
Testing: Tasty
We will use the Tasty implementation of hunit, which is based on the Junit testing framework
in Java.

Here are some useful links:

https://caiorss.github.io/Functional-Programming/haskell/UnitTest_Hunit.htm

http://hackage.haskell.org/package/HUnit

http://hackage.haskell.org/package/tasty

hunit enables you to create a hierarchical tree structure of tests, based on

o Assertions -- True or false assertions about the behavior of your code
o Test Cases -- Sequences of related assertions, which fail or succeed as a whole.

o Test Groups – Lists of Test Cases or other Test Groups

https://caiorss.github.io/Functional-Programming/haskell/UnitTest_Hunit.htm
http://hackage.haskell.org/package/HUnit
http://hackage.haskell.org/package/tasty

Testing: Assertions
You test your code by making assertions about the values returned by your code. There
are two useful ways to do this, the first is

assertBool :: String -> Bool -> Assertion

This function takes a Boolean expression (something about your code you want
to be true) and an error message. Your error message will be printed if the
expression is false.

Examples:

assertBool "3 is not less than 2!" (3 < 2)

assertBool "4 in [2,3,4]?" (elem 4 [2,3,4])

Testing: Assertions
A second, and even more useful is

assertEqual :: (Eq a, Show a) => String -> a -> a -> Assertion

This is similar to the previous, except that you give it two expressions,
typically the correct value you expect, and a call to some function to
produce that value; again, if they are not equal, then the error message
is printed out.

assertEqual "factorial 5 = ?" 120 (factorial 5)

An abbreviation for this assertion (without a warning message) is provided
using the infix operator (@=?) so the previous assertion could be written as

120 @=? (factorial 5)

however this does not allow you to give an error message.

Testing: Test Cases
A test case is a single assertion or a sequence of assertions in a do expresssion.

A test case succeeds ("OK") if all the assertions are true, and fails ("FAIL") otherwise; thus
a sequence of assertions in a do expression act like they are connected with "and" (&&).

Test cases have labels which are printed out when the result is reported.

Example:

testCase "Singular Test Case" $ assertBool "What??" True

testCase "Sequence of Tests"
do assertBool "should be true" True

assertEqual "(2+1)/= 5 !" (2+1) 5
assertEqual "4 /= 2 !" 4 2

The second testCase will succeed only if all three of the assertions succeed.

Testing: Test Groups
A test group is simply a label and a list of test cases.

tests = testGroup "ExampleTest"
[testCase "Fact test" $ assertEqual "fact 5 = ?" 120 (fact 5),

testCase "Mem test" $ do assertBool "mem 3 []" (not (mem 3 []))
assertBool "mem 3 [3]" (mem 3 [3])
assertBool "mem 3 [_,3]" (mem 3 [2,3]),

testCase "Mod test" $ assertEqual "5 % 3 = ?" 2 (5 % 3),
testCase "Another test" $ 5 @=? 4

]

Each of the test cases will be tested individually and reported. Make sure to put a comma after
each test case, since this is a list!

You may have to use parentheses to make sure they get parsed correctly.

You can nest test groups, essentially creating a tree of test cases, which will be displayed
indented when the tests are run.

Testing: Example

Testing: Example

Testing: Example

Testing: Example

Testing: Example
Project $ cabal new-test
Resolving dependencies...
Build profile: -w ghc-8.6.3 -O1
In order, the following will be built (use -v for more details):
- Project-0.1.0.0 (lib) (configuration changed)
- Project-0.1.0.0 (test:test) (configuration changed)
Configuring library for Project-0.1.0.0..
Preprocessing library for Project-0.1.0.0..
Building library for Project-0.1.0.0..
Configuring test suite 'test' for Project-0.1.0.0..
Preprocessing test suite 'test' for Project-0.1.0.0..
Building test suite 'test' for Project-0.1.0.0..
Running 1 test suites...
Test suite test: RUNNING...
allTests
ExampleTest
Simple integer: : OK
Simple float: FAIL
tests/ExampleTest.hs:81:
Reaches this one

Is 5 == 5?: OK
Is 5 == 4?: FAIL
tests/ExampleTest.hs:86:
expected: 5
but got: 4

2 out of 4 tests failed (0.00s)
Test suite test: FAIL
Test suite logged to: /Users/snyder/Dropbox (BOSTON
UNIVERSITY)/Documents/Teaching/CS320/Web/Homeworks and
Labs/Project/dist-newstyle/build/x86_64-osx/ghc-8.6.3/Project-
0.1.0.0/t/test/test/Project-0.1.0.0-test.log
0 of 1 test suites (0 of 1 test cases) passed.
cabal: Tests failed for test:test from Project-0.1.0.0.

Testing: Quickcheck
Quickcheck, which is used by Tasty, is a way of automatically generating tests cases. We will
use it to automatically generate Ast expressions to see if our parser and showPretty functions
are indeed consistent:

For any ast a: a == parse parser $ showPretty a 0

Here is a useful link:

https://begriffs.com/posts/2017-01-14-design-use-quickcheck.html

Quickcheck enables you to create random expressions in your ast by generating
all possible expressions under a certain size limit.

https://begriffs.com/posts/2017-01-14-design-use-quickcheck.html

Testing: Quickcheck

Testing: Quickcheck
Main.hs

Testing: Quickcheck
ParserTest.hs

Testing: Quickcheck
ParserTest.hs

Testing: Quickcheck
EvalTest.hs

Testing: Quickcheck
EvalTest.hs

Testing: Quickcheck

