Lecture 02: Bare Bones Haskell

Syntax:
Data == Abstract Syntax Trees
Functions == Rewrite Rules on ASTs

Semantics:
Evaluation == Rewriting
Parameter Passing == Pattern-Matching
Review of Last Time....

- Programming Language = Syntax + Semantics
- Semantics is instantiated by another program (interpreter, compiler).
- Imperative languages (Java, C, ...) have statements that modify the state.
- State = Entire Memory
- Imperative program produces a sequence of state transitions.
- Imperative languages are hard to understand because tracing state transitions is hard!
- Functional programs remove (or control) the notion of state, using instead expressions which are rewritten by applying functions to subexpressions.
- Referential transparency = rewriting a subexpression ONLY changes that subexpression and there are no side-effects (no changes to state).
Believe It or Not, This Is Pac-Man

These strange lines are a visualization of what happens inside the game.

By Eric Limer Jan 25, 2019
Our Strategy for Learning FP through Haskell

- We are going to build a functional language (Haskell) from the “ground up,” starting with the simplest possible “Turing complete” set of features (i.e., can do any computation), and adding features as we need them.
- These features will be “syntactic sugar” to make programming more convenient, and not fundamentally new ideas.
- We will maintain referential transparency, and when we introduce state, it will be as part of the expression.

“The true state of beauty exists not when there is nothing left to add, but when there is nothing left to take away.” – Antoine de Saint-Exupery

Occam’s Razor: “Entia non sunt multiplicanda praeter necessitatem.”

“Less is more.” – Ludwig Mies van der Rohe
Making Data in Bare-Bones Haskell

Recall: Programming language = Syntax + Semantics

Syntax = Data + Function Definitions

What is Data? Well, numbers, strings, lists, binary trees, hash tables, ….
Too complicated! Suppose all we have is the ability to say what syntax (words, basic punctuation) is data and what are functions….

How to create a piece of data?

```
Something
```

data Something
What about creating a set of data objects? We need the data objects and we need a name (the “data type”):

How about Booleans

```
data Bool = True | False
```

In Haskell, name of data objects and data types must be capitalized!
Data in Bare-Bones Haskell

More examples…..

data CS320Staff = Wayne | Mark | Cheng

data Direction = North | East | South | West

data ChessPieces = Pawn | Rook | Knight | Bishop | Queen | King

data Color = White | Black | Green | Blue | Red

Note: The actual names mean nothing! Just syntax…..

data A = B | C | D | E
Data in Bare-Bones Haskell

Structured data can be created by combining data declarations….

Simplest kind of structured data is a pair – two data objects combined together:

```haskell
data BoolPair = Pair Bool Bool
```

What do the actual structured data objects look like?

<table>
<thead>
<tr>
<th>Pair</th>
<th>Bool</th>
<th>Bool</th>
</tr>
</thead>
<tbody>
<tr>
<td>True True</td>
<td></td>
<td></td>
</tr>
<tr>
<td>False True</td>
<td></td>
<td></td>
</tr>
<tr>
<td>False False</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pair is called a Value Constructor because it constructs a data type from other data types.

We will sometimes just say “Constructor.”
Data in Bare-Bones Haskell

data BoolPair = Pair Bool Bool

Parentheses can be used to clarify that this is a single, structured piece of data, but are not necessary:

Pair True True Pair True False
Pair False True Pair False False

Using parentheses: (Pair True True)

Value Constructor Data types in the structure

NOTE: Incorrect syntax: Pair(True, False)
Data in Bare-Bones Haskell

We can create structured data from any (previously defined) data type:

data Direction = North | East | South | West

data Color = White | Black | Green | Blue | Red

data Arrow = Arrow Color Direction

Data objects of type Arrow:

(Arrow Blue South) Arrow Green West

But NOT: Arrow South Blue Arrow Color Red

Note: It is allowed, and even encouraged, to use the same name for the name of the data type and the constructor.
Data in Bare-Bones Haskell

We can then add alternatives to create various kinds of structures for a single data type:

data Direction = North | East | South | West

data Color = White | Black | Green | Blue | Red

data Arrow = Bare_Arrow
 | BlackArrow Direction
 | ColoredArrow Color Direction

Data objects of type Arrow:
(ColoredArrow Blue South) Black_Arrow West
BareArrow
Data in Bare-Bones Haskell

Note that constructors take a particular sequence of data types, and (for now) ONLY those data types. You can’t give multiple definitions of a constructor!

```haskell
data Direction = North | East | South | West
data Color = White | Black | Green | Blue | Red
data Arrow = BareArrow
            | Arrow Direction
            | Arrow Color Direction
```

NOT ALLOWED! Constructors must be unique!
Data in Bare-Bones Haskell

These data types have an obvious tree representation:

```
data Arrow = Bare_Arrow  |  BlackArrow Direction
            |  ColoredArrow Color Direction
```

Bare_Arrow
(ColoredArrow Blue South)
Black_Arrow West
We can also create recursive types, using the data type in its own declaration (see section 8.4 in Hutton):

\[
data \; \text{Nat} = \text{Zero} \mid \text{Succ Nat}
\]

Data objects of type Nat:

\[
\begin{align*}
\text{Zero} & \quad (\text{Succ Zero}) \\
(\text{Succ} \; (\text{Succ} \; \text{Zero})) & \\
(\text{Succ} \; (\text{Succ} \; (\text{Succ} \; (\text{Succ} \; \text{Zero})))) &
\end{align*}
\]

The constructor Succ takes a single data object of type Nat. This can be simple data object or structured (another Nat).
Data in Bare-Bones Haskell

How about Lists?

```
data Nat = Zero | Succ Nat
```

```
data List = Nil | Cons Nat List
```

Data objects of type List:

- Nil
- Cons Zero Nil

(Cons (Succ Zero) (Cons Zero Nil))

So, a Python list \([a_1, a_2, a_3, a_4, a_5]\) would be represented:

(Cons a_1 (Cons a_2 (Cons a_3 (Cons a_4 (Cons a_5 Nil)))))

Data in Bare-Bones Haskell

How about Binary Trees? (Hutton, p.97, adapted a bit!)

data Bool = True | False

data Tree = Leaf Bool | Node Tree Bool Tree

Data objects of type Tree:

Leaf True (Node (Leaf True) True (Leaf True))

Node (Node (Leaf True) False (Leaf False))
 True
 (Leaf False)

NOT LEGAL: Node False Leaf True Leaf False
Hm... this doesn’t allow for empty trees, so let’s try again....

data Bool = True | False

data Tree = Null
 | Node Bool Tree Tree

Data objects of type the new type Tree:

Null (Node True Null Null)
Node True (Node False Null Null) Null

NOT LEGAL: Node True Node False Null Null Null Null Null
To define a function on the data objects, we give rules for rewriting a data object to another expression (possibly containing additional function calls).

```haskell
data Bool = True | False

not False  =  True
not True   =  False
```

When we write an expression to the interpreter using a function name, it matches the function call to the rules:

```haskell
> not False
True
> not True
False
```
Functions in Bare-Bones Haskell

```
data Bool = True | False

not False  =  True
not True   =  False

> not False
True
> not True
False
> not (not False)
False

Which is evaluated recursively:

not (not False)  =>  not True  =>  False
```
Functions in Bare-Bones Haskell

Evaluation of an expression by the interpreter proceeds as follows:

Scan the expression from the left (or: in post-order);
If a match between a sub-expression and the left-hand side of a rule is found, replace the subexpression by the right-hand side:

\[
\text{not (not (not False))} \\
\Rightarrow \text{not (not True)} \\
\Rightarrow \text{not False} \\
\Rightarrow \text{True}
\]
Functions in Bare-Bones Haskell

Evaluation of an expression by the interpreter proceeds as follows:

Scan the expression from the left (or: in post-order);
If a match between a sub-expression and the left-hand side of a rule is found, replace the subexpression by the right-hand side:

\[
\text{not} \ (\text{not} \ (\text{not} \ False)) \ \\
=> \ \text{not} \ (\text{not} \ True) \\
=> \ \text{not} \ False \\
=> \ True
\]

But function definitions without parameters are very limited!

So we have to add variables (= parameters).

Variables can be bound or “assigned” to any data object.
Functions as Rewrite Rules

\[
\begin{align*}
\text{data } \text{Bool} &= \text{True} \mid \text{False} \\
\text{data } \text{Nat} &= \text{Zero} \mid \text{Succ Nat}
\end{align*}
\]

\[
\begin{align*}
\text{not True} &= \text{False} \\
\text{not False} &= \text{True}
\end{align*}
\]

\[
\begin{align*}
\text{cond } \text{True} & \quad x \quad y \quad = \quad x \quad -- \quad \text{this is just} \\
\text{cond } \text{False} & \quad x \quad y \quad = \quad y \quad -- \quad \text{an if-then-else}
\end{align*}
\]

\[
\begin{align*}
(\text{cond} & \quad \text{False} \quad \text{Zero} \quad (\text{Succ Zero})) \\
\uparrow & \\
\downarrow & \\
\text{not} & \quad \text{True}
\end{align*}
\]

no match!

To rewrite an expression, look for a rule which matches it – variables can match anything.

Rewrite, observing what bindings were made for variables.

Rules are tried in order!

Rule fails to match, try the next one!
Functions as Rewrite Rules

To rewrite an expression, look for a rule which matches it – variables can match anything.

Rewrite, observing what bindings were made for variables.

Rules are tried in order!

To rewrite an expression, look for a rule which matches it – variables can match anything.

Rewrite, observing what bindings were made for variables.

Rules are tried in order!

\[
\begin{align*}
data \text{ Bool} &= \text{True} \mid \text{False} \\
data \text{ Nat} &= \text{Zero} \mid \text{Succ Nat} \\
\text{not True} &= \text{False} \\
\text{not False} &= \text{True} \\
\text{cond True} x y &= x \quad \text{-- this is just} \\
\text{cond False} x y &= y \quad \text{-- an if-then-else} \\
\end{align*}
\]

\[
\begin{align*}
(\text{cond False Zero (Succ Zero)}) \\
\text{not False} \\
\text{no match!}
\end{align*}
\]

Rule fails to match, try the next one!
Functions as Rewrite Rules

To rewrite an expression, look for a rule which matches it – variables can match anything.

Rewrite, observing what bindings were made for variables.

Rules are tried in order!

\[
\begin{align*}
data \text{ Bool} &= \text{True} \mid \text{False} \\
data \text{ Nat} &= \text{Zero} \mid \text{Succ Nat} \\
\text{not True} &= \text{False} \\
\text{not False} &= \text{True} \\
\text{cond True} & \quad x \quad y = \quad x \quad \text{-- this is just} \\
\text{cond False} & \quad x \quad y = \quad y \quad \text{-- an if-then-else} \\
\end{align*}
\]

\[
\begin{align*}
(\text{cond False Zero (Succ Zero)}) \\
\Downarrow \\
\text{cond True} & \quad x \quad y
\end{align*}
\]

matches!
Functions as Rewrite Rules

To rewrite an expression, look for a rule which matches it – variables can match anything.

Rules are tried in order.

If a match is found, rewrite the expression, observing what bindings were made for variables.

matches! no match!

Rule fails to match, try the next one!
Functions as Rewrite Rules

To rewrite an expression, look for a rule which matches it – variables can match anything.

Rewrite, observing what bindings were made for variables.

Rules are tried in order!

```
data Bool = True | False
data Nat = Zero | Succ Nat

not True = False
not False = True

cond  True   x  y   =   x  -- this is just
cond  False  x  y   =   y  -- an if-then-else
```

```
(cond   False   Zero   (Succ Zero) )
```

matches!
Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero | Succ Nat

not True = False
not False = True

cond True x y = x -- this is just
cond False x y = y -- an if-then-else

(cond False Zero (Succ Zero))

matches! matches!
Functions as Rewrite Rules

\[\text{data Bool} = \text{True} | \text{False} \]
\[\text{data Nat} = \text{Zero} | \text{Succ Nat} \]

\[\text{not True} = \text{False} \]
\[\text{not False} = \text{True} \]

\[\text{cond True x y = x} \quad \text{-- this is just} \]
\[\text{cond False x y = y} \quad \text{-- an if-then-else} \]

\[\left(\text{cond False Zero (Succ Zero)} \right) \]
\[\downarrow \quad \downarrow \quad \downarrow \]
\[\text{cond False x y} \]

matches!
matches!
matches with \(x = \text{Zero}\)
Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero | Succ Nat

not True = False
not False = True

cond True x y = x -- this is just
cond False x y = y -- an if-then-else

To rewrite an expression, look for a rule which matches it – variables can match anything.

Rewrite, observing what bindings were made for variables.

Rules are tried in order!

(matches! matches! matches with matches with)

x = Zero y = (Succ Zero)
Functions as Rewrite Rules

To rewrite an expression, look for a rule which matches it – variables can match anything.

Rewrite, observing what bindings were made for variables.

Rules are tried in order!

\[
\begin{align*}
\text{data } \text{Bool} &= \text{True} \mid \text{False} \\
\text{data } \text{Nat} &= \text{Zero} \mid \text{Succ } \text{Nat}
\end{align*}
\]

\[
\begin{align*}
\text{not } \text{True} &= \text{False} \\
\text{not } \text{False} &= \text{True}
\end{align*}
\]

\[
\begin{align*}
\text{cond } \text{True} \ x \ y &= x & \text{-- this is just} \\
\text{cond } \text{False} \ x \ y &= y & \text{-- an if-then-else}
\end{align*}
\]

\[
\begin{align*}
\left(\text{cond } \text{False} \ 0 \ (\text{Succ } 0) \right) \\
\left(\text{cond } \text{False} \ x \ y \right)
\end{align*}
\]

\[
\begin{align*}
x &= \text{Zero} \\
y &= (\text{Succ } 0)
\end{align*}
\]

\[
\begin{align*}
(x = \text{Zero}) \\
(y = (\text{Succ } 0))
\end{align*}
\]

\[
\Rightarrow (\text{Succ } 0) \ (= y, \text{ where } y = (\text{Succ } 0))
\]

rewrites to
Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero | Succ Nat

cond True x y = x
cond False x y = y

(cond False Zero (Succ Zero))
cond False x y
=> (Succ Zero) (= y, where y = (Succ Zero))

A more precise version of this matching-and-rewriting model of computation is that we are rewriting trees, where function names and constructors label the nodes.... We traverse the trees preorder to determine matches....
Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero | Succ Nat

cond True x y = x
cond False x y = y

(cond False Zero (Succ Zero))
cond False x y
=> (Succ Zero) (= y, where y = (Succ Zero))

A more precise version of this matching-and-rewriting model of computation is that we are rewriting trees, where function names and constructors label the nodes.... We traverse the trees preorder to determine matches....
Functions as Rewrite Rules

```haskell
data Bool = True | False
data Nat = Zero | Succ Nat

cond  True  x  y  =  x
cond  False x  y  =  y

(cond False Zero (Succ Zero))
cond False x y => (Succ Zero) ( = y, where y = (Succ Zero))
```

A more precise version of this matching-and-rewriting model of computation is that we are rewriting trees, where function names and constructors label the nodes.... We traverse the trees preorder to determine matches....
Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero | Succ Nat

cond True x y = x
cond False x y = y

(cond False Zero (Succ Zero))
cond False x y
=> (Succ Zero) (= y, where y = (Succ Zero))

A more precise version of this matching-and-rewriting model of computation is that we are rewriting trees, where function names and constructors label the nodes.... We traverse the trees preorder to determine matches....

matches with x = Zero
matches with y = (Succ Zero)