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Onset Detection

§ Energy curves often only work for percussive music

§ Many instruments have weak note onsets: wind, strings, 
voice. 
§ Example: Shakuhachi Flute

§ Biggest problem: pitch or timbre changes (corresponding 
to note onset) may not correlate with energy changes, 
e.g., a singer may change the loudness without changing 
pitch/note, or change pitch/note without appreciable 
change in loudness. 

§ More refined methods needed that capture changes in 
energy spread over the spectrum [Bello et al., IEEE-TASLP 2005]
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1. Spectrogram
Magnitude spectrogram
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|| X Steps:
Onset Detection (Spectral-Based)

§ Aspects concerning pitch, 
harmony, or timbre are 
captured by spectrogram

§ Allows for detecting local 
energy changes in certain 
frequency ranges
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Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression

Steps:

§ Accounts for the human 
logarithmic sensation of sound 
intensity

§ Dynamic range compression
§ Enhancement of low-intensity 

values
§ Often leading to enhancement 

of high-frequency spectrum
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Spectral difference

Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression
3. Differentiation

Steps:

§ First-order temporal 
difference

§ Captures changes of the 
spectral content

§ Only positive intensity 
changes considered
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Spectral difference

t
Novelty curve

Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression
3. Differentiation
4. Accumulation: spectral 

differences summarized 
by a number. 

Steps:

§ Frame-wise accumulation of 
all positive intensity changes 

§ Encodes changes of the 
spectral content
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Digression: Difference/Distance Metrics

One of the most important issues in analyzing data, especially, multi-dimension and/or time-
series data, is understand how similar two pieces of data are (represented typically by a 
vector or multi-dimensional array). There are two principle methods for such comparisons:

Distance Metrics:  Similar data vectors are regarded as closer in a geometrical sense; the 
range is [0 .. ∞), where distance = 0 means the vectors are identical:

Dependence Metrics:  Similar data vectors exhibit dependence: they “move together” in 
similar ways; the range of the coefficients is [-1 .. 1]:

D( a, b ) = “distance” between a and b
b

a

-1                       0                            1

Inverse             No                        Strong
Dependence 
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Distance Metrics

A Distance Metric obeys typical geometric laws:

A set with an associated Distance Metric is called a Metric Space. 
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Distance Metrics

A variety of metrics have been developed, from fields as diverse as game playing to pattern 
recognition, and the most important of these is as follows:

Sum of Absolute Difference
(Manhattan Distance, L1 Norm):

Sum of Squared Difference:

Mean Absolute Error:

Mean Squared Error:

Euclidean Distance: 
(L2 Norm)
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Distance Metrics

These measures extend our common understanding of the notion of distance to complex 
mathematical domains (such as vector spaces) and give us tools to understand how similar 
or dissimilar two objects are. 
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Dependence Metrics 

Two common dependence metrics are as follows:

Correlation (Pearson’s Product-Moment Correlation Coefficient): 

Correlation measures the linear dependence of two vectors or random variables X and Y.  

Cosine Similarity:

Cosine similarity measures the cosine of the angle between two vectors of length N in N-
dimensional space. 

NOTE that these are similar calculations, except that correlation subtracts the mean from 
each point. For musical signals of any length, the mean will be very close to 0, and so these 
are effectively the same. 
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Distance Metrics

Dependence metrics can be converted (almost) into distance metrics by the simple 
expediency of subtracting them from 1.0:

Cosine Distance  =  1.0  +  Cosine Similarity

Pearson’s Distance  =  1.0  +   Correlation Coefficient

Now these are in the range [0..2], with 2 indicating the strongest possible dependence; these 
are not actually distance metrics, since they do not satisfy the triangle inequality; however, 
this does not prevent them from being extremely useful!!
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1. Spectrogram
2. Logarithmic compression
3. Differentiation
4. Accumulation

Steps:

Novelty curve
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Subtraction of local average

Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression
3. Differentiation
4. Accumulation
5. Normalization

Steps:

Novelty curve
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1. Spectrogram
2. Logarithmic compression
3. Differentiation
4. Accumulation
5. Normalization

Steps:

Normalized novelty curve



Computer ScienceOnset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression
3. Differentiation
4. Accumulation
5. Normalization
6. Peak picking

Steps:

Normalized novelty curve


