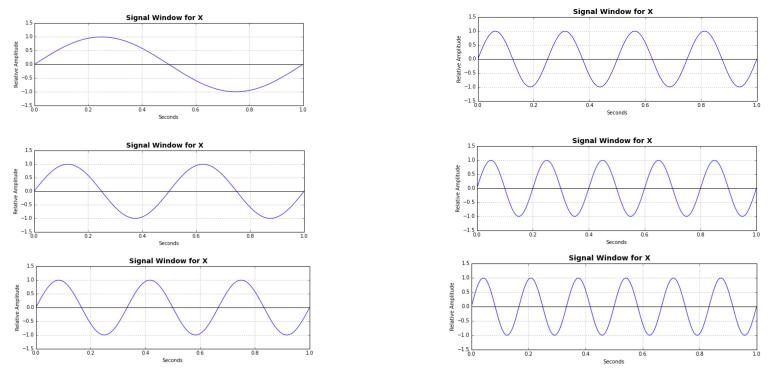
CS 583– Computational Audio -- Fall, 2021

Wayne Snyder Computer Science Department Boston University

Lecture 10

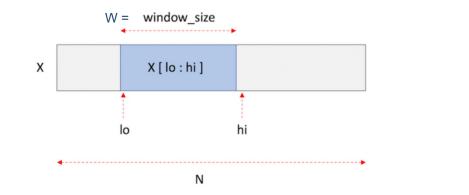
The Discrete Fourier Transform (DFT) and the Fast Fourier Transform (FFT) Issues/Problems with the DFT and (partial) solutions



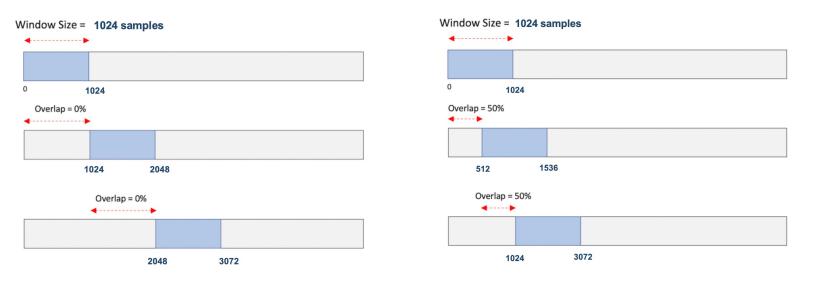
Computer Science

Discrete Fourier Transform (DFT)

Define: For a signal X of length W samples (a "window") a window frequency is one whose period P is such that W = P * k for some integer k, i.e., an integral number of periods exactly fit within the window; alternately, it begins and ends at same instantaneous phase.



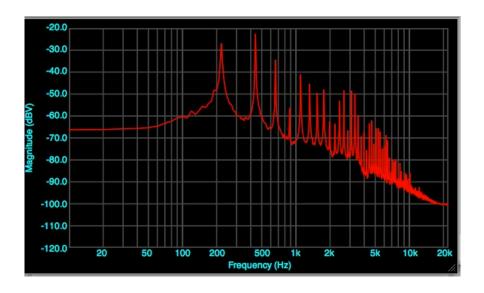
We will use these signals as **probe waves** to analyze a musical signal and assume that all such probe waves (for now) start at phase 0.0.

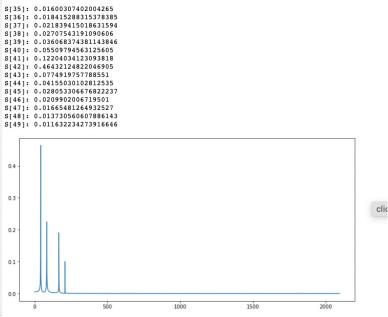

3

The way we will analyze a signal using the DFT is to examine a short segment of a signal (a window):

The FFT uses a recursive "divide and conquer" strategy, and so it is best if W is a power of 2.

If we wish to examine the whole signal, we will slide the window across the signal, potentially overlapping each window:



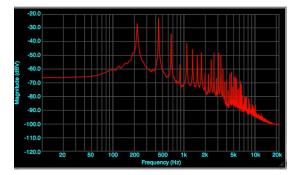


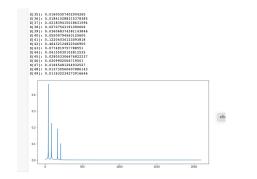
The DFT produces a spectrum for a window (erroneously called the "instantaneous spectrum"), containing the amplitudes of frequencies

Bin index:0123 $\lfloor W/2+1 \rfloor$ Frequency:0, f, 2f, 3f, ...,Sample Rate / 2 = Nyquist Limit

f = frequency of one cycle per window = Sample Rate / W = frequency resolution

The axes for the instantaneous spectrum are


X axis = Frequency

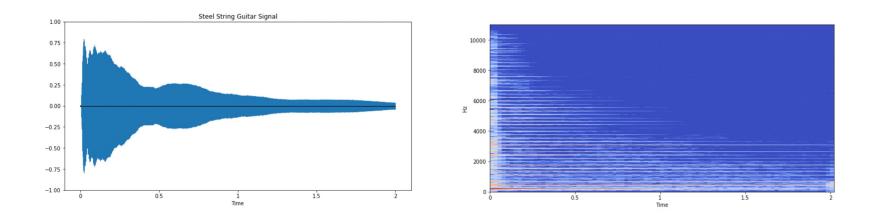

Y axis = Amplitude ("magnitude spectrum")

or

Amplitude ² ("power spectrum")

Either one could be displayed in a linear or a logarithmic scale; the logarithmic scales more closely represent the way humans perceive both frequency and loudness. Decibels (dB) are a logarithmic measure.

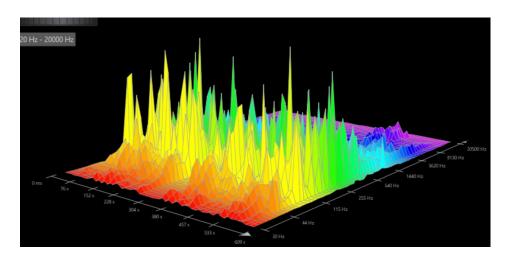
The FFT uses linear scales for both!

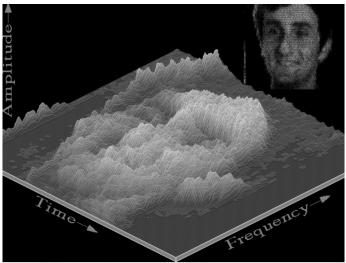


A spectrogram is a 2D matrix, usually presented as a colored "heatmap" with spectra in each column for each sliding window (possibly overlapping), and rows being the frequency bins. The axes are thus

X axis = Time (always linear, usually in seconds)

Y axis = frequency (either linear or logarithmic (dBs))


Color = amplitude (magnitude (linear) or power (squared amplitude))



Sometimes spectrograms are presented in faux-3D with or without heatmap colors:

- X axis = Time (always linear, usually in seconds)
- Y axis = frequency (either linear or logarithmic (dBs))
- Z axis = amplitude (magnitude (linear) or power (squared amplitude))

³D spectrogram of human face.

Recall from last time:

- (1) This is horribly inefficient: O(N^2) for N = len(X)
 - ✓ Solution: There is a fast version of the transform, the Fast Fourier Transform (FFT), based on a recursive algorithm, which runs in O(N log(N)).

(2) The resolution is limited to multiples of f = SR / W (in samples)

X No solution, unfortunately, can try different window sizes, but stuck with this!

(3) All components and probe waves have to be at the same phase (e.g., 0.0)

✓ Solution: If we do all the work with complex numbers, we can avoid issues of phase

Unfortunately, this is not the only limitation of the DFT. Here are the main issues we need to be aware of when using the DFT:

- The resolution is limited to multiples of f = SR / W (in samples), and so there is a tradeoff (the "DFT Uncertainly Principle") between temporal resolution and frequency resolution.
- 2. When frequencies in the signal do not exactly correspond to the window frequencies, their energy is spread out among the closest frequency bins, so the amplitude is not represented precisely.

There is a tradeoff between

Temporal Resolution – What is the shortest musical event we can observe? **Spectral Resolution** – How many frequencies can we measure?

 \leftarrow Window of W Samples \rightarrow

There is a tradeoff between

Temporal Resolution – What is the shortest musical event we can observe? **Spectral Resolution** – How many frequencies can we measure?

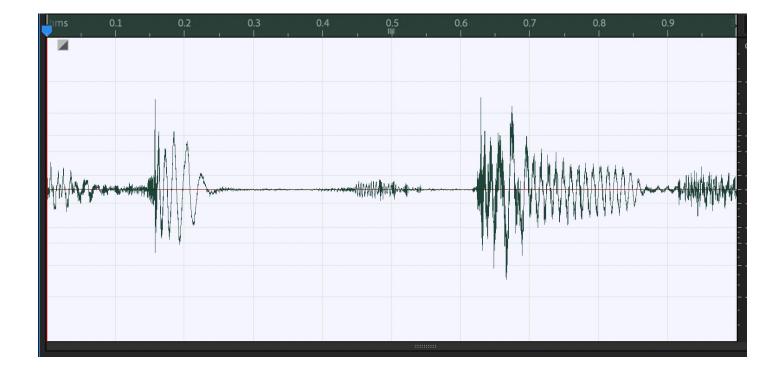

 \leftarrow Window of W Samples \rightarrow

The duration of the window is W / SR, e.g., if SR = 22050, then

W	Time Resolution
64	0.0029
128	0.0058
256	0.0116
512	0.0232
1024	0.0464
2048	0.0929
4096	0.1858
8192	0.3715

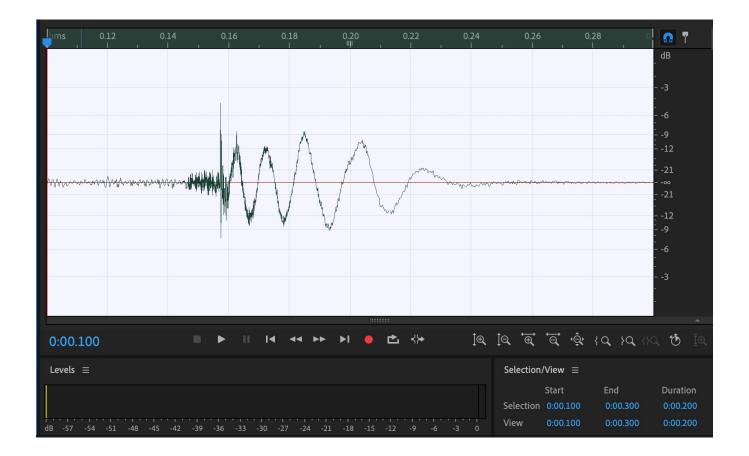
Significance of temporal resolution for musical signals

30 second sample of Bob Marley.....



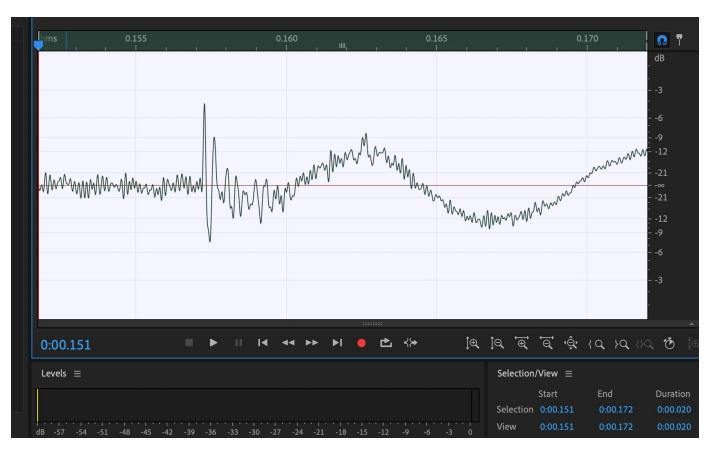
Significance of temporal resolution for musical signals

1 second window:



Significance of temporal resolution for musical signals

0.2 second window:

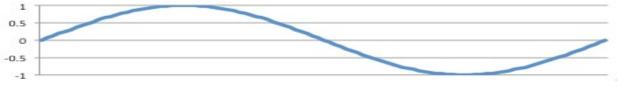


Significance of temporal resolution for musical signals

0.02 second window:

Significance of temporal resolution for musical signals

0.002 second window:



Recall: There is a tradeoff between

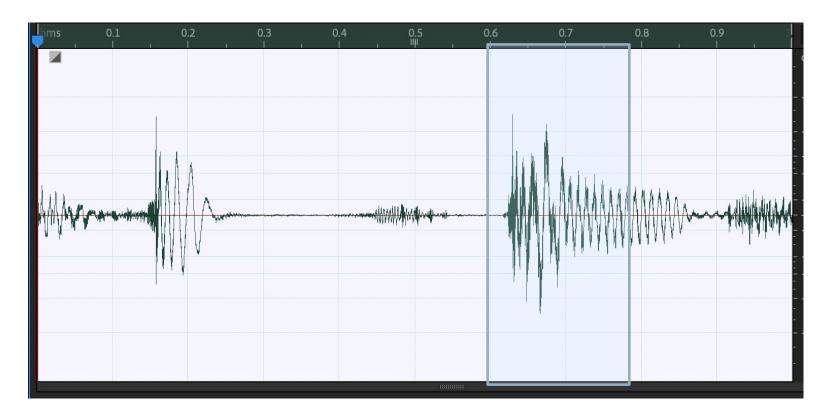
Temporal Resolution – What is the shortest musical event we can observe? **Spectral Resolution** – How many frequencies can we measure?

 \leftarrow Window of W Samples \rightarrow

But then temporal and frequency resolution are in an inverse relationship:

W	Time Resolution	Frequency Resolution
64	0.0029	344.5312
128	0.0058	172.2656
256	0.0116	86.1328
512	0.0232	43.0664
1024	0.0464	21.5332
2048	0.0929	10.7666
4096	0.1858	5.3833
8192	0.3715	2.6917

W



Frequency Resolution _

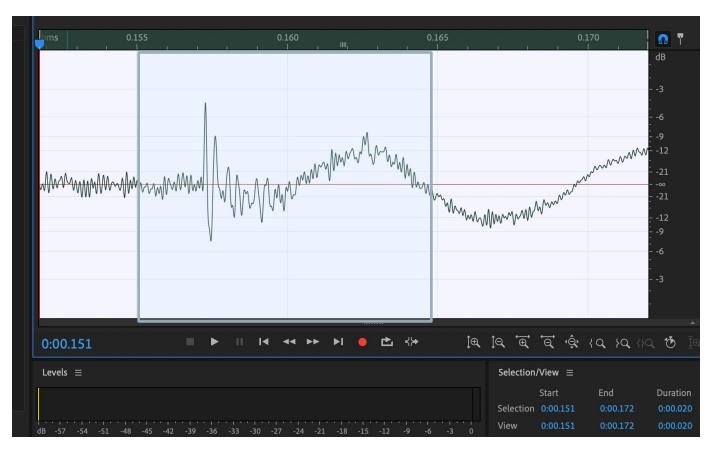
Frequency vs temporal resolution

	64	0.0029	344.5312
	128	0.0058	172.2656
	256	0.0116	86.1328
	512	0.0232	43.0664
	1024	0.0464	21.5332
	2048	0.0929	10.7666
→	4096	0.1858	5.3833
	8192	0.3715	2.6917

Time Resolution

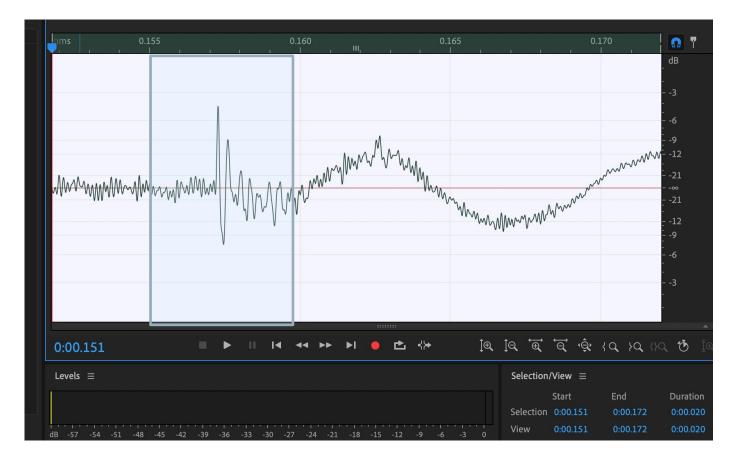
BOSTON UNILLINSTRY

Frequency Resolution _


Digital Audio Fundamentals: The Discrete Fourier Transform

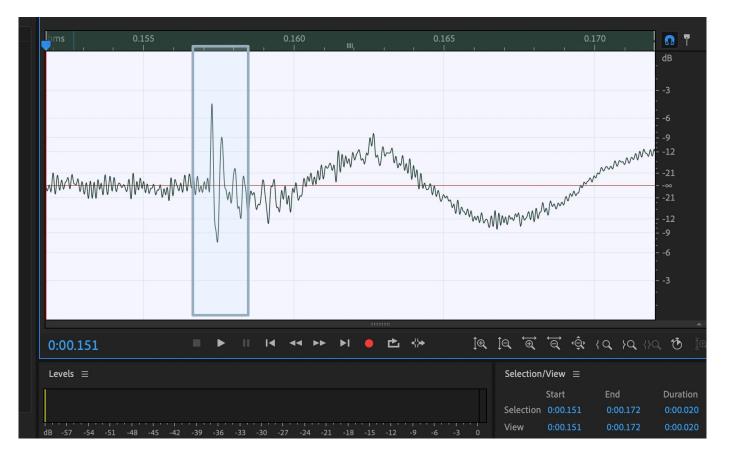
W

Frequency vs temporal resolution


			1 1
	64	0.0029	344.5312
	128	0.0058	172.2656
	256	0.0116	86.1328
	512	0.0232	43.0664
	1024	0.0464	21.5332
•	2048	0.0929	10.7666
	4096	0.1858	5.3833
	8192	0.3715	2.6917

Time Resolution

Frequency vs temporal resolution


W	Time Resolution	Frequency Resolution 🗕
64	0.0029	344.5312
128	0.0058	172.2656
256	0.0116	86.1328
512	0.0232	43.0664
1024	0.0464	21.5332
2048	0.0929	10.7666
4096	0.1858	5.3833
8192	0.3715	2.6917

Frequency vs temporal resolution

W	Time Resolution	Frequency Resolution 🗕
64	0.0029	344.5312
128	0.0058	172.2656
256	0.0116	86.1328
512	0.0232	43.0664
1024	0.0464	21.5332
2048	0.0929	10.7666
4096	0.1858	5.3833
8192	0.3715	2.6917

Assume that the sample rate is 44100 (CD quality sound).

To cover the range of human hearing (20 - 20,000 Hz), then, we would need a window of 44100/20 = 2205 samples, and this would give us the ability to measure frequencies

20, 40, 60, ..., 22000 (Note that the upper bound is always the Nyquist Limit)

and the time resolution of this window is 0.05 = 1/20 sec.

To measure down to C2 (65.41 Hz, two octaves below Middle C) we would need a window of 44100/65.41 = 674.2 samples, with a resolution of 0.015 = 1/65.41 sec.

To measure down to E2 (82.41 Hz, the low string on a guitar) we would need a window of 44100/82.41 = 535.13 samples, with a resolution of 0.00186 = 1/82.41 sec.

Punchline: Probably for reasonable musical signals we have enough temporal resolution and the RANGE of the frequencies seems enough....

But then there is a problem with frequency resolution:

To cover the range of human hearing (20 - 20,000 Hz), then, we would need a window of 44100/20 = 2205 samples, and this would give us the ability to measure frequencies

20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220,, 22050

For the C-major scale one octave above middle C we have the following:

523.	25 554	4.37	587.	.33	622.2	25	659.26	698.46
520	540	560	580	600	620	640	660	680

PunchLine: We can't even come close to measuring all frequencies in a musical signal with one window size: we don't have enough frequencies and they don't match precisely the pitches....

So we could use different window sizes.....

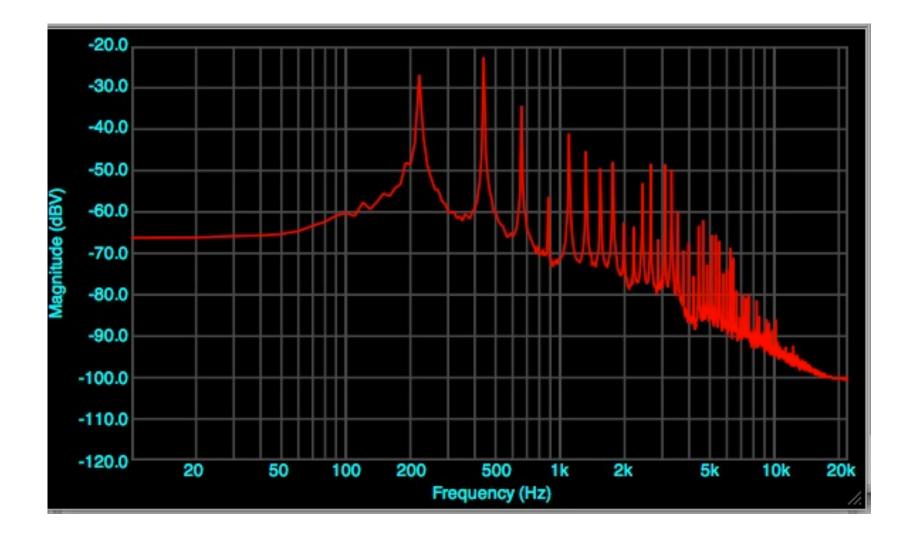
Α	B	С	D	E	F	G
Vote	Freq	Window Size	Duration	Window Freq	Freq Detected	Error
С	32.7032	2697	0.061	2	32.7030	0.000197
C#	34.6478	5091	0.115	4	34.6494	0.001581
D	36.7081	3604	0.082	3	36.7092	0.001112
Eb	38.8909	2268	0.051	2	38.8889	0.002011
E	41.2034	3211	0.073	3	41.2021	0.001282
F	43.6535	4041	0.092	4	43.6526	0.000939
F#	46.2493	1907	0.043	2	46.2507	0.001355
G	48.9994	900	0.020	1	49.0000	0.000600
Ab	51.9131	1699	0.039	2	51.9129	0.000210
Α	55	4811	0.109	6	54.9990	0.001039
Bb	58.2705	3784	0.086	5	58.2717	0.001170
В	61.7354	2143	0.049	3	61.7359	0.000484
A	220	2205	0.050	11	220.0000	0.000000

BUT, with one window, we can measure the multiples of a particular fundamental.... And this matches the way musical instruments work (in general):

A guitar tone of pitch 220 Hz (A below middle C, A on the G string) has its strongest components at the harmonics:

220, 440, 660, 880,,

And we can find these (luckily enough!) with a window size of 2205:


44100 * 11 / 2205 = 220

So 220 Hz ought to show up as frequency 11, 440 Hz as 22, etc.

Let's look.....

But it is not clear that the only frequencies are multiples of the fundamental, and each "peak" is not a simple value, but a "triangular mountain":

Let's explore why: When frequencies are integral (i.e., K complete periods within the window of N samples), we get precise measurements. Let's consider what happens with frequencies around 50 Hz:

		Fourier	Ana	lysis	on I	nput	Sigr	nal W	ave	of 20	0 sample	S
		8	Compo	nent W	aves						Signal	
Exact Meas	urements	·	Wave 1	Wave 2	Wave 3	Wave 4	Wave 5	Wave 6	Wave 7	Wave 8	Sum Wave	
round 50	Hz	Freq:	50	4	6	12	20	56.14	78	99		
		Amp:	1	0	0	0	0	0	0	0	1	Fre
Probe	Amplitude	Phase:	0	2.3	-1.02	2.12	3.142	3.1234	-3.2	4.3		
Freq	Measure			278		220 0		220 0			182 - 183	
47	0.0000					Fou	rier A	nalysi	S			
48	0.0000											
49	0.0000	1.2										10
50	1.0000											
51	0.0000	1										
52	0.0000											
53	0.0000											
	8464.39664678 2	0.8										
		0.6					-					21
		0.4					-					
		0.2										
		11 I										
		0 1 4 7	10.12.10	10 22 2		A 27 40 4	2 46 40		61 64 67	70 72 70	79 82 85 88 91 9	4 07 100

Recall that the phase does not affect the measurement:

	20 20	Fourier	Ana	lysis	on I	nput	Sigr	nal W	ave	of 20	0 sample	es	
	3 <u>.</u>	10 10	Compo	nent W	aves		5 B			ja - 2	Signal		
xact Meas	urements		Wave 1	Wave 2	Wave 3	Wave 4	Wave 5	Wave 6	Wave 7	Wave 8	Sum Wave		
round 50 l	Hz	Freq:	50	4	6	12	20	56.14	78	99			
		Amp:	1	0	0	0	0	0	0	0	1	Fre	
Probe	Amplitude	Phase:	2.34	2.3	-1.02	2.12	3.142	3.1234	-3.2	4.3			
Freq	Measure				0					1	de de de la companya		
47	0.0000		Fourier Analysis										
48	0.0000							,,					
49	0.0000	1.2											
50	1.0000												
51	0.0000	1					-						
52	0.0000												
53	0.0000												
(16)23)	Constants.	0.8											
	50	0.6											
	57 17 19	-											
		0.4											
	8	0.2						-					
		0	*****										
	2	1	10 13 16	19 22 2	5 28 31 3	34 37 40 4	3 46 49	52 55 58	61 64 67	70 73 76	79 82 85 88 91 9	4 97 100	
	297 12.4	19	0.0930	U	U	U	U	U	U	U	COCCCED.U		

		Fourier	Ana	lysis	on I	nput	Sigr	nal W	ave	of 20	0 sample	es		
		8	Compo	nent W	aves	1°C 0°					Signal			
xact Meas	urements	Terrare and the	Wave 1	Wave 2	Wave 3	Wave 4	Wave 5	Wave 6	Wave 7	Wave 8	Sum Wave			
round 50	Hz	Freq:	50	4	6	12	20	56.14	78	99				
		Amp:	1	0	0	0	0	0	0	0	1	Fre		
Probe	Amplitude	Phase:	0	2.3	-1.02	2.12	3.142	3.1234	-3.2	4.3				
Freq	Measure			278		155		120 0			hill Alla			
47	0.0000		Fourier Analysis											
48	0.0000													
49	0.0000	1.2										10		
50	1.0000													
51	0.0000	1						2						
52	0.0000													
53	0.0000	0.0000												
	2000,000,000,000,000,000,000,000,000,00	0.8												
		0.6					-					20		
		0.4					-							
		0.2												
		0	10 13 16	19 77 7	5 28 31 3	4 37 40 4	3 46 49	57 55 58	61 64 67	70 73 76	79 82 85 88 91 9	4 97 100		
		13	-10 13 10			U		JZ JJ J8		10 73 70		4 57 100		

			Compo	nent W	aves						Signal				
act Meas	urements		Wave 1	Wave 2	Wave 3	Wave 4	Wave 5	Wave 6	Wave 7	Wave 8	Sum Wave				
ound 50 I	Hz	Freq:	50.1	4	6	12	20	56.14	78	99					
	N 8	Amp:	1	0	0	0	0	0	0	0	1	Fre			
Probe	Amplitude	Phase:	0	2.3	-1.02	2.12	3.142	3.1234	-3.2	4.3					
Freq	Measure		0		10		St. 53								
47	0.0309		Fourier Analysis												
48	0.0460		Chart Area												
49	0.0885	1.2							Chart	Area					
50	0.9827														
51	0.1102	1													
52	0.0527														
53	0.0349														
		0.8					-	1							
		0.6													
		0.0													
		0.4													
		0.2						0				1			

ments mplitude Measure 0.0557 0.0823 0.1531	Freq: Amp: Phase:	-	4			Wave 5	Waxe C			Signal	
mplitude Measure 0.0557 0.0823	Amp:	50.2 1	4			Wave 5	Marine C				
Measure 0.0557 0.0823	Amp:	1		6			wave 6	Wave 7	Wave 8	Sum Wave	
Measure 0.0557 0.0823			0		12	20	56.14	78	99		
Measure 0.0557 0.0823	Phase:			0	0	0	0	0	0	1	Fre
0.0557 0.0823				-1.02	2.12	3.142	3.1234	-3.2	4.3		
0.0823			220		535 65		100 00			183 A.V.	
	1				Fou	rier A	nalysi	s			
0 1521							,	-			
0.1551	1					r., 5					
0.9327	0.9										
0.2367											
0.1068	0.8										
0.0696	0.7										
	0.7										
	0.6					-					
	0.5										22
	0.4										
	0.3										
	0.2										
	0.1				5.00		Iture		19245.cov		
1	0 1 4 7	10 13 16	19 22 2	5 28 31 3	4 37 40 4	3 46 49 5	52 55 58	61 64 67	70 73 76	79 82 85 88 91 9	4 97 100
		0.5 0.4 0.3 0.2 0.1 0	0.5 0.4 0.3 0.2 0.1 0 1 4 7 10 13 16	0.5 0.4 0.3 0.2 0.1 0 1 4 7 10 13 16 19 22 2	0.5 0.4 0.3 0.2 0.1 0 1 4 7 10 13 16 19 22 25 28 31 3	0.5 0.4 0.3 0.2 0.1 0 1 4 7 10 13 16 19 22 25 28 31 34 37 40 4	0.5 0.4 0.3 0.2 0.1 0 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 5	0.5 0.4 0.3 0.2 0.1 0 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58	0.5 0.4 0.3 0.2 0.1 0 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67	0.5 0.4 0.3 0.2 0.1 0 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76	0.5 0.4 0.3 0.2 0.1 0 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94

		Fourier	Ana	lysis	on I	nput	Sigr	nal W	ave	of 20	0 sample	es	
	10	2	Compo	nent W	aves	5 <u>5</u>		S. 3		92 B	Signal		
Exact Measurements			Wave 1	Wave 2	Wave 3	Wave 4	Wave 5	Wave 6	Wave 7	Wave 8	Sum Wave		
round 50 Hz		Freq:	50.3	4	6	12	20	56.14	78	99			
	No. Sector	Amp:	1	0	0	0	0	0	0	0	1	Fre	
Probe	Amplitude	Phase:	0	2.3	-1.02	2.12	3.142	3.1234	-3.2	4.3			
Freq	Measure		le contra c	100	ius.	100							
47	0.0742		Fourier Analysis										
48	0.1081												
49	0.1942	0.9					110						
50	0.8545	0.8											
51	0.3718	0.5											
52	0.1554	0.7											
53	0.0993												
		0.6					-						
		0.5											
		0.5											
		0.4					_					<u>(7</u>	
		0.3											
		0.2											
	-	0.1											
	-	0				muuu	الللك	IIIIIIIII	uuuuu	uuuuu			
	10		10 13 16	19 22 2	5 28 31 3	4 37 40 4	3 46 49	52 55 58	61 64 67	70 73 76	79 82 85 88 91 9	4 97 100	
		13	-0.304	10 LL L									

		Fourier	Ana	lysis	on I	nput	Sigr	nal W	ave	of 20	0 sample	es		
	8		Compo	nent W	aves		5 8		8	20 D	Signal			
xact Measurements			Wave 1	Wave 2	Wave 3	Wave 4	Wave 5	Wave 6	Wave 7	Wave 8	Sum Wave			
ound 50 I	Hz	Freq:	50.4	4	6	12	20	56.14	78	99				
		Amp:	1	0	0	0	0	0	0	0	1	Fre		
Probe	Amplitude	Phase:	0		-1.02	2.12	3.142	3.1234	-3.2	4.3				
Freq	Measure		8		\$3 - C		ii		0		d. 54			
47	0.0863		Fourier Analysis											
48	0.1234													
49	0.2134	0.8					22							
50	0.7540													
51	0.5074	0.7												
52	0.1921	0.5												
53	0.1194	0.6												
		0.5												
		0.5												
		0.4												
		0.4												
		0.3												
		5.55												
		0.2												
		0.1						1.						
							الالي	ll lun						
		0		******		чччччч	,,,,,,,,,,,,,,,		ЩЩщ		*****	*****		
		1 4 7	10 13 16	19 22 2	5 28 31 3	4 37 40 4	3 46 49	52 55 58	61 64 67	70 73 76	79 82 85 88 91 9	97 100		
		19	-0.972	U	U	U	U	U	U	U	-0.9/1033			

		Fourier	Ana	lysis	on I	nput	Sigr	nal W	ave	of 20	0 sample	es	
	10	2	Compo	nent W	aves	56 0		8 9		¢ 8	Signal		
xact Measurements			Wave 1	Wave 2	Wave 3	Wave 4	Wave 5	Wave 6	Wave 7	Wave 8	Sum Wave		
round 50 H	łz	Freq:						78	78 99				
		Amp:	1	0	0	0	0	0	0	0	1	Fre	
Probe	Amplitude	Phase:	0		-1.02	2.12	3.142	3.1234	-3.2	4.3	3		
Freq	Measure		b.	100	U.	120 E				6			
47	0.0911		Fourier Analysis										
48	0.1274												
49	0.2122	0.7											
50	0.6366												
51	0.6367	0.6											
52	0.2124												
53	0.1275	0.5										2	
	033503653												
		0.4					_					15	
		0.3											
		0.2						-					
		0.1											
	10	0 1 4 7	10 13 16	19 22 2	5 28 31 3	4 37 40 4	3 46 49	52 55 58	61 64 67	70 73 76	79 82 85 88 91 9	4 97 100	
		19	-0.930	10 LL L		U	U	U	U 01 01 07		-0.302/30		

		Fourier	Ana	lysis	on I	nput	Sigr	nal W	ave	of 20	0 sample	es
			Compo	nent W	aves	5 <u>6</u> 5		34 S		12 B	Signal	
Exact Measurements			Wave 1	Wave 2	Wave 3	Wave 4	Wave 5	Wave 6	Wave 7	Wave 8	Sum Wave	
round 50 I	Hz	Freq:	50.6	4	6	12	20	56.14	78	99		
	No. 2016	Amp:	1	0	0	0	0	0	0	0	1	Fre
Probe	Amplitude	Phase:	0	2.3	-1.02	2.12	3.142	3.1234	-3.2	4.3		
Freq	Measure		le contra c	100	de-	100		100				
47	0.0869					Fou	rier A	nalysi	is			
48	0.1193							,,				
49	0.1920	0.8						8				
50	0.5073						1	1				
51	0.7541	0.7										
52	0.2136											
53	0.1235	0.6										
	0.000	0.5					102					
		0.5										
		0.4										
		0.4										
		0.3										
		0.2						1				
		0.1						1				
							الالتير	lllu.				
		0	****						Щинин		*******	
		147	10 13 16	19 22 2	5 28 31 3	4 37 40 4	3 46 49	52 55 58	61 64 67	70 73 76	79 82 85 88 91 9	4 97 100
		19	-0.937	U	U	U	U	U	U	U	-0.930332	

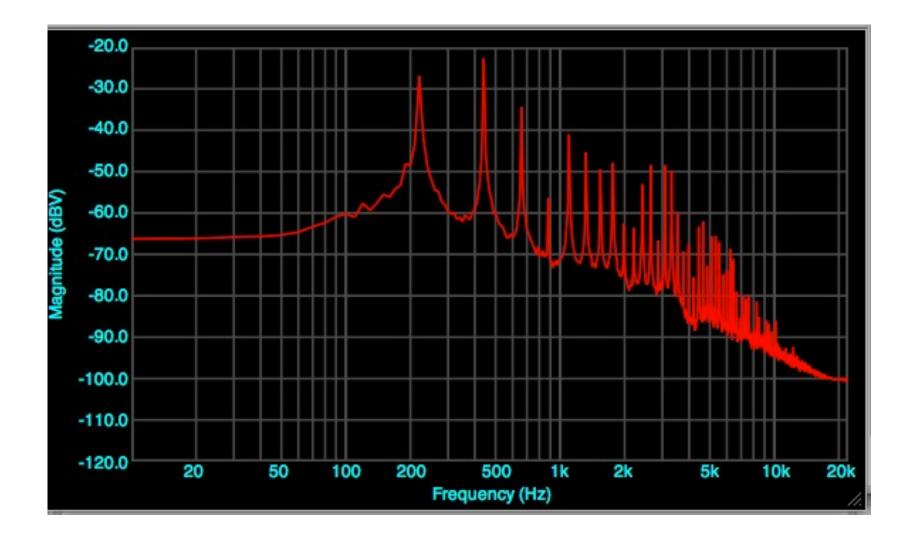
	5	Fourier	Ana	lysis	on I	nput	Sigr	nal W	ave	of 20	0 sample	es
	26	(C.	Compo	nent W	aves		5 8			20 D	Signal	
xact Measurements			Wave 1	Wave 2	Wave 3	Wave 4	Wave 5	Wave 6	Wave 7	Wave 8	Sum Wave	
und 50 H	łz	Freq:	50.7	4	6	12	20	56.14	78	99		
		Amp:	1	0	0	0	0	0	0	0	1	Fre
Probe	Amplitude	Phase:	0		-1.02	2.12	3.142	3.1234	-3.2	4.3		
Freq	Measure		8		0						k til	
47	0.0735					Fou	rier A	nalysi	S			
48	0.0992							,,.	-			
49	0.1553	0.9										
50	0.3717	0.8										
51	0.8546	0.8										
52	0.1943	0.7										
53	0.1082											
		0.6										
		0.5										
	2 <u>.</u>	0.4										3
		0.3										
		0.2										
		0.1										
		0.1						Illu				
		0				ччччч		uuuuu		*******		
		1 4 7	10 13 16	19 22 2	5 28 31 3	34 37 40 4	3 46 49	52 55 58	61 64 67	70 73 76	79 82 85 88 91 9	97 100
		1 -	10 13 16 -0.914	19 22 2 U		34 37 40 4 U			61 64 67 U			-

Let's see what happens as we change the frequency slowly from 50 to 51 Hz:

		Fourier	Ana	lysis	on I	nput	Sigr	nal W	ave	of 20	0 sample	es
	10			omponent Waves		es		8 8		2 8	Signal	
xact Measurements			Wave 1	Wave 2	Wave 3	Wave 4	Wave 5	Wave 6	Wave 7	Wave 8	Sum Wave	
round 50 Hz		Freq:	50.8	4	6	12	20	56.14	78	99		
	No. An Island	Amp:	1	0	0	0	0	0	0	0	1	Fre
Probe	Amplitude	Phase:	0		-1.02	2.12	3.142	3.1234	-3.2	4.3		
Freq	Measure		1. 1.		10	100			-		181	
47	0.0521					Fou	rier A	nalysi	s			
48	0.0697											
49	0.1068	1					3					
50	0.2367	0.9										
51	0.9327											
52	0.1531	0.8										
53	0.0822	0.7										
		0.6										
	10	0.5										<u></u> 00
		0.4										
		0.3										
		0.2										
		0.1					uul	1				
		147	10 13 16	19 22 2	5 28 31 3	4 37 40 4	3 46 49	52 55 58	61 64 67	70 73 76	79 82 85 88 91 9	4 97 100

Let's see what happens as we change the frequency slowly from 50 to 51 Hz:

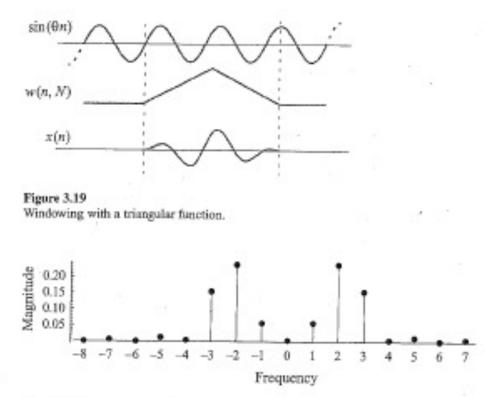
		Fourier	Ana	lysis	on I	nput	Sigr	nal W	ave	of 20	0 sample	es
2	20			Component Waves		Si 9		26 1		12 8	Signal	
Exact Measurements around 50 Hz			Wave 1	Wave 2	Wave 3	Wave 4	Wave 5	Wave 6	Wave 7	Wave 8	Sum Wave	
		Freq:	50.9	4	6	12	20	56.14	78	99		
	a defail	Amp:	1	0	0	0	0	0	0	0	1	Free
Probe	Amplitude	Phase:	0	2.3	-1.02	2.12	3.142	3.1234	-3.2	4.3		
Freq	Measure		0	100		100 (i		100				
47	0.0262					Fou	rier A	nalysi	s			
48	0.0349											
49	0.0527	1.2										
50	0.1102											
51	0.9827	1										
52	0.0885											
53	0.0459											
		0.8										
	10 											<u>.</u> 59
		0.4										
		0.2										53
		0 1 4 7	10 13 16	19 22 2	5 28 31 3	4 37 40 4	3 46 49	52 55 58	61 64 67	70 73 76	79 82 85 88 91 9	4 97 100
		1 2	10 13 16 -פכס.ט	19 22 2 U	5 28 31 3 U				61 64 67 U		79 82 85 88 91 9 -U.039142	4 9



Let's see what happens as we change the frequency slowly from 50 to 51 Hz:

		Fourier	Ana	lysis	on I	nput	Sigr	nal W	ave	of 20	0 sample	s
	10			omponent Waves		24 9		3		2 8	Signal	
Exact Measurements			Wave 1	Wave 2	Wave 3	Wave 4	Wave 5	Wave 6	Wave 7	Wave 8	Sum Wave	
around 50 Hz		Freq:	51	4	6	12	20	56.14	78	99		
		Amp:	1	0	0	0	0	0	0	0	1	Fre
Probe	Amplitude	Phase:	0		-1.02	2.12	3.142	3.1234	-3.2	4.3	1	
Freq	Measure		le internet interne	100	Ú.	120 E				6		
47	0.0000					Fou	rier A	nalysi	s			
48	0.0000											
49	0.0000	1.2										
50	0.0000											
51	1.0000	1										
52	0.0000											
53	0.0000											
		0.8										
		0.4										
		0.2										
		0 1 4 7	10 13 16	19 22 2	5 28 31 3	4 37 40 4	3 46 49 5	52 55 58	61 64 67	70 73 76	79 82 85 88 91 9	4 97 100

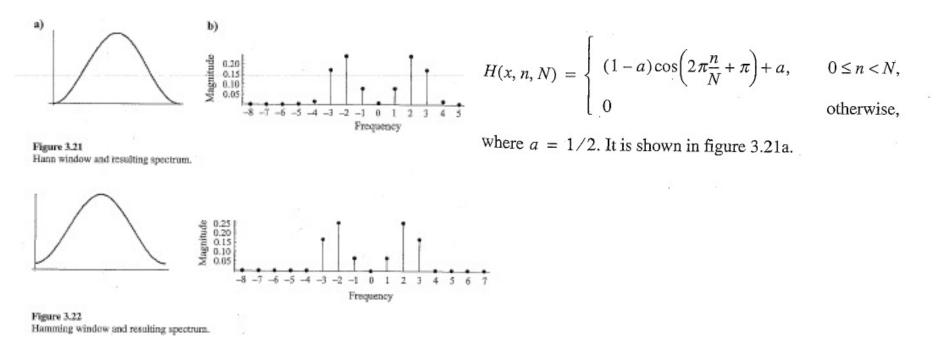
You can see this in a typical spectrum, where the characteristic shape of a frequency component ("triangular mountain") shows up repeatedly:



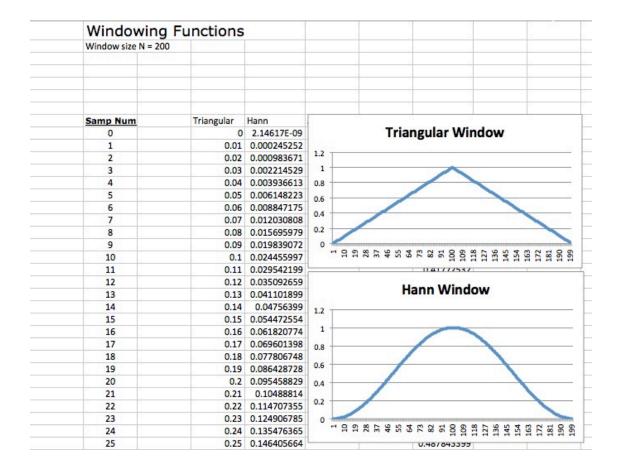
Digital Audio Fundamentals: The Discrete Fourier Transform

The typical **solution** used is to de-emphasize the signal components at the edges, by tapering the amplitude of the signal using either a triangular function (which is used to modify the amplitude of the signal)

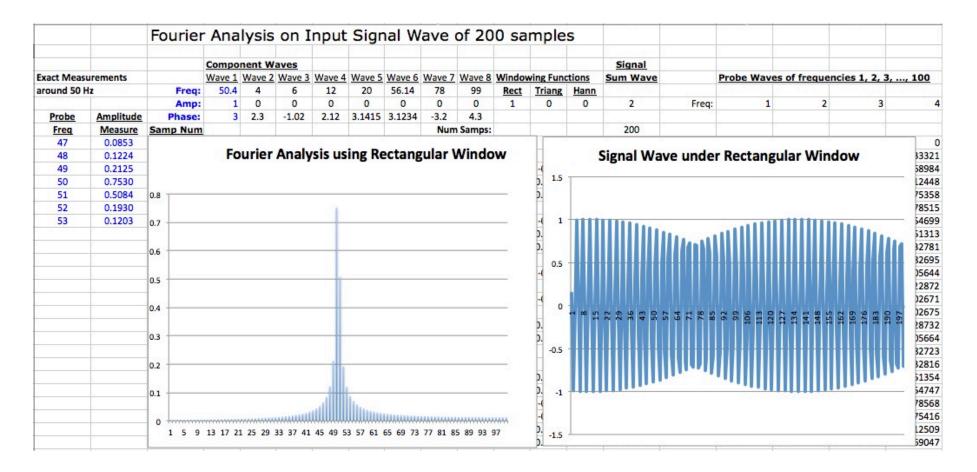
W(n,N) = 1 - Abs[(n - (N/2))/(N/2)] for 1 <= n <= N


Note: We can expect that this approach will change the amplitude measurement, since it reduces the overall sum of the samples!

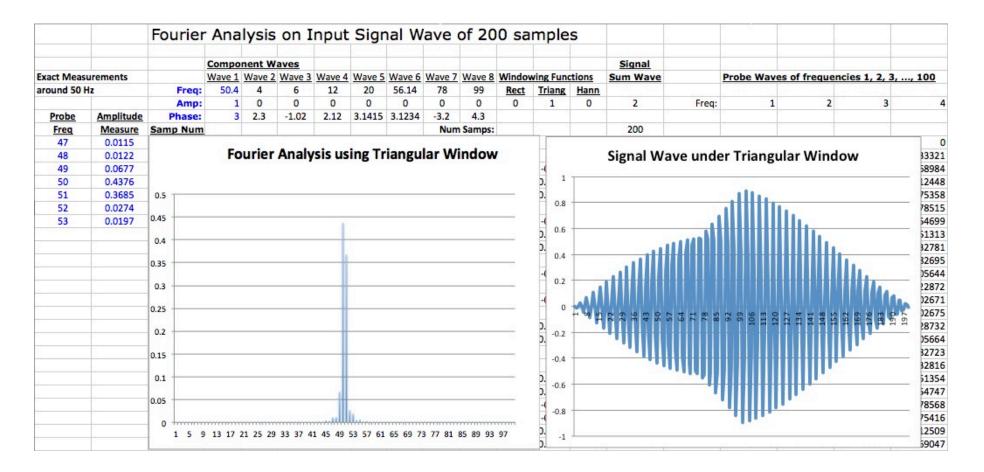
Digital Audio Fundamentals: The Discrete Fourier Transform


Or some more complex function:

A nice description of the various "window functions," with interesting graphics, is provided by <u>http://en.wikipedia.org/wiki/Window_function</u>


Let's try two of these in our experiment on a non-integral frequency of 50.4 Hz, using the Triangular and the Hann Windows:

Computer Science


Let's try two of these in our experiment on a non-integral frequency of 50.4 Hz, using the Rectangular (as before), the Triangular, and the Hann Windows:

Computer Science

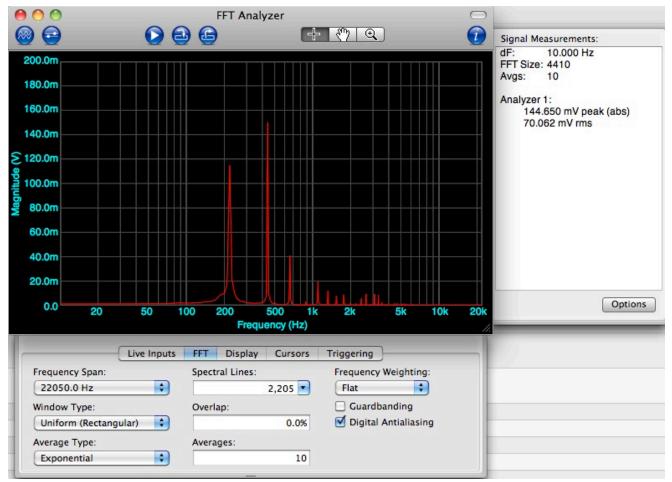
Let's try two of these in our experiment on a non-integral frequency of 50.4 Hz, using the Rectangular (as before), the Triangular, and the Hann Windows:

Let's try two of these in our experiment on a non-integral frequency of 50.4 Hz, using the Rectangular (as before), the Triangular, and the Hann Windows:

	0	Fourier	Ana	lysis	on I	nput	Sigr	nal W	lave	of 20	0 sa	mple	s							
			Compo	nent W	aves									Signal			-		-	
xact Meas	urements		Wave 1	Wave 2	Wave 3	Wave 4	Wave 5	Wave 6	Wave 7	Wave 8	Window	wing Fund	tions	Sum Wave		Probe W	aves of fre	equencies 1	, 2, 3,	, 100
round 50	Hz	Freq:	50.4	4	6	12	20	56.14	78	99	Rect	Triang	Hann	100 M						
		Amp:	1	0	0	0	0	0	0	0	0	0	1	2	Freq:		1	2	3	-
Probe	Amplitude	Phase:	3	2.3	-1.02	2.12	3.1415	3.1234	-3.2	4.3		2		2			10	20	92	
Freq	Measure	Samp Num				<u>ي</u>	ŝ		Nun	n Samps:		1		200			10			
47	0.0042			1				1.000				-								(
48	0.0132		Fo	ourier	Analy	sis us	ing Ha	ann W	/indo	w		1		Signal W	/ave un	der Ha	nn Wind	dow		33321
49	0.1126	1										1.1		-						68984
50	0.4505											1.5								12448
51	0.3942	0.5										1.000								.75358
52	0.0606											1.00								78515
53	0.0101	0.45										1 -								54699
		0.4										1					ll li			51313
	10	0.4										1					IIIII.			32781
		0.35										0.5			•••••			h		82695
																				.05644
		0.3										1								22872
												0							lann	02671
		0.25											15 8 1	229 259 550 57	71 738 738 85	92 99 06 13	27 234	48 69 76	190	02675
		0.2									12	1		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						28/32
												1		<u></u>						.05664
	19	0.15									- 22	-0.5 -								82723
																				32816
	10.	0.1					-					1)51354
		0.05										-1	-							- 54747
		0.05																		78568
		0 +					h													.75416
		1 5 9	13 17	21 25 29	33 37 4	1 45 49	53 57 61	65 69 7	3 77 81	85 89 93	97	-1.5								12509
	12											J								

Conclusions on windowing for the DFT:

(1) Window size determines frequency resolution: given a window size of W samples, with a fundamental frequency of f = SR / W, we can only probe for the integral frequencies (the harmonics of F):


0, f, 2*f, 3*f,, k*f,, Nyquist Limit

Any other frequencies will be subject to the "picket fence" problem and only approximated.

(2) Non-integral frequencies cause "leakage" to adjacent integral frequencies; good windowing functions (e.g., Hann) mitigate leakage effects and provide reasonably accurate measurements of amplitude of components, after correction.

Professional tools such as Electroacoustics Toolbox allow you to set these features, as well as window length, whether windows overlap, whether and how to average the successive measurements, whether and how to weight the measures to the psychoacoustical properties of human hearing, how to display the result, etc., etc., etc., etc., and to output the analysis to a file.

Professional tools such as Electroacoustics Toolbox allow you to set these features, as well as window length, whether windows overlap, whether and how to average the successive measurements, whether and how to weight the measures to the psychoacoustical properties of human hearing, how to display the result, etc., etc., etc., etc., and to output the analysis to a file.

220

R.2791846

	220	0.2791040
	230	0.04434038
Created by Electroacoustics Toolbox, version 3.0.1 (rev. 1109)), on Thursdo 240	0.01913349
Project Name: untitled	250	0.01382732
Module Type: FFT Analyzer	260	0.01114911
Module Name: FFT Analyzer	270	0.00882916
Device: Soundflower (2ch)	280	0.007373199
Device Unique ID: SoundflowerEngine:0	290	0.0065718
Channel Label: Analyzer 1	300	0.006028267
Units: Vpk	310	0.005524478
Sensitivity: 1.00000000 V/V	320	0.0049454
Frequency Weighting: Flat	330	0.004598976
Sample Rate: 44.10000000 kHz	340	0.004576757
Sample Period: 22.67573655 µs	350	0.004409567
Decimation Factor: 1	360	0.004563091
Digital Antialiasing: ON FFT Length: 4410		
Guardbanding: OFF	370	0.004502238
Spectral Lines: 2206	380	0.004490616
Frequency Resolution: 10.00000000 Hz	390	0.004606624
FFT Time Record Length: 100.00000149 ms	400	0.004957298
Window: Uniform (Rect)	410	0.005889128
Averaging: Exponential	420	0.007712504
Averages: 10	430	0.01238511
Total Time Record Length: 1.00000000 s	440	0.1653076
Overlap: 0.00000000 %	450	0.01271653
	460	0.005566336
Frequency Magnitude	470	0.003511857
0 0.0009345763 10 0.001883723	480	0.002436093
20 0.001003723 20 0.00192472	490	0.002428316