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Lecture 17
Conclusions on Beat Tracking (on notebook)
Similarity Matrices for Alignment/Synchronization
Self-similarity Matrices for
Structure Analysis

Segmentation




How to compare music with different tempos and timings,
and why?

We may want to synchronize two different forms of a signal, e.g., MIDI
and WAV File:

MIDI
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Or a score and audio file (e.g., for a Score-following
program:
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Music Synchronization: Scan-Audio

Scanned Sheet Music Symbolic Note Events

SONATE
Dem Grafen Fran von Brunswik geidmes

gy . ; = 00:04.00 00:04.00 00:12.00
P & 7:7 5 < : 7;5 & 1 1 1

Correspondence

Audio Recording



Application: Score Viewer

Tonara iPad App: https://www.youtube.com/user/TonaraSystems

Tonara Interactive Piano Sheet Music
By Tonara Ltd.

Open iTunes to buy and download apps.

Description

“Something interactive like this will do to s
Not all scores were created equal.

Tonara Ltd. Web Site» Tonara Interactiy

What's New in Version 3.2.3
bug fixes

View in iTunes

Free


https://www.youtube.com/user/TonaraSystems

Musicologists and musicians would like to compare
multiple versions of the same piece:
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= |11 Orepeat  Interpretation Switcher

Beethoven_Op067-1_Symphony5_Bernstein 03:39.49
» - )

Beethoven_Op067-1_Symphony5_Karajan 03:09.84
> - { )}

Beethoven_Op067-1_Symphony5_Kegel 03:13.84
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Beethoven_Op067-1_Symphony5_Sawallisch 03:27.84
> - )

Beethoven_Op067-1_Symphony5_Scherbakov 03:09.25
| B Yot

Beethoven_Op067-1_Symphony5_OrchestraMIDI 02:43.64
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Music Synchronization: Audio-Audio

Beethoven's Fifth

Karajan

Scherbakov

Synchronization:
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Music Synchronization: Audio-Audio

This Is generally done on the chromagram level:

Karajan Scherbakov

Time (seconds) Time (seconds)



Music Synchronization: Audio-Audio

The standard techniques uses a Similarity/Cost Matrix to
compare each chromagraph window in one piece with
every window in the other, and measuring their distance:
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Music Synchronization: Audio-Audio

The result of this analysis is a cost-minimizing warping
path which gives the alignment:
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Music Synchronization: Audio-Audio

Let’s consider a simple related problem as a warmup to the issues....
Approximate String Matching Problem:

Given two strings a a,....a, and b,....b,, what is the minimum edit distance
between the two strings relative to a set of edit operations with costs, e.g.,

delete a character (from either string) cost =1
change a character cost=1

The goal is to minimize the total cost to convert one string to another.

Example: SNEIDER SNYDER
SNEIDER —> SNIDER ——> SNYDER Total cost = 2
delete change

Example: SCHNIDEIR SNYDER

SCHNIDEIR —> SHNIDEIR ——> SNIDEIR ——> SNYDEIR——>SNYDER
delete delete change delete

total cost =4



Music Synchronization: Audio-Audio

How to compute minimum cost path between a;a,....a, and b,....b,, ?

Create n x m Distance Matrix, giving distance between each pair of letters;
supposing cost of a change = 1 for all all pairs

Distance Matrix

S
 ;

"snyder"
"'sneider"

list(s)
list(t)

Rows
Cols

def dist(a,b):
if(a==b):
return @
else:
return 1

L 0.4

- 0.2

D= [[0 for x in range(len(Cols))]
for y in range(len(Rows))] L i
for k in range(len(Rows)):
for m in range(len(Cols)):
D[k] [m] = dist(Rows[k],Cols[m])
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Music Synchronization: Audio-Audio

How to compute minimum cost path between a a,....a, and b,....b,, ?

Create n x m Distance Matrix, giving distance between each pair of letters;

supposing cost of a change = distance between letters
Distance Matrix

s = "snyder" 200
t = "sneider"
17.5
Rows = list(s)
Cols = list(t) 15.0
125
def dist(a,b): 10.0
return abs(ord(a)-ord(b))
- 7.5
- 5.0
D = [[0 for x in range(len(Cols))]
for y in range(len(Rows))] 25
for k in range(len(Rows)): L 1 oo
for m in range(len(Cols)): 0.0 5.0 14.0  10.0 15.0 14.0 1.0
D[k] [m] = dist(Rows[k],Cols[m]) 5.0 0.0 9.0 5.0 10.0 9.0 4.0
6.0 11.0 20.0 16.0 21.0 20.0 7.0
15.0  10.0 1.0 5.0 0.0 1.0 14.0
14.0 9.0 0.0 4.0 1.0 0.0 13.0
1.0 4.0 13.0 9.0 14.0  13.0 0.0



Music Synchronization: Audio-Audio

How to compute minimum cost path between a a,....a, and b,....b,, ?

Create n x m Distance Matrix, giving distance between each pair of letters;
supposing cost of a change = distance between letters on a keyboard
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Music Synchronization: Audio-Audio

How to compute minimum cost path between a a,....a, and b,....b,, ?

Next, create a Cost Matrix, giving the minimum cost to arrive at a particular cell in
the matrix; for cell (r,c), this is the minimum cost of matching

S = a,a,....a, and t=b,....b,

b

' C = [[0 for x in range(len(Cols))] for y in range(len(Rows))]

'C[o]l[0] = DI[0] [0]
;for ¢ in range(1,len(Cols)):
i Cl[o]l [c] = C[0] [c-1] + 1

' for r in range(1, len(Rows)):

: Cirl[o] = Clr-1][0] + 1

|

» for r in range(1, len(Rows)):

) for ¢ in range(1, len(Cols)):
’ left Clrllc-1] + 1

| up = Clr-1l[c] + 1
l upleft = C[r-1]1[c-1] + D[r-1][c-1]
= min(left,up,upleft)

l C[k] [m]

bc4 bc
C(r-1,c-1)| C(r-1,c)
maw

S ‘ delets

delete b4 '\>;¢

C(r,c-1)

C(r,c)




Audio-Audio

Music Synchronization

Next, create a Cost Matrix.......

Cost Matrix

Distance Matrix

- 0.0




Music Synchronization: Audio-Audio

Finally, while creating the Cost Matrix, keep track of the minimum path from the
upper left to the lower right corner:

SNEIDER —> SNIDER —> SNYDER Total cost = 2
delete chanae
. Cost Matrix with Least-Cost Path (cost=2)
Cost Matrix
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Music Synchronization: Audio-Audio

Finally, while creating the Cost Matrix, keep track of the minimum path from the
upper left to the lower right corner:

SCHNIDEIR —> SHNIDEIR —> SNIDEIR —> SNYDEIR —> SNYDER

delete delete change delete

Distance Matrix Cost Matrix with Least-Cost Path (cost=4)
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Music Synchronization: Audio-Audio

Finally, while creating the Cost Matrix, keep track of the minimum path from the

upper left to the lower right corner:

Distance Matrix

abcdefghijklmnopqrstuvwxyz

0.4

-0.2
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Cost Matrix with Least-Cost Path (cost=8)

abcdefghijklImnopqrstuvwxyz
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When applied to two Time Series (e.g., audio signals) this
technique 1s called Dynamic Time Warping.

Time Serves A

[ J between _Zand #one needs to
find the path through the grid

/ m
/ O To find the best alignment
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® which minimizes the total
O distance between them.

O Pis called a warping function.
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Optimisations to the DTW Algorithm

Time Sertes A
. ; The number of possible warping
. - ~ .z paths through the grid is
/ o000 ©O0 exponentially explosive!
( L o o o
o 000 o reduction of the
[ ] L J - L J( ) search space
L )L L [ [ )
[ ) L JL e o - : .
) 0 ® ® Restrictions on the warping function:
O : :. ® : * monotonicity
Js :| “‘."“ : « continuity
: : — @ ‘. . o * boundary conditions
L0 000 O » warping window
00000 000 :
TZime Series B |1 @)@ @@ @@ o e * slope constraint.




The result is an alignment between the two signals which
can then be used for score alignment, etc.
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Or one sequence can be time shifted (using a vocoder)
so that it exactly matches the timing of the other.



Music Structure Analysis

In approximate string matching, it is interesting to try the self-similarity of a string
of symboils.....

SNYDER SNYDER

Distance Matrix

Cost Matrix with Least-Cost Path (cost=0)
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Music Synchronization: Audio-Audio

In approximate string matching, it is interesting to try the self-similarity of a string
of symbols.....

HUMBERT HUMBERT
Distance Matrix

humbert humbert
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Music Synchronization: Audio-Audio

In approximate string matching, it is interesting to try the self-similarity of a string
of symbols.....

Distance Matrix

to be or not to be

o




Music Synchronization: Audio-Audio

In approximate string matching, it is interesting to try the self-similarity of a string
of symbols.....

Distance Matrix

0.4

-0.2

0.0



Music Synchronization: Audio-Audio

In approximate string matching, it is interesting to try the self-similarity of a string
of symbols.....

escher drawing hands drew hands drawing escher
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Music Synchronization: Audio-Audio

In approximate string matching, it is interesting to try the self-similarity of a string
of symboils.....

daaaaabbbbbcccccaaabbbaaaaa
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Self-similarity matrix for Audio Signals

* Vertical and horizontal
axes represent time Or

« symmetric similarity
function = symmetric
matrix of distance
measures

+ Main diagonal: closer/
most similar values

- similar subsequences
(repetitions) -> diagonal
stripes in the plot
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Self-similarity matrix
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|dentifying structure from audio

- Arthur G. Lintgen: able to identify unlabeled recorded orchestral works by
observing the spacing and patterns of grooves in an LP

Lintgen setting his sights en tlupattems in some new discs

- Inspired J. Foote (ISMIR, 2000) to develop a MIR system based on structural
similarity



Musical Form

Units can be assigned letters (A, B, C) or functional names (intro, verse, chorus, bridge,
etc)

Strophic: repeats the same section, e.g. AA...

Binary: alternates two sections, which are often repeated, e.g. ABAB or AABB

Ternary: third section is often a variation of the first, e.g. AABA, AABA’ , AA’ BA’

Arch: symmetric, repetition of sections around a center, e.g. ABCBA

Rondo: main theme is alternated with sub-themes, e.g. ABACADA.....
 Variations: theme plus variations, e.g. AAAIAA!

- Sonata: complex developmental form including the exposition, development
and recapitulation of a given theme(s).



Repetition

* Musical form is often
defined by the amount
of repetition across
sectional units.

+ Repetition is central to
music (in harmony,
melody, rhythm, etc).

- Significant variations
are often found
between repeated
parts.
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Repetition

- The information necessary to characterize repetitions is encoded in the
feature vectors (e.g., chroma, spectrum, etc.)

(2)
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Audio Structure Analysis
Given: CD recording

Goal: Automatic extraction of the repetitive structure
(or of the musical form)

Example: Brahms Hungarian Dance No. 5 o
C 12))




Basic Procedure

= Extract audio feature vectors (e.qg.,
spectrograph, mel spectrograph, chromagraph)

= Cost measure and cost matrix
self-similarity matrix
= Path extraction (pairwise similarity of segments)

= Global structure (clustering, grouping)



Self-similarity matrix
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Self-similarity matrix
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Let's look at a similarity matrix and hear the piece of
music to see how it represents the structure....
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Figure 1. First bars of Bach’s Prelude No. 1 in C Major, BVW 846, from The Well-Tempered Clavier



Time (seconds)

Basic Procedure

Self-similarity matrix

A A B1 Bo (@ As Bs

Time (seconds)

Similarity structure

Ay Ay B B C A; By By
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Basic Procedure

Self-similarity matrix Similarity structure
A2 .Bl B- .C A3. Bs Bs4D A, Ay, B, B, C As Bs B,
[ ]
Time (seconds)

Time (seconds)

Time (seconds)



Basic Procedure

Self-similarity matrix Similarity structure

Ay Ay By By @ As Bs By
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Basic Procedure

Self-similarity matrix Similarity structure
A2 .Bl Bo .C A3. Bs B4D A, Ay, B, B, C As Bs B,
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Basic Procedure

Self-similarity matrix Similarity structure

Ay Ay B B C A; By By
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Basic Procedure

Self-similarity matrix

Time (seconds)

Time (seconds)

Similarity structure

Ay Ay B B C A; By By
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High-Resolution Music Synchronization

= Normalized chroma features
— robust to changes in instrumentation and dynamics
— robust synchronization of reasonable overall quality

= Drawback: low temporal alignment accuracy

* |dea: Integration of note onset information



High-Resolution Music Synchronization

Cost matrix windows are based on based on onset

intervals, not uniformly spaced!
Audio MIDI

T ) T T T T
L 1k
0.8 0.8
06 0.6
0.4 0.4
0.2 B 0.2
0 | I | | 1 |
8 10 12

Cost matrix

Warping path
based on onset
information

Audio




High-Resolution Music Synchronization

Impulses
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Music Segmentation Analysis

= Music segmentation

— pitch content (e.qg.,
melody, harmony)

— music texture (e.g.,
timbre, instruments)

— rhythm

(3]

— How to find the
musical “sections” of
the piece?

Figure 2. Gould performance showing note boundaries



Music Segmentation Analysis

= Basic idea (from image processing) uses a kernel
or mask to modify data points according to their

neighbors

= Each data point is replaced by the weighted sum of
its neighbors * kernel values



Music Segmentation Analysis

000

Identity 010

3 000

(4 x0)
X

Center element of the kernel is placed over the igxg; 1 0 =1

source pixel. The source pixel is then replaced (0 X 0) 00 0
with a weighted sum of itself and nearby pixels. ©0x1) 10 1

(0x1)

_ 0 10
Source pixel Edge detection 1 -4 1
0 10
=1 =1 =1]

- -1 8 -1
5 -1 -1 —1]
5 [0 -1 0]

: Sharpen -1 5 -1
: | 0 -1 0]

Convolution kernel 1 11

(emboss) ; RORbAN hu 1 a

(normalized) 9
1 1 1
New pixel value (destination pixel)
Gaussian blur 1 ; 3 ;
(approximation) E 1 2 1




Music Segmentation Analysis

A binary kernel finds boundaries along the axis
where sections of music different from
neighboring sections

00001111
00001111
00001111
00001111
11110000
11110000
11110000
11110000

Figure 2. Gould performance showing note boundaries
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Music Segmentation Analysis

= The kernel is slid along the axis of the similarity matrix, and the value of
the convolution is recorded for each time (in the center of the kernel):
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Figure 2. Gould performance showing note boundaries



Music Segmentation Analysis

= The kernel is slid along the axis of the similarity matrix, and the value of
the convolution is recorded for each time (in the center of the kernel):
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Figure 2. Gould performance showing note boundaries



Music Segmentation Analysis

= The kernel is slid along the axis of the similarity matrix, and the value of
the convolution is recorded for each time (in the center of the kernel):

00001111
00001111
00001111
00001111
11110000
11110000
11110000
11110000

Figure 2. Gould performance showing note boundaries



Music Segmentation Analysis

= As the kernel is slid along the axis, the values calculated give us a
“novelty score” for how much the music is changing at that point

= Different kernel types and sizes give a different perspective on the
scale of the changes, from individual notes to large sections....

= Peak picking gives us the times where there is a potential start of
a new segment of music:

0.45

0.4 -

2S kernel

0.35

novelty score

0.5S kernel




