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Digital Audio Fundamentals: Multiplying/Squaring Signals

Define:  For a signal X of length W samples (a “window”) a window frequency is one 
whose period P is such that W = P * k for some integer k, i.e., an integral number of 
periods exactly fit within the window; alternately, it begins and ends at same 
instantaneous phase.  

We will use these signals as probe waves to analyze a musical signal and assume that 
all such probe waves (for now) start at phase 0.0. 
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Digital Audio Fundamentals: Multiplying Sine Waves

Recall that when we take the correlation of two sine waves, we get 1.0 if the 
waves are the same frequency and phase, and close to 0.0 otherwise.

However, if we suppose both waves have amplitude 1.0, we can simplify:

and if one (the “probe wave”) has amplitude 1.0 and the other has amplitude 
A, where both have the same frequency and phase, we have:
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Digital Audio Fundamentals: Multiplying Sine Waves

Therefore we have a “detector” for finding the amplitude of a given signal X, 
as long as we know the frequency and phase:
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Digital Audio Fundamentals: Multiplying/Squaring Signals

Now, What happens when the signal is composite (not a simple sine wave)?
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Digital Audio Fundamentals: Multiplying/Squaring Signals

Now, What happens when the signal is composite (not a simple sine wave)?

Punchline:

Window 
frequencies 
are 
orthogonal, 
and so the 
probe wave 
can detect 
components 
of waves just 
as easily as 
simple sine 
waves! 
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Digital Audio Fundamentals: Discrete Sine Transform

Doing this consistently for all window frequencies gives us the Discrete Sine Transform:

X = makeSignal( [ ( 3.0,0.5,0.0), (5.0,0.3,0.0), (10,0.2,0.0) ], 1.0) 
S = DST(  X  )

S[0]:   0.0    
S[1]:   7.89649143503e-12       
S[2]:   -7.39108746491e-12     
S[3]:   0.499999999998
S[4]:   4.00080251115e-12      
S[5]:   0.29999999999

……
S[10]:   0.20000000001
S[11]:   -1.83215982068e-12     

……
S[22049]:   2.55635210657e-12      
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Digital Audio Fundamentals: Discrete Sine Transform

Doing this consistently for all window frequencies gives us the Discrete Sine Transform:

Note:

The transform can ONLY detect window frequencies = k * f for  f = 1 / W (in secs)
= k * SR / W   ( in samples )

So a window of 1.0 seconds can detect   0, 1, 2, …., 22049                   ONLY
of 0.1 seconds can detect 0, 10, 20, 30, …., 22040
of 0.2 seconds can detect 0, 5, 10, …., 22040

Another problem is that this took 20minutes to run!

Double for loop with W = 44100… 44100 * 22050 = 972,405,000 executions of inner loop!
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Digital Audio Fundamentals: Discrete Sine Transform

Doing this consistently for all window frequencies gives us the Discrete Sine Transform:

X = makeSignal( [ ( 30.0,0.5,0.0), (50.0,0.3,0.0), (100.0, 0.2,0.0) ], 0.1) 
S = DST(  X  )

Bin      Amp                              Freq
S[0]:   0.0    0       
S[1]:   -3.93616764277e-12      10 ……
S[3]:   0.4999999999987 30      
S[4]:   6.72379914407e-12       40      
S[5]:   0.30000000001 50      
……

S[10]:  0.29999999997 100     
……

S[2204]:  4.73093370979e-13    22040 

This took about 
15 seconds to run
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Digital Audio Fundamentals: Discrete Sine Transform

Doing this consistently for all window frequencies gives us the Discrete Sine Transform:

X = makeSignal( [ ( 30.0,0.5,0.0), (50.0,0.3,0.0), (100.0, 0.2,0.0) ], 0.2) 
S = DST(  X  )

Bin                      Amp             Freq    
S[0]:   0.0     0       
S[1]:   9.58745925935e-13      5       

………
S[6]:   0.5 30      

………
S[10]:  0.30000000001 50      

………
S[20]:  0.29999999999 100     

………
S[4409]:  7.23056298634e-12    22045  

This took about 1 
minute to run
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Digital Audio Fundamentals: The Discrete Sine Transform

def dst( X ):
W = len(X)
S = [0] * (W//2)            # spectrum
for f in range(W//2):       # for each probe wave f in [0..N//2]

for i in range(W):      # S[f] = sum of product of X and probe
S[f] += X[i] * sin(2 * pi * f * i / N)

S[f] = S[f] / (W/2)    # normalize to get actual amplitude
return S

Returns a spectrum of amplitudes (in range -1 .. 1)

S =  [ A0, A1, A2, …., AN//2 - 1 ]           assuming w is even

for window frequencies

Wf = [ 0,  1,  2, ….,  N//1 – 1 ]

and actual frequencies

F =  [ 0, 1R,  2R, …., R*(N//2 – 1) ]  for R = SampleRate / W
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Digital Audio Fundamentals: The Discrete Sine Transform

Interpreting Outputs from the 
Discrete Sine Transform:

88*SR/W = 880 Hz
Amp        = 0.8

176*SR/W = 1760 Hz
Amp           = 0.6

264*SR/W = 2640 Hz
Amp           = 0.4

Spectrum: [ ( 880, 0.8, 0 ), (1760, 0.6, 0), (2640, 0.4, 0) ]
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Digital Audio Fundamentals: The Discrete Sine Transform
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Amp = 0.4
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Digital Audio Fundamentals: The Discrete Sine Transform

Spectrum: [ ( 880, -0.8, 0 ), (1760, -0.6, 0), (2640, 0.4, 0) ]
Interpreting Outputs from 
the Discrete Sine 
Transform:

Component sine waves may 
have a negative amplitude.
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Digital Audio Fundamentals: The Discrete Sine Transform

Component sine waves may 
have a negative amplitude; 
they will produce the 
negative of a squared wave, 
and report negative 
amplitudes just as they 
report positive amplitudes. 
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Digital Audio Fundamentals: The Discrete Sine Transform

The same effect can be 
gotten by delaying the 
phase by pi or by using a 
negative frequency: all will 
produce negative 
amplitudes.
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Digital Audio Fundamentals: The Discrete Sine Transform

Spectrum: [ ( 880, 0.8, pi ), (1760, 0.6, 0), (2640, 0.4, pi) ]
Interpreting Outputs from the 
Discrete Sine Transform:

Delaying a component by 
phase pi produces negative 
amplitudes. 
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Digital Audio Fundamentals: The Discrete Sine Transform

Spectrum: [ ( 880, 0.8, 0 ), (-1760, 0.6, 0), (-2640, 0.4, 0) ]
Interpreting Outputs from 
the Discrete Sine 
Transform:

Negative frequencies 
produce negative 
amplitudes. 
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Digital Audio Fundamentals: The Discrete Sine Transform

Spectrum: [ ( 880, -0.8, 0 ), (-1760, -0.6, 0), (-2640, -0.4, pi) ]
Interpreting Outputs from 
the Discrete Sine 
Transform:

Doing combinations of 
these will flip the amplitude 
back and forth: 
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Digital Audio Fundamentals: Discrete Sine Transform

There are three problems (so far):

(1) This is horribly inefficient: O( N2 ) for N =  len(X) 

Solution:  There is a fast version of the transform, the Fast Fourier Transform (FFT), 
based on a recursive algorithm, which runs in    O( N log(N) ).

(2) The resolution is limited to multiples of f = SR / W ( in samples )

No solution, unfortunately, can try different window sizes, but stuck with this!

(3) All components and probe waves have to be at the same phase (e.g., 0.0) 

Solution:  If we do all the work with complex numbers, we can
avoid issues of phase

A brief summary of Complex Numbers on the board…..

✓

✗

✓
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Digital Audio: The Discrete Fourier Transform

I have provided in the Intro Notebook an implementation of the FT which returns real results:
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Digital Audio: The Discrete Fourier Transform

So, we have an efficient algorithm which does not care about phase, but problem 2 is still with us!

More on this 
next time!


