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Discrete Fourier Transform (DFT)

Define:  For a signal X of length W samples (a “window”) a window frequency is one 
whose period P is such that W = P * k for some integer k, i.e., an integral number of 
periods exactly fit within the window; alternately, it begins and ends at same 
instantaneous phase.  

We will use these signals as probe waves to analyze a musical signal and assume that 
all such probe waves (for now) start at phase 0.0. 



Computer Science

3

The way we will analyze a signal using the DFT is to examine a short segment of a signal (a window):

If we wish to examine the whole signal, we will slide the window across the signal, potentially
overlapping each window:

Using the DFT

The FFT uses a 
recursive “divide 
and conquer” 
strategy, and so it is 
best if W is a power 
of 2.

W =



Computer Science

The DFT produces a spectrum for a window (erroneously called the
“instantaneous spectrum”), containing the amplitudes of frequencies

Bin index:           0   1   2    3           
Frequency: 0,  f,  2f,  3f,  ….,  Sample Rate / 2 = Nyquist Limit

f = frequency of one cycle per window = Sample Rate / W
= frequency resolution

Using the DFT
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The axes for the instantaneous spectrum are

X axis = Frequency        

Y axis = Amplitude      (“magnitude spectrum”)

or

Amplitude 2 (“power spectrum”) 

Either one could be displayed in a linear or a logarithmic scale; the 
logarithmic scales more closely represent the way humans perceive both 
frequency and loudness.   Decibels (dB) are a logarithmic measure.  

The FFT 
uses linear 
scales for 
both!

Using the DFT
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A spectrogram is a 2D matrix, usually presented as a colored “heatmap” with spectra in 
each column for each sliding window (possibly overlapping), and rows being the 
frequency bins.    The axes are thus

X axis = Time         (always linear, usually in seconds)

Y axis = frequency   (either  linear or logarithmic (dBs))

Color = amplitude   (magnitude (linear) or power (squared amplitude))

Using the DFT



Computer Science

7

Sometimes spectrograms are presented in faux-3D with or without heatmap colors:

X axis = Time         (always linear, usually in seconds)

Y axis = frequency   (either  linear or logarithmic (dBs))

Z axis  = amplitude   (magnitude (linear) or power (squared amplitude))

Using the DFT
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Recall from last time:

(1) This is horribly inefficient: O( N2 ) for N =  len(X) 

Solution:  There is a fast version of the transform, the Fast Fourier Transform (FFT), 
based on a recursive algorithm, which runs in    O( N log(N) ).

(2) The resolution is limited to multiples of f = SR / W ( in samples )

No solution, unfortunately, can try different window sizes, but stuck with this!

(3) All components and probe waves have to be at the same phase (e.g., 0.0) 

Solution:  If we do all the work with complex numbers, we can
avoid issues of phase

✓

✗

✓

Discrete Fourier Transform (DFT)
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Limitations and Problems with the DFT

Unfortunately, this is not the only limitation of the DFT.  Here are the main issues we need to be 
aware of when using the DFT:

1. The resolution is limited to multiples of f = SR / W ( in samples ), and so there is a tradeoff (the 
“DFT Uncertainly Principle”) between temporal resolution and frequency resolution.

2. When frequencies in the signal do not exactly correspond to the window frequencies, their
energy is spread out among the closest frequency bins, so the amplitude is not represented 
precisely.   
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There is a tradeoff between

Temporal Resolution – What is the shortest musical event we can observe?
Spectral Resolution – How many frequencies can we measure?

ß Window of W Samples à

DFT:  Tradeoffs in Resolution of Frequency and Time
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Digital Audio Fundamentals: The Discrete Fourier Transform

There is a tradeoff between

Temporal Resolution – What is the shortest musical event we can observe?
Spectral Resolution – How many frequencies can we measure?

The duration of the window is W / SR, e.g., if SR = 22050, then

ß Window of W Samples à
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Digital Audio Fundamentals: The Discrete Fourier Transform

Significance of temporal resolution for musical signals

30 second sample of Bob Marley…..
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Digital Audio Fundamentals: The Discrete Fourier Transform

Significance of temporal resolution for musical signals

1 second window:
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Digital Audio Fundamentals: The Discrete Fourier Transform

Significance of temporal resolution for musical signals

0.2 second window:
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Digital Audio Fundamentals: The Discrete Fourier Transform

Significance of temporal resolution for musical signals

0.02 second window:
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Digital Audio Fundamentals: The Discrete Fourier Transform

Significance of temporal resolution for musical signals

0.002 second window:
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Digital Audio Fundamentals: The Discrete Fourier Transform

Recall: There is a tradeoff between

Temporal Resolution – What is the shortest musical event we can observe?
Spectral Resolution – How many frequencies can we measure?

But then temporal and frequency resolution are in an inverse relationship:
ß Window of W Samples à
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Digital Audio Fundamentals: The Discrete Fourier Transform

Frequency vs temporal resolution



Computer Science

Digital Audio Fundamentals: The Discrete Fourier Transform

Frequency vs temporal resolution
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Digital Audio Fundamentals: The Discrete Fourier Transform

Frequency vs temporal resolution
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Digital Audio Fundamentals: The Discrete Fourier Transform

Frequency vs temporal resolution
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Digital Audio Fundamentals: The Discrete Fourier Transform

Assume that the sample rate is 44100 (CD quality sound). 

To cover the range of human hearing (20 – 20,000 Hz), then, we would need a 
window of 44100/20 = 2205 samples, and this would give us the ability to measure 
frequencies

20, 40, 60, …., 22000              (Note that the upper bound is always the Nyquist Limit)

and the time resolution of this window is 0.05 = 1/20 sec.  

To measure down to C2 (65.41 Hz, two octaves below Middle C) we would need a 
window of 44100/65.41 = 674.2 samples, with a resolution of 0.015 = 1/65.41 sec.

To measure down to E2 (82.41 Hz, the low string on a guitar) we would need a 
window of 44100/82.41 = 535.13 samples, with a resolution of 0.00186 = 1/82.41 
sec.

Punchline: Probably for reasonable musical signals we have enough temporal 
resolution and the RANGE of the frequencies seems enough…. 
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Digital Audio Fundamentals: The Discrete Fourier Transform

But then there is a problem with frequency resolution:

To cover the range of human hearing (20 – 20,000 Hz), then, we would need a 
window of 44100/20 = 2205 samples, and this would give us the ability to measure 
frequencies

20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, …., 22050              

For the C-major scale one octave above middle C we have the following:

523.25     554.37                 587.33                 622.25             659.26            698.46

PunchLine:  We can’t even come close to measuring all frequencies in a 
musical signal with one window size: we don’t have enough frequencies and 
they don’t match precisely the pitches….

So we could use different window sizes.....

520         540         560         580         600         620         640         660          680
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Digital Audio Fundamentals: The Discrete Fourier Transform
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Digital Audio Fundamentals: The Discrete Fourier Transform

BUT, with one window, we can measure the multiples of a particular 
fundamental…. And this matches the way musical instruments work (in general):

A guitar tone of pitch 220 Hz (A below middle C, A on the G string) has its strongest 
components at the harmonics:

220, 440, 660, 880, ……, 

And we can find these (luckily enough!) with a window size of 2205:

44100 * 11 / 2205 = 220

So 220 Hz ought to show up as frequency 11, 
440 Hz  as 22, etc.

Let’s look.....
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Digital Audio Fundamentals: The Discrete Fourier Transform

But it is not clear that the only frequencies are multiples of the fundamental, and 
each “peak” is not a simple value, but a ”triangular mountain”:
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Digital Audio Fundamentals: The Discrete Fourier Transform

Let’s explore why: When frequencies are integral (i.e., K complete periods within 
the window of N samples), we get precise measurements. Let’s consider what 
happens with frequencies around 50 Hz:
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Digital Audio Fundamentals: The Discrete Fourier Transform

Recall that the phase does not affect the measurement:
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Digital Audio Fundamentals: The Discrete Fourier Transform

But let’s see what happens as we change the frequency slowly from 50 to 51 Hz:
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Digital Audio Fundamentals: The Discrete Fourier Transform
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Digital Audio Fundamentals: The Discrete Fourier Transform
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Digital Audio Fundamentals: The Discrete Fourier Transform

Let’s see what happens as we change the frequency slowly from 50 to 51 Hz:
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Digital Audio Fundamentals: The Discrete Fourier Transform

You can see this in a typical spectrum, where the characteristic shape of a 
frequency component (“triangular mountain”) shows up repeatedly:



Computer Science

Digital Audio Fundamentals: The Discrete Fourier Transform

The typical solution used is to de-emphasize the signal components at the edges, 
by tapering the amplitude of the signal using either a triangular function (which is 
used to modify the amplitude of the signal)

W(n,N) = 1 – Abs[(n – (N/2))/(N/2)]   for 1 <= n <= N

Note: We can 
expect that this 
approach will 
change the 
amplitude 
measurement, 
since it 
reduces the 
overall sum of 
the samples!
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Digital Audio Fundamentals: The Discrete Fourier Transform

Or some more complex function:

A nice description of the various ”window functions,” with interesting graphics, is 
provided by http://en.wikipedia.org/wiki/Window_function

http://en.wikipedia.org/wiki/Window_function
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Digital Audio Fundamentals: The Discrete Fourier Transform

Let’s try two of these in our experiment on a non-integral frequency of 50.4 Hz, 
using the Triangular and the Hann Windows:
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Digital Audio Fundamentals: The Discrete Fourier Transform

Let’s try two of these in our experiment on a non-integral frequency of 50.4 Hz, 
using the Rectangular (as before), the Triangular, and the Hann Windows:
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Digital Audio Fundamentals: The Discrete Fourier Transform

Let’s try two of these in our experiment on a non-integral frequency of 50.4 Hz, 
using the Rectangular (as before), the Triangular, and the Hann Windows:



Computer Science

Digital Audio Fundamentals: The Discrete Fourier Transform

Let’s try two of these in our experiment on a non-integral frequency of 50.4 Hz, 
using the Rectangular (as before), the Triangular, and the Hann Windows:
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Digital Audio Fundamentals: The Discrete Fourier Transform

Conclusions on windowing for the DFT:

(1) Window size determines frequency resolution: given a window size of W 
samples, with a fundamental frequency of f = SR / W, we can only probe for the 
integral frequencies (the harmonics of F): 

0, f, 2*f, 3*f, …., k*f, ….., Nyquist Limit

Any other frequencies will be subject to the “picket fence” problem and only 
approximated. 

(2) Non-integral frequencies cause “leakage” to adjacent integral frequencies; good 
windowing functions (e.g., Hann) mitigate leakage effects and provide reasonably 
accurate measurements of amplitude of components, after correction.  
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Digital Audio Fundamentals: The Discrete Fourier Transform

Professional tools such as Electroacoustics Toolbox allow you to set these features, as well 
as window length, whether windows overlap, whether and how to average the successive 
measurements, whether and how to weight the measures to the psychoacoustical properties 
of human hearing, how to display the result, etc., etc., etc.  and to output the analysis to a file.  
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Digital Audio Fundamentals: The Discrete Fourier Transform

Professional tools such as Electroacoustics Toolbox allow you to set these features, as well 
as window length, whether windows overlap, whether and how to average the successive 
measurements, whether and how to weight the measures to the psychoacoustical properties 
of human hearing, how to display the result, etc., etc., etc.  and to output the analysis to a file.  


