘div‘ 2 == 0 = True

Record Syntax Normally pattern matching oc-
curs based on the position of arguments in the
value being matched. Types declared with record

syntax, however, can match based on those record
names. Given this data type:

data Color = C { red
, green
, blue :: Int }

we can match on green only:

isGreenZero (C { green = 0 }) = True
isGreenZero _ = False

Argument capture is possible with this syntax, al-
though it gets clunky. Continuing the above, we
now define a Pixel type and a function to replace
values with non-zero green components with all
black:

data Pixel = P Color

-- Color value untouched if green is 0
setGreen (P col@(C { green = 0 })) = P col
setGreen _ = P (C 0 0 0)

Lazy Patterns This syntax, also known as ir-
refutable patterns, allows pattern matches which
always succeed. That means any clause using the
pattern will succeed, but if it tries to actually use
the matched value an error may occur. This is gen-
erally useful when an action should be taken on
the type of a particular value, even if the value isn’t
present.

For example, define a class for default values:

class Def a where
defValue :: a -> a

The idea is you give defValue a value of the right
type and it gives you back a default value for that
type. Defining instances for basic types is easy:

c© 2010 Justin Bailey. 3 jgbailey@codeslower.com

mailto:jgbailey@codeslower.com

instance Def Bool where
defValue _ = False

instance Def Char where
defValue _ = ’ ’

Maybe is a littler trickier, because we want to get
a default value for the type, but the constructor
might be Nothing. The following definition would
work, but it’s not optimal since we get Nothing
when Nothing is passed in.

instance Def a => Def (Maybe a) where
defValue (Just x) = Just (defValue x)
defValue Nothing = Nothing

We’d rather get a Just (default value) back in-
stead. Here is where a lazy pattern saves us –
we can pretend that we’ve matched Just x and
use that to get a default value, even if Nothing is
given:

instance Def a => Def (Maybe a) where
defValue ~(Just x) = Just (defValue x)

As long as the value x is not actually evaluated,
we’re safe. None of the base types need to look
at x (see the “_” matches they use), so things will
work just fine.

One wrinkle with the above is that we must
provide type annotations in the interpreter or the
code when using a Nothing constructor. Nothing
has type Maybe a but, if not enough other infor-
mation is available, Haskell must be told what a
is. Some example default values:

-- Return "Just False"
defMB = defValue (Nothing :: Maybe Bool)
-- Return "Just ’ ’"
defMC = defValue (Nothing :: Maybe Char)

List Comprehensions

A list comprehension consists of four types of el-
ements: generators, guards, local bindings, and tar-
gets. A list comprehension creates a list of target
values based on the generators and guards given.
This comprehension generates all squares:

squares = [x * x | x <- [1..]]

x <- [1..] generates a list of all Integer values
and puts them in x, one by one. x * x creates each
element of the list by multiplying x by itself.

Guards allow certain elements to be excluded.
The following shows how divisors for a given
number (excluding itself) can be calculated. No-
tice how d is used in both the guard and target
expression.

divisors n =
[d | d <- [1..(n ‘div‘ 2)]

, n ‘mod‘ d == 0]

Local bindings provide new definitions for use in
the generated expression or subsequent genera-
tors and guards. Below, z is used to represent the
minimum of a and b:

strange = [(a,z) | a <-[1..3]
, b <-[1..3]
, c <- [1..3]
, let z = min a b
, z < c]

Comprehensions are not limited to numbers. Any
list will do. All upper case letters can be gener-
ated:

ups =
[c | c <- [minBound .. maxBound]

, isUpper c]

Or, to find all occurrences of a particular break
value br in a list word (indexing from 0):

idxs word br =
[i | (i, c) <- zip [0..] word

, c == br]

A unique feature of list comprehensions is that
pattern matching failures do not cause an error;
they are just excluded from the resulting list.

Operators

There are very few predefined “operators” in
Haskell—most that appear predefined are actually
syntax (e.g., “=”). Instead, operators are simply
functions that take two arguments and have spe-
cial syntactic support. Any so-called operator can
be applied as a prefix function using parentheses:

3 + 4 == (+) 3 4

To define a new operator, simply define it as a nor-
mal function, except the operator appears between
the two arguments. Here’s one which inserts a
comma between two strings and ensures no extra
spaces appear:

first ## last =
let trim s = dropWhile isSpace

(reverse (dropWhile isSpace
(reverse s)))

in trim last ++ ", " ++ trim first

> " Haskell " ## " Curry "
Curry, Haskell

Of course, full pattern matching, guards, etc. are
available in this form. Type signatures are a bit
different, though. The operator “name” must ap-
pear in parentheses:

c© 2010 Justin Bailey. 4 jgbailey@codeslower.com

mailto:jgbailey@codeslower.com

(##) :: String -> String -> String

Allowable symbols which can be used to define
operators are:

$ % & * + . / < = > ? @ \ ^ | - ~

However, there are several “operators” which can-
not be redefined. They are: <-, -> and =. The last,
=, cannot be redefined by itself, but can be used as
part of multi-character operator. The “bind” func-
tion, >>=, is one example.

Precedence & Associativity The precedence
and associativity, collectively called fixity, of any
operator can be set through the infix, infixr and
infixl keywords. These can be applied both to
top-level functions and to local definitions. The
syntax is:

{infix | infixr | infixl} precedence op

where precedence varies from 0 to 9. Op can actu-
ally be any function which takes two arguments
(i.e., any binary operation). Whether the operator
is left or right associative is specified by infixl
or infixr, respectively. Such infix declarations
have no associativity.

Precedence and associativity make many of
the rules of arithmetic work “as expected.” For ex-
ample, consider these minor updates to the prece-
dence of addition and multiplication:

infixl 8 ‘plus1‘
plus1 a b = a + b
infixl 7 ‘mult1‘
mult1 a b = a * b

The results are surprising:

> 2 + 3 * 5
17
> 2 ‘plus1‘ 3 ‘mult1‘ 5
25

Reversing associativity also has interesting effects.
Redefining division as right associative:

infixr 7 ‘div1‘
div1 a b = a / b

We get interesting results:

> 20 / 2 / 2
5.0
> 20 ‘div1‘ 2 ‘div1‘ 2
20.0

Currying

In Haskell, functions do not have to get all of their
arguments at once. For example, consider the
convertOnly function, which only converts certain
elements of string depending on a test:

convertOnly test change str =
map (\c -> if test c

then change c
else c) str

Using convertOnly, we can write the l33t func-
tion which converts certain letters to numbers:

l33t = convertOnly isL33t toL33t
where

isL33t ’o’ = True
isL33t ’a’ = True
-- etc.
isL33t _ = False
toL33t ’o’ = ’0’

toL33t ’a’ = ’4’
-- etc.
toL33t c = c

Notice that l33t has no arguments specified.
Also, the final argument to convertOnly is not
given. However, the type signature of l33t tells
the whole story:

l33t :: String -> String

That is, l33t takes a string and produces a string.
It is a “constant”, in the sense that l33t always
returns a value that is a function which takes a
string and produces a string. l33t returns a “cur-
ried” form of convertOnly, where only two of its
three arguments have been supplied.

This can be taken further. Say we want to write
a function which only changes upper case letters.
We know the test to apply, isUpper, but we don’t
want to specify the conversion. That function can
be written as:

convertUpper = convertOnly isUpper

which has the type signature:

convertUpper :: (Char -> Char)
-> String -> String

That is, convertUpper can take two arguments.
The first is the conversion function which converts
individual characters and the second is the string
to be converted.

A curried form of any function which takes
multiple arguments can be created. One way to
think of this is that each “arrow” in the function’s
signature represents a new function which can be
created by supplying one more argument.

c© 2010 Justin Bailey. 5 jgbailey@codeslower.com

mailto:jgbailey@codeslower.com

Sections Operators are functions, and they can
be curried like any other. For example, a curried
version of “+” can be written as:

add10 = (+) 10

However, this can be unwieldy and hard to read.
“Sections” are curried operators, using parenthe-
ses. Here is add10 using sections:

add10 = (10 +)

The supplied argument can be on the right or left,
which indicates what position it should take. This
is important for operations such as concatenation:

onLeft str = (++ str)
onRight str = (str ++)

Which produces quite different results:

> onLeft "foo" "bar"
"barfoo"
> onRight "foo" "bar"
"foobar"

“Updating” values and record syntax

Haskell is a pure language and, as such, has no
mutable state. That is, once a value is set it never
changes. “Updating” is really a copy operation,
with new values in the fields that “changed.” For
example, using the Color type defined earlier, we
can write a function that sets the green field to
zero easily:

noGreen1 (C r _ b) = C r 0 b

The above is a bit verbose and can be rewritten
using record syntax. This kind of “update” only
sets values for the field(s) specified and copies the
rest:

noGreen2 c = c { green = 0 }

Here we capture the Color value in c and return a
new Color value. That value happens to have the
same value for red and blue as c and it’s green
component is 0. We can combine this with pattern
matching to set the green and blue fields to equal
the red field:

makeGrey c@(C { red = r }) =
c { green = r, blue = r }

Notice we must use argument capture (“c@”) to
get the Color value and pattern matching with
record syntax (“C { red = r}”) to get the inner
red field.

Anonymous Functions

An anonymous function (i.e., a lambda expression
or lambda for short), is a function without a name.
They can be defined at any time like so:

\c -> (c, c)

which defines a function that takes an argument
and returns a tuple containing that argument in
both positions. They are useful for simple func-
tions which don’t need a name. The following
determines if a string consists only of mixed case
letters and whitespace.

mixedCase str =
all (\c -> isSpace c ||

isLower c ||
isUpper c) str

Of course, lambdas can be the returned from func-
tions too. This classic returns a function which
will then multiply its argument by the one origi-
nally given:

multBy n = \m -> n * m

For example:

> let mult10 = multBy 10
> mult10 10
100

Type Signatures

Haskell supports full type inference, meaning in
most cases no types have to be written down. Type
signatures are still useful for at least two reasons.

Documentation—Even if the compiler can figure
out the types of your functions, other pro-
grammers or even yourself might not be able
to later. Writing the type signatures on all
top-level functions is considered very good
form.

Specialization—Typeclasses allow functions with
overloading. For example, a function to
negate any list of numbers has the signature:

negateAll :: Num a => [a] -> [a]

However, for efficiency or other reasons you
may only want to allow Int types. You
would accomplish that with a type signa-
ture:

negateAll :: [Int] -> [Int]

c© 2010 Justin Bailey. 6 jgbailey@codeslower.com

mailto:jgbailey@codeslower.com

Type signatures can appear on top-level func-
tions and nested let or where definitions. Gen-
erally this is useful for documentation, although
in some cases they are needed to prevent poly-
morphism. A type signature is first the name of
the item which will be typed, followed by a ::,
followed by the types. An example of this has al-
ready been seen above.

Type signatures do not need to appear directly
above their implementation. They can be specified
anywhere in the containing module (yes, even be-
low!). Multiple items with the same signature can
also be defined together:

pos, neg :: Int -> Int

...

pos x | x < 0 = negate x
| otherwise = x

neg y | y > 0 = negate y
| otherwise = y

Type Annotations Sometimes Haskell cannot
determine what type is meant. The classic demon-
stration of this is the so-called “show . read”
problem:

canParseInt x = show (read x)

Haskell cannot compile that function because it
does not know the type of read x. We must limit
the type through an annotation:

canParseInt x = show (read x :: Int)

Annotations have the same syntax as type signa-
tures, but may adorn any expression. Note that

the annotation above is on the expression read x,
not on the variable x. Only function application
(e.g., read x) binds tighter than annotations. If
that was not the case, the above would need to be
written (read x) :: Int.

Unit

() – “unit” type and “unit” value. The value and
type that represents no useful information.

Keywords

Haskell keywords are listed below, in alphabetical
order.

Case

case is similar to a switch statement in C# or Java,
but can match a pattern: the shape of the value be-
ing inspected. Consider a simple data type:

data Choices = First String | Second |
Third | Fourth

case can be used to determine which choice was
given:

whichChoice ch =
case ch of

First _ -> "1st!"
Second -> "2nd!"
_ -> "Something else."

As with pattern-matching in function definitions,
the ‘_’ token is a “wildcard” matching any value.

Nesting & Capture Nested matching and bind-
ing are also allowed. For example, here is the def-
inition of the Maybe type:

data Maybe a = Just a | Nothing

Using Maybe we can determine if any choice
was given using a nested match:

anyChoice1 ch =
case ch of

Nothing -> "No choice!"
Just (First _) -> "First!"
Just Second -> "Second!"
_ -> "Something else."

Binding can be used to manipulate the value
matched:

anyChoice2 ch =
case ch of

Nothing -> "No choice!"
Just score@(First "gold") ->

"First with gold!"
Just score@(First _) ->

"First with something else: "
++ show score

_ -> "Not first."

Matching Order Matching proceeds from top
to bottom. If anyChoice1 is reordered as follows,
the first pattern will always succeed:

anyChoice3 ch =
case ch of

_ -> "Something else."
Nothing -> "No choice!"
Just (First _) -> "First!"
Just Second -> "Second!"

c© 2010 Justin Bailey. 7 jgbailey@codeslower.com

mailto:jgbailey@codeslower.com

Guards Guards, or conditional matches, can be
used in cases just like function definitions. The
only difference is the use of the -> instead of
=. Here is a simple function which does a case-
insensitive string match:

strcmp s1 s2 = case (s1, s2) of
([], []) -> True
(s1:ss1, s2:ss2)

| toUpper s1 == toUpper s2 ->
strcmp ss1 ss2

| otherwise -> False
_ -> False

Class

A Haskell function is defined to work on a certain
type or set of types and cannot be defined more
than once. Most languages support the idea of
“overloading”, where a function can have differ-
ent behavior depending on the type of its argu-
ments. Haskell accomplishes overloading through
class and instance declarations. A class defines
one or more functions that can be applied to any
types which are members (i.e., instances) of that
class. A class is analogous to an interface in Java
or C#, and instances to a concrete implementation
of the interface.

A class must be declared with one or more
type variables. Technically, Haskell 98 only al-
lows one type variable, but most implementations
of Haskell support so-called multi-parameter type
classes, which allow more than one type variable.

We can define a class which supplies a flavor
for a given type:

class Flavor a where
flavor :: a -> String

Notice that the declaration only gives the type
signature of the function—no implementation is
given here (with some exceptions, see “Defaults”
on page 8). Continuing, we can define several in-
stances:

instance Flavor Bool where
flavor _ = "sweet"

instance Flavor Char where
flavor _ = "sour"

Evaluating flavor True gives:

> flavor True
"sweet"

While flavor ’x’ gives:

> flavor ’x’
"sour"

Defaults Default implementations can be given
for functions in a class. These are useful when cer-
tain functions can be defined in terms of others in
the class. A default is defined by giving a body
to one of the member functions. The canonical ex-
ample is Eq, which defines /= (not equal) in terms
of == :

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool
(/=) a b = not (a == b)

Recursive definitions can be created. Continuing
the Eq example, == can be defined in terms of /=:

(==) a b = not (a /= b)

However, if instances do not provide enough con-
crete implementations of member functions then
any program using those instances will loop.

Data

So-called algebraic data types can be declared as fol-
lows:

data MyType = MyValue1 | MyValue2

MyType is the type’s name. MyValue1 and
MyValue are values of the type and are called con-
structors. Multiple constructors are separated with
the ‘|’ character. Note that type and constructor
names must start with a capital letter. It is a syn-
tax error otherwise.

Constructors with Arguments The type above
is not very interesting except as an enumeration.
Constructors that take arguments can be declared,
allowing more information to be stored:

data Point = TwoD Int Int
| ThreeD Int Int Int

Notice that the arguments for each constructor are
type names, not constructors. That means this
kind of declaration is illegal:

data Poly = Triangle TwoD TwoD TwoD

instead, the Point type must be used:

data Poly = Triangle Point Point Point

c© 2010 Justin Bailey. 8 jgbailey@codeslower.com

mailto:jgbailey@codeslower.com

Type and Constructor Names Type and con-
structor names can be the same, because they will
never be used in a place that would cause confu-
sion. For example:

data User = User String | Admin String

which declares a type named User with two con-
structors, User and Admin. Using this type in a
function makes the difference clear:

whatUser (User _) = "normal user."
whatUser (Admin _) = "admin user."

Some literature refers to this practice as type pun-
ning.

Type Variables Declaring so-called polymorphic
data types is as easy as adding type variables in
the declaration:

data Slot1 a = Slot1 a | Empty1

This declares a type Slot1 with two constructors,
Slot1 and Empty1. The Slot1 constructor can take
an argument of any type, which is represented by
the type variable a above.

We can also mix type variables and specific
types in constructors:

data Slot2 a = Slot2 a Int | Empty2

Above, the Slot2 constructor can take a value of
any type and an Int value.

Record Syntax Constructor arguments can be
declared either positionally, as above, or using
record syntax, which gives a name to each argu-
ment. For example, here we declare a Contact
type with names for appropriate arguments:

data Contact = Contact { ctName :: String
, ctEmail :: String
, ctPhone :: String }

These names are referred to as selector or acces-
sor functions and are just that, functions. They
must start with a lowercase letter or underscore
and cannot have the same name as another func-
tion in scope. Thus the “ct” prefix on each above.
Multiple constructors (of the same type) can use
the same accessor function for values of the same
type, but that can be dangerous if the accessor is
not used by all constructors. Consider this rather
contrived example:

data Con = Con { conValue :: String }
| Uncon { conValue :: String }
| Noncon

whichCon con = "convalue is " ++
conValue con

If whichCon is called with a Noncon value, a run-
time error will occur.

Finally, as explained elsewhere, these names
can be used for pattern matching, argument cap-
ture and “updating.”

Deriving Many types have common operations
which are tedious to define yet necessary, such as
the ability to convert to and from strings, compare
for equality, or order in a sequence. These capa-
bilities are defined as typeclasses in Haskell.

Because seven of these operations are so com-
mon, Haskell provides the deriving keyword
which will automatically implement the typeclass
on the associated type. The seven supported type-
classes are: Eq, Read, Show, Ord, Enum, Ix, and
Bounded.

Two forms of deriving are possible. The first
is used when a type only derives one class:

data Priority = Low | Medium | High
deriving Show

The second is used when multiple classes are de-
rived:

data Alarm = Soft | Loud | Deafening
deriving (Read, Show)

It is a syntax error to specify deriving for any
other classes besides the seven given above.

Class Constraints Data types can be declared
with class constraints on the type variables, but
this practice is discouraged. It is better to hide the
“raw” data constructors using the module system
and instead export “smart” constructors which
apply appropriate constraints. In any case, the
syntax used is:

data (Num a) => SomeNumber a = Two a a
| Three a a a

This declares a type SomeNumber which has one
type variable argument. Valid types are those in
the Num class.

Deriving

See the section on deriving under the data key-
word on page 9.

Do

The do keyword indicates that the code to follow
will be in a monadic context. Statements are sepa-
rated by newlines, assignment is indicated by <-,
and a let form is introduced which does not re-
quire the in keyword.

c© 2010 Justin Bailey. 9 jgbailey@codeslower.com

mailto:jgbailey@codeslower.com

If and IO if can be tricky when used with
IO. Conceptually it is no different from an if
in any other context, but intuitively it is hard to
develop. Consider the function doesFileExists
from System.Directory:

doesFileExist :: FilePath -> IO Bool

The if statement has this “signature”:

if-then-else :: Bool -> a -> a -> a

That is, it takes a Bool value and evaluates to some
other value based on the condition. From the type
signatures it is clear that doesFileExist cannot be
used directly by if:

wrong fileName =
if doesFileExist fileName

then ...
else ...

That is, doesFileExist results in an IO Bool
value, while if wants a Bool value. Instead, the
correct value must be “extracted” by running the
IO action:

right1 fileName = do
exists <- doesFileExist fileName
if exists

then return 1
else return 0

Notice the use of return. Because do puts us “in-
side” the IO monad, we can’t “get out” except
through return. Note that we don’t have to use
if inline here—we can also use let to evaluate
the condition and get a value first:

right2 fileName = do
exists <- doesFileExist fileName

let result =
if exists

then 1
else 0

return result

Again, notice where return is. We don’t put it in
the let statement. Instead we use it once at the
end of the function.

Multiple do’s When using do with if or case,
another do is required if either branch has multi-
ple statements. An example with if:

countBytes1 f =
do

putStrLn "Enter a filename."
args <- getLine
if length args == 0

-- no ’do’.
then putStrLn "No filename given."
else

-- multiple statements require
-- a new ’do’.
do

f <- readFile args
putStrLn ("The file is " ++

show (length f)
++ " bytes long.")

And one with case:

countBytes2 =
do

putStrLn "Enter a filename."
args <- getLine
case args of

[] -> putStrLn "No args given."

file -> do
f <- readFile file
putStrLn ("The file is " ++

show (length f)
++ " bytes long.")

An alternative syntax uses semi-colons and braces.
A do is still required, but indention is unnecessary.
This code shows a case example, but the principle
applies to if as well:

countBytes3 =
do

putStrLn "Enter a filename."
args <- getLine
case args of

[] -> putStrLn "No args given."
file -> do { f <- readFile file;
putStrLn ("The file is " ++

show (length f)
++ " bytes long."); }

Export

See the section on module on page 11.

If, Then, Else

Remember, if always “returns” a value. It is an
expression, not just a control flow statement. This
function tests if the string given starts with a lower
case letter and, if so, converts it to upper case:

-- Use pattern-matching to
-- get first character
sentenceCase (s:rest) =
if isLower s

then toUpper s : rest
else s : rest

c© 2010 Justin Bailey. 10 jgbailey@codeslower.com

mailto:jgbailey@codeslower.com

-- Anything else is empty string
sentenceCase _ = []

Import

See the section on module on page 11.

In

See let on page 11.

Infix, infixl and infixr

See the section on operators on page 4.

Instance

See the section on class on page 8.

Let

Local functions can be defined within a function
using let. The let keyword must always be fol-
lowed by in. The in must appear in the same col-
umn as the let keyword. Functions defined have
access to all other functions and variables within
the same scope (including those defined by let).
In this example, mult multiplies its argument n
by x, which was passed to the original multiples.
mult is used by map to give the multiples of x up
to 10:

multiples x =
let mult n = n * x
in map mult [1..10]

let “functions” with no arguments are actually
constants and, once evaluated, will not evaluate
again for that invocation of the outer function.

This is useful for capturing common portions of
your function and re-using them. Here is a silly
example which gives the sum of a list of numbers
and their average. The numbers definition cap-
tures the list of numbers from 1 to m, and will only
be evaulated once per invocation of listStats;
similarly, total and avg are only evaluated once
per invocation:

listStats m =
let numbers = [1 .. m]

total = sum numbers
avg = total / m

in "total: " ++ show total ++
", avg: " ++ show avg

Deconstruction The left-hand side of a let
definition can also destructure its argument, in
case sub-components are to be accessed. This defi-
nition would extract the first three characters from
a string

firstThree str =
let (a:b:c:_) = str
in "Initial three characters are: " ++

show a ++ ", " ++
show b ++ ", and " ++
show c

Note that this is different than the following,
which only works if the string has exactly three
characters:

onlyThree str =
let (a:b:c:[]) = str
in "The characters given are: " ++

show a ++ ", " ++
show b ++ ", and " ++
show c

Of

See the section on case on page 7.

Module

A module is a compilation unit which exports
functions, types, classes, instances, and other
modules. A module can only be defined in one
file, though its exports may come from multiple
sources. To make a Haskell file a module, just add
a module declaration at the top:

module MyModule where

Module names must start with a capital letter but
otherwise can include periods, numbers and un-
derscores. Periods are used to give sense of struc-
ture, and Haskell compilers will use them as indi-
cations of the directory a particular source file is,
but otherwise they have no meaning.

The Haskell community has standardized a set
of top-level module names such as Data, System,
Network, etc. Be sure to consult them for an ap-
propriate place for your own module if you plan
on releasing it to the public.

Imports The Haskell standard libraries are di-
vided into a number of modules. The functional-
ity provided by those libraries is accessed by im-
porting into your source file. To import everything
exported by a library, just use the module name:

import Text.Read

Everything means everything: functions, data
types and constructors, class declarations, and
even other modules imported and then exported

c© 2010 Justin Bailey. 11 jgbailey@codeslower.com

mailto:jgbailey@codeslower.com

by the that module. Importing selectively is ac-
complished by giving a list of names to import.
For example, here we import some functions from
Text.Read:

import Text.Read (readParen, lex)

Data types can be imported in a number of ways.
We can just import the type and no constructors:

import Text.Read (Lexeme)

Of course, this prevents our module from pattern-
matching on the values of type Lexeme. We can
import one or more constructors explicitly:

import Text.Read (Lexeme(Ident, Symbol))

All constructors for a given type can also be im-
ported:

import Text.Read (Lexeme(..))

We can also import types and classes defined in
the module:

import Text.Read (Read, ReadS)

In the case of classes, we can import the functions
defined for a class using syntax similar to import-
ing constructors for data types:

import Text.Read (Read(readsPrec
, readList))

Note that, unlike data types, all class functions are
imported unless explicitly excluded. To only im-
port the class, we use this syntax:

import Text.Read (Read())

Exclusions If most, but not all, names are to
be imported from a module, it would be tedious
to list them all. For that reason, imports can also
be specified via the hiding keyword:

import Data.Char hiding (isControl
, isMark)

Except for instance declarations, any type, func-
tion, constructor or class can be hidden.

Instance Declarations It must be noted that
instance declarations cannot be excluded from
import: all instance declarations in a module will
be imported when the module is imported.

Qualified Imports The names exported by a
module (i.e., functions, types, operators, etc.) can
have a prefix attached through qualified imports.
This is particularly useful for modules which have
a large number of functions having the same name
as Prelude functions. Data.Set is a good example:

import qualified Data.Set as Set

This form requires any function, type, construc-
tor or other name exported by Data.Set to now
be prefixed with the alias (i.e., Set) given. Here is
one way to remove all duplicates from a list:

removeDups a =
Set.toList (Set.fromList a)

A second form does not create an alias. Instead,
the prefix becomes the module name. We can
write a simple function to check if a string is all
upper case:

import qualified Char

allUpper str =
all Char.isUpper str

Except for the prefix specified, qualified imports
support the same syntax as normal imports. The
name imported can be limited in the same ways
as described above.

Exports If an export list is not provided, then
all functions, types, constructors, etc. will be
available to anyone importing the module. Note
that any imported modules are not exported in
this case. Limiting the names exported is accom-
plished by adding a parenthesized list of names
before the where keyword:

module MyModule (MyType
, MyClass
, myFunc1
...)

where

The same syntax as used for importing can be
used here to specify which functions, types, con-
structors, and classes are exported, with a few dif-
ferences. If a module imports another module, it
can also export that module:

module MyBigModule (module Data.Set
, module Data.Char)

where

import Data.Set
import Data.Char

A module can even re-export itself, which can be
useful when all local definitions and a given im-
ported module are to be exported. Below we ex-
port ourselves and Data.Set, but not Data.Char:

c© 2010 Justin Bailey. 12 jgbailey@codeslower.com

mailto:jgbailey@codeslower.com

module AnotherBigModule (module Data.Set
, module AnotherBigModule)

where

import Data.Set
import Data.Char

Newtype

While data introduces new values and type just
creates synonyms, newtype falls somewhere be-
tween. The syntax for newtype is quite restricted—
only one constructor can be defined, and that con-
structor can only take one argument. Continuing
the above example, we can define a Phone type as
follows:

newtype Home = H String
newtype Work = W String
data Phone = Phone Home Work

As opposed to type, the H and W “values” on
Phone are not just String values. The typechecker
treats them as entirely new types. That means our
lowerName function from above would not com-
pile. The following produces a type error:

lPhone (Phone hm wk) =
Phone (lower hm) (lower wk)

Instead, we must use pattern-matching to get to
the “values” to which we apply lower:

lPhone (Phone (H hm) (W wk)) =
Phone (H (lower hm)) (W (lower wk))

The key observation is that this keyword does not
introduce a new value; instead it introduces a new
type. This gives us two very useful properties:

• No runtime cost is associated with the new
type, since it does not actually produce new
values. In other words, newtypes are abso-
lutely free!
• The type-checker is able to enforce that com-

mon types such as Int or String are used
in restricted ways, specified by the program-
mer.

Finally, it should be noted that any deriving
clause which can be attached to a data declaration
can also be used when declaring a newtype.

Return

See do on page 9.

Type

This keyword defines a type synonym (i.e., alias).
This keyword does not define a new type, like
data or newtype. It is useful for documenting code
but otherwise has no effect on the actual type of
a given function or value. For example, a Person
data type could be defined as:

data Person = Person String String

where the first constructor argument represents
their first name and the second their last. How-
ever, the order and meaning of the two arguments
is not very clear. A type declaration can help:

type FirstName = String
type LastName = String
data Person = Person FirstName LastName

Because type introduces a synonym, type check-
ing is not affected in any way. The function lower,
defined as:

lower s = map toLower s

which has the type

lower :: String -> String

can be used on values with the type FirstName or
LastName just as easily:

lName (Person f l) =
Person (lower f) (lower l)

Where

Similar to let, where defines local functions and
constants. The scope of a where definition is the
current function. If a function is broken into mul-
tiple definitions through pattern-matching, then
the scope of a particular where clause only ap-
plies to that definition. For example, the function
result below has a different meaning depending
on the arguments given to the function strlen:

strlen [] = result
where result = "No string given!"

strlen f = result ++ " characters long!"
where result = show (length f)

Where vs. Let A where clause can only be de-
fined at the level of a function definition. Usu-
ally, that is identical to the scope of let defini-
tion. The only difference is when guards are being
used. The scope of the where clause extends over
all guards. In contrast, the scope of a let expres-
sion is only the current function clause and guard,
if any.

c© 2010 Justin Bailey. 13 jgbailey@codeslower.com

mailto:jgbailey@codeslower.com

Contributors

My thanks to those who contributed patches and
useful suggestions: Dave Bayer, Evgenij Belikov,
Paul Butler, Elisa Firth, Marc Fontaine, Brian Gi-
anforcaro, Cale Gibbard, Andrew Harris, Stephen
Hicks, Kurt Hutchinson, Johan Kiviniemi, Pa-
trik Jansson, Adrian Neumann, Barak Pearlmut-

ter, Lanny Ripple, Markus Roberts, Holger Siegel,
Falko Spiller, Adam Vogt, Leif Warner, and Jeff
Zaroyko.

Version

This is version 2.9. The source can be
found at GitHub (http://github.com/m4dc4p/

cheatsheet). The latest released ver-
sion of the PDF can be downloaded from
http://cheatsheet.codeslower.com. Visit
CodeSlower.com (http://blog.codeslower.
com/) for other projects and writings.

c© 2010 Justin Bailey. 14 jgbailey@codeslower.com

http://github.com/m4dc4p/cheatsheet
http://github.com/m4dc4p/cheatsheet
http://cheatsheet.codeslower.com
http://blog.codeslower.com/
http://blog.codeslower.com/
mailto:jgbailey@codeslower.com

