Lecture 03: Bare-Bones Haskell Continued:

- Function Application = Rewriting by Pattern Matching
- Haskell Types and Polymorphism
Function Application by Matching and Rewriting

Recall: Rewriting involves matching the left-hand side of a function definition with a subexpression, where variables are instantiated to subexpressions. Function definitions are tried in order from the top.

```
data Bool = False | True

data Nat = Zero | Succ Nat deriving Show

not True = False
not False = True

pred Zero = Zero
pred (Succ x) = x

cond True x y = x
cond False x y = y
```

Data (constructors) in green, Variables (including function names) in black.

I’ll use `=>` to indicate “rewrites to” and the “redex” = term being rewritten, will be underlined.

```
cond (not True) (Succ Zero) (pred (Succ Zero))
=> cond False (Succ Zero) (pred (Succ Zero))
=> (pred (Succ Zero))
=> Zero
```
Function Application by Matching and Rewriting

Three important things to remember about defining functions by pattern matching:

(1) The left-side of a function definition must consist of a function name followed by expressions consisting only of constructors and variables, and variables can occur at most once:

```
data  Bool  =  False  |  True

data  Nat =  Zero  |  Succ Nat deriving Show

not True  =  False
not False  =  True

pred Zero = Zero
pred (Succ x)  =  x

cond True x y  =  x
cond False x y  =  y
```

Not allowed:

```
cond  True  x  y  =  x
cond  (not True)  x  y  =  y
xor  x  x  =  False
xor  x  y  =  True
```
Function Application by Matching and Rewriting

Three important details on matching in Haskell:

(1) Continued...

Note that constructor expressions can be as complicated as you want!

```haskell
data Nat = Zero | Succ Nat deriving Show

data Expr = Val Nat
           | Plus Expr Expr
           | Times Expr Expr deriving Show

rightAssoc (Plus (Plus x y) z) = Plus x (Plus y z)

rightAssoc (Plus (Plus (Val Zero) (Val Zero)) (Val Zero))

=> Plus (Val Zero) (Plus (Val Zero) (Val Zero))
```
Three important details on matching in Haskell:

(2) The patterns (LHSs) have to account for all possible expressions, that is, the range of the patterns has to be exhaustive. Haskell can check this for you!

```haskell
incr Zero = (Succ Zero)  -- What about (Succ Zero)??
```

Better:

```haskell
incr Zero = (Succ Zero)
incr (Succ x) = (Succ (Succ x))
```

Best:

```haskell
incr x = (Succ x)
```
Three important details on matching in Haskell:

(3) You can use “wildcard” variables, that match anything and don’t create a binding:

```haskell
isZero Zero = True
incr _ = False
```

If you put such a rule LAST, it can account for anything other expressions have not matched yet.
Haskell Type System

Type declarations are given by the syntax:

expression :: type-name

Examples:

False :: Bool

(not (not False)) :: Bool

Function types have the form:

argument-type -> result-type

Example:

not :: Bool -> Bool
Haskell Type System

You can find the type of an expression in the repl using :type or :t

```haskell
data Bool = False | True
data Nat = Zero | Succ Nat deriving Show

not True  = False
not False = True

isZero Zero  = True
isZero _     = False

odd Zero    = False
odd (Succ Zero) = True
odd (Succ(Succ x)) = odd x
```

Main> :type (not (not True))
(not (not True)) :: Bool

Main> :t (isZero Zero)
(isZero Zero) :: Bool

Main> :t not
not :: Bool -> Bool

Main> :t isZero
isZero :: Nat -> Bool

Main> :t odd
odd :: Nat -> Bool
You should specify a type as part of the definition of a function:

```haskell
data Bool = False | True
data Nat = Zero | Succ Nat deriving Show

not :: Bool -> Bool
not True = False
not False = True

isZero :: Nat -> Bool
isZero Zero = True
isZero _ = False

odd :: Nat -> Bool
odd Zero = False
odd (Succ Zero) = True
odd (Succ (Succ x)) = odd x
```

In general, this is good practice, and expected as part of good Haskell programming style. It provides documentation about how the function works and in some cases, is necessary to be specific about what you want the function to do.
Haskell Type System

If you don’t specify a type, Haskell can infer the types from the expressions:

data Bool = True | False

data Nat = Zero | Succ Nat

even Zero = True

even (Succ x) = odd x

Haskell uses the following rule to infer the types of expressions:

\[
\begin{aligned}
\text{f} :: A & \rightarrow B \\
\text{e} :: A & \rightarrow \text{f (e)} :: B
\end{aligned}
\]

Therefore, \((\text{even Zero})\) must have the type \(\text{Bool}\):

\[
\begin{aligned}
\text{even} :: \text{Nat} & \rightarrow \text{Bool} \\
\text{Zero} :: \text{Nat} & \rightarrow (\text{even Zero}) :: \text{Bool}
\end{aligned}
\]
The type system also applies to the data types, and constructors have types just like function types, except the constructors don’t do anything except structure the data.

```haskell
data Bool = False | True
data Nat = Zero | Succ Nat deriving Show

not :: Bool -> Bool
not True = False
not False = True

isZero :: Nat -> Bool
isZero Zero = True
isZero _ = False

odd :: Nat -> Bool
odd Zero = False
odd (Succ Zero) = True
odd (Succ (Succ x)) = odd x

data Expr = Val Nat
          | Plus Expr Expr
          | Times Expr Expr deriving Show

rightAssoc (Plus (Plus x y) z) = Plus x (Plus y z)
```
Functions and constructors of more than one argument have types with multiple “arrows”; the last type is the result type and the others are the argument types:

```haskell
data Bool = False | True deriving Show

data Nat = Zero | Succ Nat deriving Show

not :: Bool -> Bool
not True  = False
not False = True

isZero :: Nat -> Bool
isZero Zero  = True
isZero _     = False

odd :: Nat -> Bool
odd Zero     = False
odd (Succ Zero) = True
odd (Succ(Succ x)) = odd x

cond :: Bool -> Nat -> Nat -> Nat
cond True x y = x
cond False x y = y
```

Main> :t cond
cond :: Bool -> Nat -> Nat -> Nat
Polymorphic Types

Recall: Many functions (and data types) do not need to know everything about the types of the arguments and results.

Let’s start with data types. Why should we have to define a list type for every possible kind of data in the list?

data ListBool = NilBool | ConsBool Bool ListBool

data ListNat = NilNat | ConsNat Nat ListNat

Instead, we can define polymorphic types using type variables:

data List a = Nil | Cons a (List a)

(List Nat) is isomorphic to ListNat

a is a type variable, and just like any other variable, it can stand for anything (in this case, any type).

Compare Java Generics:

class List< T > {
 T element;
 ...
}
Polymorphic Types

Reading: Hutton Ch. 3.7

data Bool = False | True deriving Show

data Nat = Zero | Succ Nat deriving Show

data List a = Nil | Cons a (List a) deriving Show

Main> :t (ConsNat Zero NilNat)
(ConsNat Zero NilNat) :: ListNat

Main> :t (Cons Zero Nil)
(Cons Zero Nil) :: List Nat

Main> :t (Cons True (Cons False Nil))
(Cons True (Cons False Nil)) :: List Bool

Main> :t (Cons (Cons True Nil) Nil)

What's the type?
Polymorphic Types

```haskell
data Bool = False | True deriving Show

data Nat = Zero | Succ Nat deriving Show

data List a = Nil | Cons a (List a) deriving Show

Main> :t (Cons (Cons True Nil) Nil)
(Cons (Cons True Nil) Nil) :: List (List Bool)

Haskell can also infer polymorphic types:

Main> :t identity x = x
identity :: a -> a

Main> :t test x y = x
test :: a -> b -> a
```
Polymorphic Types

Functions also can have polymorphic types when they don’t need to know exactly what type of data they manipulate.

Most of these functions involve restructuring or selecting out pieces of data, for example in lists:

```
data Bool = False | True deriving

data Nat = Zero | Succ Nat deriving

data List a = Nil
             | Cons a (List a)

head :: List a -> a
head (Cons x _) = x

tail :: List a -> List a
tail (Cons _ xs) = xs

second :: List a -> a
second (Cons _ (Cons x _)) = x
```

```
Main> :t second
second :: List a -> a

Main> a = Cons True (Cons False Nil)

Main> :t a
a :: List Bool

Main> head a
True

Main> tail a
Cons False Nil
```