CS 583– Computational Audio -- Fall, 2021

Wayne Snyder Computer Science Department Boston University

Lecture 11

DFT concluded: Review of characteristics of the DFT Interpreting spectra Extracting musical information from spectra Inverse FFT Fourier Transform Pairs

Computer Science

Recall: There is a tradeoff between

Temporal Resolution – What is the shortest musical event we can observe? **Spectral Resolution** – How many frequencies can we measure?

 \leftarrow Window of W Samples \rightarrow

But then temporal and frequency resolution are in an inverse relationship:

W	Time Resolution	Frequency Resolution
64	0.0029	344.5312
128	0.0058	172.2656
256	0.0116	86.1328
512	0.0232	43.0664
1024	0.0464	21.5332
2048	0.0929	10.7666
4096	0.1858	5.3833
8192	0.3715	2.6917

But it is not clear that the only frequencies are multiples of the fundamental, and each "peak" is not a simple value, but a "triangular mountain":

Computer Science

Let's try two of these in our experiment on a non-integral frequency of 50.4 Hz, using the Rectangular (as before), the Triangular, and the Hann Windows:

35		Fourier	Ana	lysis	on I	input	: Sigr	nal W	ave o	of 20	0 sa	mple	S				12.				
			Compo	nent W	aves									Signal							
Exact Measurements			Wave 1	Wave 2	Wave 3	Wave 4	Wave 5	Wave 6	Wave 7	Wave 8	Window	wing Fun	ctions	Sum Wave		Probe Way	ves of free	uencies 1,	2, 3, .	, 100	
around 50	Hz	Freq:	50.4	4	6	12	20	56.14	78	99	Rect	Triang	Hann	1 C. 1		a second e	10.000		1000	1996 - 3 I NA - 5	
	64h	Amp:	1	0	0	0	0	0	0	0	0	0	1	2	Freq:	1	1	2	3	4	
Probe	Amplitude	Phase:	3	2.3	-1.02	2.12	3.1415	3.1234	-3.2	4.3		1		2			1				
Freq	Measure	Samp Num							Num	Samps:		1		200					1		
47	0.0042															ante adates				0	
48	0.0132	Fourier Analysis using Hann Window										Signal Wave under Hann Window 3332									
49	0.1126	1																		68984	
50	0.4505	1										1.5								12448	
51	0.3942	0.5										1.000								75358	
52	0.0606											1.00								78515	
53	0.0101	0.45				-						1	-							54699	
	Contraction and a second											1					11.			51313	
	- C	0.4										1					IIII.			32781	
		0.35					-					0.5			141111					82695	
													1							.05644	
		0.3										1								22872	
																والما والما أوالية			1000	02671	
	82	0.25									-	0	2 8 1	1 2 2 2 2 2	35 71 82	13 06 92	5 2 2 2 3	2252	0 0	02675	
		02									75	1			типп			1 A 8 A	2 2 2	28732	
		0.2										1								.05664	
	1	0.15										-0.5	-							82723	
																				32816	
		0.1										1								51354	
												-1	-						-	- 54747	
		0.05																		78568	
	83 	0																		.75416	
		1 5 5	13 17	21 25 29	33 37 4	1 45 49	53 57 61	65 69 7	3 77 81	81 85 89 93 97										12509	
	12											1								69047	

Conclusions on windowing for the DFT:

(1) Window size determines frequency resolution: given a window size of W samples, with a fundamental frequency of f = SR / W, we can only probe for the integral frequencies (the harmonics of F):

0, f, 2*f, 3*f,, k*f,, Nyquist Limit

Any other frequencies will be subject to the "picket fence" problem and only approximated.

(2) Non-integral frequencies cause "leakage" to adjacent integral frequencies; good windowing functions (e.g., Hann) mitigate leakage effects and provide reasonably accurate measurements of amplitude of components, after correction.

Understanding Spectra:

Things to keep in mind when interpreting scales in spectra (y-axis in instantaneous spectrum, z-axis (color) in spectrum)

 The squared spectrum ("power spectrum") corresponds more closely to human perception and is generally preferred; note that log scale obscures the difference between these two (since log(x²) = 2 * log(x))

Understanding Spectra:

Things to keep in mind when interpreting the scales in spectra:

- Y-axis (z-axis on spectrogram): The squared spectrum ("power spectrum") corresponds more closely to human perception and is generally preferred; note that log scale obscures the difference between these two, since log(x²) = 2 * log(x)
- X-axis (y-axis on spectrogram): Log scale corresponds to music notation and the piano keyboard;
- But human perception of pitch corresponds better with the "Mel Scale":

 Log scales in displaying frequency OR amplitude/power axis help with understanding but do NOT change the data (unless you make it so)

Example: Trumpet Example in Librosa

Spectrum of Trumpet: It only really makes sense to take the "instantaneous spectrum" of a short window of a signal; otherwise, the spectrum mixes up all the pitches AND includes timing information; here is the spectrum of the whole signal:

Here is a small window, isolating the sound of a single note:

|: y, sr = librosa.load(librosa.ex('trumpet'))
y = y[1000:2024]
displaySignal(y,title='Trumpet Example')
displaySignal(y[:2000], title='Trumpet Example')
Audio(y,rate=SR)

Here is a spectrum of the window:

Ha, the spectrogram doesn't tell you much, even with a small hop length (=skip):

```
]: y, sr = librosa.load(librosa.ex('trumpet'))
x = y[1000:2024]
x = S = librosa.stft(x)
Sdb = librosa.amplitude_to_db(abs(S))
plt.figure(figsize=(12,6))
librosa.display.specshow(Sdb, sr=sr, hop_length=256, x_axis='time', y_axis='hz')
#plt.colorbar()
plt.show()
```


There are a variety of ways to scale the frequency axis: Here is linear scale:

There are a variety of ways to scale the frequency axis: Here is log scale:

: Text(0.5, 1.0, 'Log-frequency power spectrogram')

The mel spectrogram uses the mel (as in MELody) scale which corresponds more to the human perception of pitch:

There are a variety of ways to scale the frequency axis: Here is mel scale:

We can also combine all octaves into pitch classes uses a "chroma":

Digital Audio Fundamentals: The Inverse DFTR

The Fourier Transforms come in pairs:

Discrete Fourier Transform:

signal (amplitude vs. time) -> spectrum (amplitude vs frequency)

Inverse DFT:

spectrum (amplitude vs frequency) -> signal (amplitude vs. time)

Digital Audio Fundamentals: The Inverse DFTR


```
: # To create a signal of N samples, must input a spectrum array
  # of length N/2 + 1 amplitudes, with the kth frequency bin
  # representing the amplitude of frequency k*(SR/N)
  def realIFFT(S,A=None):
      S = np.array(S)
     lenX = 2*(len(S)-1)
     complex S = lenX / 2 * -1.j * S
     X = np.fft.irfft(complex S)
      if(A == None):
          return X
      else:
          return A * X / max(X)
  S = np.zeros(22050)
  S[1] = 1.0
  X = realIFFT(S)
  plt.plot(X)
  plt.show()
```


Except for the always-present "floating-point error," these are symmetric:

S = FFT(X) X = IFFT(S)

X = IFFT(FFT(X)) S = FFT(IFFT(X))

Digital Audio Fundamentals: The Inverse DFTR

Except for the always-present "floating-point error," these are symmetric:

S = FFT(X) X = IFFT(S)

 $X = IFFT(FFT(X)) \qquad S = FFT(IFFT(X))$

IMPORTANT NOTE:

We are only talking about magnitude or power spectra, which don't show the phase!

Your ears can't distinguish phase information for a simple signal with only tonal data:

The spectrum contains

- Tonal data (pitches)
- Timing data (onsets and rhythm)
- Noise

But that is only for simple signals, here is what happens if you remove all the phase information from the trumpet signal: The spectra look the same, but the signal is NOT the same in the time domain:

