
Basic Paramodulation

Leo Bachmair� Harald Ganzingery

Christopher Lynchz Wayne Snyderx

March 9, 1995

�Department of Computer Science, SUNY at Stony Brook, Stony Brook, NY 11794,
U.S.A., leo@sbcs.sunysb.edu; partially supported by NSF Grant No. CCR-8901322.

yMax-Planck-Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Germany,
hg@mpi-sb.mpg.de; partially supported by the ESPRIT Basic Research Working Group
No. 6028 �Construction of Computational Logics� and by German Science Foundation
Grant No. Ga261/4-2.

zComputer Science Department, Boston University, 111 Cummington St., Boston, MA
02215, U.S.A., lynch@cs.bu.edu; partially supported by NSF grant No. CCR-8901647.

xComputer Science Department, Boston University, 111 Cummington St., Boston, MA
02215, U.S.A., snyder@cs.bu.edu; partially supported by NSF Grant No. CCR-8910268.

1

Proposed Running Head: Basic Paramodulation

Proofs should be sent to Wayne Snyder (Boston University�address on
previous page).

2

List of Symbols

Other than ordinary text in variously sized fonts, and in roman, italic,
boldface, and script (F , V ,R), greek letters, ordinary mathematical symbols
([, 2, 62, =, n (set di�erence), :, _, ^, etc.) and the �at-sign� @ used in
email addresses, we use the following mathematical symbols:

� Relational symbols: � (equality in the formal language), = (equality
in the meta language), 6� (negation of equality), � (congruence),),
)�,,,,�, + (rewrite relations),)R�,)R, etc. (subscripted rewrite
relations);

� Term, Equation, and Clause Orderings: �, �, �, �mul, etc. (we use
> for the ordinary ordering on the natural numbers);

� Grouping symbols: [�], [�]p, [[�]], f�g,

� Miscellaneous: > (for true), 7!, and � (dot) used in closures: C � �.

We also use standard form for inferences, e.g.,

C1 � � � � � Cn � �

C � �

and we indicate certain speci�c portions of an atomic formula by enclosing
them in boxes, e.g.,

:P (gg y) _ Q(ga)_ k(hg y ; g y) � h y

3

Abstract

We introduce a class of restrictions for the ordered paramodulation and
superposition calculi (inspired by the basic strategy for narrowing), in
which paramodulation inferences are forbidden at terms introduced by
substitutions from previous inference steps. In addition we introduce
restrictions based on term selection rules and redex orderings, which
are general criteria for delimiting the terms which are available for
inferences. These re�nements are compatible with standard ordering
restrictions and are complete without paramodulation into variables or
using functional re�exivity axioms. We prove refutational complete-
ness in the context of deletion rules, such as simpli�cation by rewriting
(demodulation) and subsumption, and of techniques for eliminating re-
dundant inferences.

4

1 Introduction

The paramodulation calculus is a refutational theorem proving method for
�rst-order logic with equality, originally presented in Robinson &Wos (1969)
and re�ned in various ways since that time. Two important re�nements of
this method that have been developed are, �rst, restricting the paramodu-
lation rule so that no inferences are performed into variable positions and
avoiding the use of functional re�exivity axioms (Brand 1975, Peterson 1983)
and, second, restricting the inference rules using orderings on terms and
atoms (see Section 3.1 for references). In addition, various mechanisms have
been suggested for simplifying clauses and removing redundant ones. The
paramodulation rule is extremely proli�c, even if restricted to non-variable
positions, and it is crucial for the practical use of the method to work out
the various possibilities for reducing the search space for a refutation.

In this paper we strengthen previous re�nements signi�cantly by extend-
ing the principles underlying the basic strategy for narrowing, due to Hullot
(1980), in which inferences are forbidden at terms introduced by substitu-
tions in earlier inferences, to the case of �rst-order clauses in a refutational
setting. In addition, we show how to associate with each term information
as to which subterms have already been explored, so as to direct further in-
ferences to the unexplored region of a term. The boundary between the two
regions is called the frontier. Theorem proving can be viewed as a process
that continually expands this frontier in the search for a refutation. Our
re�nements of paramodulation are aimed at controlling and optimizing this
exploration process.

As a simple illustration, let us consider the paramodulation inference

Q(ga)_ f(hz; z) � gz :P (f(x; gy))_ k(x; gy)� hy

:P (ggy)_ Q(ga)_ k(hgy; gy)� hy

and possible further paramodulations into its conclusion. Using boxes to
indicate subterms that have already been explored and at which further
paramodulations are forbidden, we obtain the following representation of
the conclusion

:P (gg y) _ Q(ga)_ k(hg y ; g y) � h y

if paramodulations into variables are disallowed. The basic restriction also
forbids inferences at any term introduced as part of the substitution,

:P (g gy) _Q(ga)_ k(hgy ; g y) � h y :

5

These restrictions can be implemented easily either by using a simple
marking strategy (with a Boolean �ag indicating forbidden terms) or, al-
ternately, by directly implementing the formalism of closures (i.e., pairs
of clauses and substitutions) in which we describe our inference systems.
Alternately, as described in Nieuwenhuis & Rubio (1992a and 1992b), the
basic strategy can be represented by clauses with equality constraints, e.g.,
P (a) could be represented by P (x) [[x = a]], where inferences are not per-
mitted into the constraint (see Kirchner, Kirchner, & Rusinowitch 1990).
This formulation also allows the integration of the basic strategy with other
constraint methods.

We also show that the basic strategy is compatible with ordering restric-
tions and, hence, can be applied to the superposition calculus (see Bachmair
& Ganzinger 1994) which extends a suitable notion of rewriting to �rst-order
clauses. Further re�nements include the use of term selection functions and
redex orderings . Selection complements basic constraints in that it provides
a mechanism for specifying at which positions inferences must take place,
and is a generalization of the use of orderings to constrain inferences. Redex
orderings blend well with selection functions and rest on the observation
that the rewrite steps modelled by superposition can be assumed to have
occurred in a particular order in reducing selected terms to normal form.

These re�nements would allow us, for example, to forbid inferences at
any term positioned below a former paramodulation inference,

:P (ggy) _ Q(ga)_ k(hgy ; g y) � h y

or even at any term introduced by the left premise,

:P (ggy) _Q(ga) _ k(hgy ; g y) � h y :

We will also formally describe a technique, called variable abstraction,
for propagating information about forbidden terms around a clause. For ex-
ample, if one occurrence of a subterm has been explored, we may propagate
the restrictions to other occurrences of the same term,

:P (ggy) _Q(ga) _ k(hgy ; gy) � h y :

The combined e�ect of all these re�nements of paramodulation is remi-
niscent of the set of support strategy in resolution, in that inferences are not
permitted in certain regions of the clause set. The di�erences lie in the scope

6

of these restricted regions: parts of terms local to one clause in the basic
method, and a subset of the entire clause set in the set of support strategy.
Thus we consider this paper to be a robust answer to a research problem
posed in Wos (1988): What strategy can be used to restrict paramodulation
at the term level to the same degree that the set of support strategy restricts
all inference rules at the clause level?

Another aspect of paramodulation calculi, which is at least as impor-
tant for practical purposes as re�nements of the deduction process, is the
design of suitable simpli�cation techniques. We explore the role of simpli-
�cation rules such as demodulation, subsumption and blocking, and adapt
the framework of redundancy developed in Bachmair & Ganzinger (1994) to
our basic variants of paramodulation. The connections between simpli�ca-
tion and deductive inference rules are quite subtle in this context and raise
a number of interesting questions, both from a theoretical and a practical
point of view.

This paper is organized as follows. In the next section we present the
technical background to the calculi, which are presented formally in Sec-
tion 3. The succeeding section proves completeness, and then we consider
theorem proving derivations for saturating a set of clauses and discuss re-
dundancy in Section 5. In Section 6 we will brie�y consider the purely
equational case and apply our results to describe Knuth/Bendix completion
under the basic strategy. We conclude with a comparison with previous and
current work.

2 Preliminaries

2.1 Equational clauses

We formulate our inference rules in an equational framework and de�ne
clauses in terms of multisets. A multiset is an unordered collection with
possible duplicate elements. We denote the number of occurrences of an
object x in a multiset M by M(x).

An equation is an expression s � t, where s and t are (�rst-order) terms
built from a given set of function symbols F and a set of variables V . We
assume the reader is familiar with some notation, such as strings of integers,
for indicating positions (i.e., addresses of subterms) in a term, literal, or
clause. By t=q we denote the subterm of t occurring at position q. We also
write t[s] if s is a subterm of t, and if necessary write t[s]p to indicate the
position p of s in t. We identify s � t with t � s (and hence implicitly

7

have symmetry of equality). A literal is either an equation A (a positive
literal) or the negation :A thereof (a negative literal). Negative equations
:(s � t) will be given in the form s 6� t. We may, where appropriate,
assume the vocabulary of function symbols to be a many-sorted signature
with the usual typing constraints for equations, terms and substitutions. In
particular, atomic formulas P (t1; : : : ; tn), where P is a �predicate� symbol,
can be represented as equations P (t1; : : : ; tn) � >, where > is a unary
symbol of sort �atom� and the signature of predicate symbols is de�ned
accordingly. For simplicity, we usually abbreviate P (t1; : : : ; tn) � > by
P (t1; : : : ; tn).

By a ground expression (a term, equation, literal, formula, etc.) we
mean an expression containing no variables. A clause is a (�nite) multiset
of literals fL1; : : : ; Lng, which we usually write as a disjunction L1_: : :_Ln.

1

A clause which is true in any (equality) interpretation is called a tautology.
Examples of tautologies are clauses containing complementary literals (that
is, literals A and :A) or containing an equation t � t.

A substitution is a mapping from variables to terms which is almost
everywhere equal to the identity. By E� we denote the result of applying
the substitution � to an expression E and call E� an instance of E. If E� is
ground, we speak of a ground instance. For example, the clause a � b_a � b
is an instance of x � b _ a � y. Composition of substitutions is denoted
by juxtaposition. Thus, if � and � are substitutions, then x�� = (x�)�,
for all variables x. We de�ne dom(�) = fxjx� 6= xg. If � and � are two
substitutions such that dom(�) \ dom(�) = ;, then we de�ne their union,
denoted � + �, as the substitution which maps x to x� if x� 6= x, and to x�
otherwise.

2.2 Equality Herbrand interpretations

Because we formulate our system wholly in an equational framework, we
may represent Herbrand interpretations as congruences on ground terms.
We write A[s] to indicate that A contains s as a subexpression and (am-
biguously) denote by A[t] the result of replacing a particular occurrence of
s by t. An equivalence is a re�exive, transitive, symmetric binary relation.
An equivalence � on terms is called a congruence if s � t implies u[s] � u[t],
for all terms u, s, and t. If E is a set of ground equations, we denote by E�

the smallest congruence � such that s � t whenever s � t 2 E.

1Therefore we assume that the order of the literals in a disjunction is unimportant,
i.e., A _B is the same clause as B _A; also note that A _A is distinct from A.

8

By an (equality Herbrand) interpretation we mean a congruence on
ground terms. An interpretation I is said to satisfy a ground clause C
if either A 2 I , for some equation A in C, or else A 62 I , for some negative
literal :A in C. We also say that a ground clause C is true in I , if I satis�es
C, and that C is false in I otherwise. An interpretation I is said to satisfy
a non-ground clause C if it satis�es all ground instances C�. For instance,
a tautology is satis�ed by any interpretation. The empty clause is unsatis�-
able in that it is satis�ed by no interpretation. An interpretation I is called
a (equality Herbrand) model of a set N of clauses if it satis�es all members
of N . A set N is called consistent if it has a model; and inconsistent (or
unsatis�able), otherwise. We say that a clause C is a consequence of N if
every model of N satis�es C.

Convergent rewrite systems provide a convenient formalism for describ-
ing and reasoning about equality interpretations.

2.3 Convergent rewrite systems

A binary relation) on terms is called a rewrite relation if s) t implies
u[s�]) u[t�], for all terms s, t and u, and substitutions �. It is called
well-founded if there is no in�nite sequence t0) t1) � � � . A transitive,
well-founded rewrite relation is called a reduction ordering. By, we denote
the symmetric closure of); by)� the transitive, re�exive closure; and by
,� the symmetric, transitive, re�exive closure. Furthermore, we write s + t
to indicate that s and t can be rewritten to a common form: s)� v and
t)� v, for some term v. A rewrite relation) is said to be Church-Rosser
if the two relations ,� and + are the same.

A set of equations R is called a rewrite system with respect to an ordering
� if we have s � t or t � s, for all equations s � t in R. If all equations
in R are ground, we speak of a ground rewrite system. Equations in R are
also called (rewrite) rules. When we speak of �the rule s � t� we implicitly
assume that s � t. By)R� (or simply)R) we denote the smallest rewrite
relation for which s)R t whenever s � t 2 R and s � t. A term s is said
to be in normal form (with respect to R) if it can not be rewritten by)R,
i.e., if there is no term t such that s)R t. A term is also called irreducible,
if it is in normal form, and reducible, otherwise. For instance, if s +R t and
s � t, then s is reducible by R. A substitution � is called normalized with
respect to R if x� is in normal form for each x 2 dom(�).

A rewrite system R is said to be convergent if the rewrite relation)E is
well-founded and Church-Rosser. Convergent rewrite systems de�ne unique

9

normal forms. A ground rewrite system R is called left-reduced if for every
rule s � t in R the term s is irreducible by R n fs � tg. It is well-known
that left-reduced, well-founded ground rewrite systems are convergent (see
Huet 1980).

We shall represent equality Herbrand interpretations in this paper by
convergent ground rewriting systems. Any such system R represents an
interpretation I de�ned by: s � t is true in I i� s +R t. Thus we shall
use the phrase �is true in R" instead of the more proper �is true in the
interpretation I generated by R."

2.4 Clause orderings

In this paper we assume given a reduction ordering � which is total on
ground terms.2 For the purpose of extending this ordering to literals and
clauses, we identify a positive literal s � t with the multiset (of multisets)
ffsg; ftgg, and a negative literal s 6� t with the multiset ffs; tgg.

Any ordering � on a set S can be extended to an ordering �mul on �nite
multisets over S as follows: M �mul N if (i) M 6= N and (ii) whenever
N(x) > M(x) then M(y) > N(y), for some y such that y � x. If � is a
total [well-founded] ordering,3 so is �mul. Given a set (or multiset) S and
an ordering � on S, we say that x is maximal relative to S if there is no
y 2 S with y � x; and strictly maximal if there is no y 2 S nfxg with y � x.

If � is an ordering on terms, then the twofold multiset ordering
(�mul)mul of � is an ordering on literals, and the threefold ordering
((�mul)mul)mul is an ordering on clauses. Note that the multiset extension
of a well-founded [total] ordering is still well-founded [total]. Since which
ordering we intend will always be clear from the context, we denote all of
these simply by �. When comparing a literal with a clause, we consider
the literal to be a unitary clause. These orderings are similar to the ones
used in Bachmair & Ganzinger (1994). For example, if s � t � u, then
s 6� u � s � t � s � u. In general, :A � A, for all equations A.

In the setting in which we work we need a notion of reducibility which
takes account of the ordering on the literals involved. We say that a literal
L[s0]p is order-reducible (at position p) by an equation s � t, if s0 = s�,
s� � t� and L � s� � t�. The last condition is always true when L is a
negative literal or else when the redex s0 does not occur at the top of the
largest term of L. For example, if c � b � a, then c � b is order-reducible by

2We assume the implicit unary predicate > is least in this ordering.
3We shall often abbreviate the parenthetical �(respectively, : : :)� by �[. . .]�.

10

c � a, and c 6� a is order-reducible by c � b, but c � a is not order-reducible
by c � b. Note that no equation is order-reducible by itself. But a ground
instance of an equation may be order-reducible by another ground instance
of the same equation, as the above two ground instances of c � x indicate.
A literal is order-reducible by R if it is order-reducible by some equation in
R. Likewise, a clause is called order-[ir]reducible at p if the literal to which
p belongs is order-[ir]reducible at p. �Order-irreducible� is the same as �not
order-reducible.�

2.5 Closures

Basic strategies require additional information about the terms in a clause.
A frontier for a term t is a set of mutually disjoint positions in t. We assume
that frontiers are associated with all terms in a clause. Paramodulation
inferences will be forbidden at any term at or below a frontier position.
Thus, each term is e�ectively divided into an explored region (all positions
at or below some frontier position) and an unexplored region (all remaining
positions). When displaying formulas we use boxes, as in the examples
above, to delineate the explored regions in terms. Our proposed restrictions
on paramodulation inferences are designed to maximize the explored regions,
as this cuts down the number of inferences that can be applied to a clause.
The fundamental observation underlying the basic strategy is that frontier
positions need not be retried when clauses are instantiated via uni�ers during
the deductive inference process.

A closure is a pair C � � consisting of a clause C (the skeleton) and a
substitution �. Closures provide a convenient formalism for denoting clauses
and associated frontiers: C � � represents the clause C� with frontiers con-
sisting of all positions of variables x in C for which x� 6= x. For example,

(P (x) _ z � b) � fx 7! fy; z 7! gbg

is a closure representing the clause P (fy) _ gb � b, but which we will con-

ventially represent as P (fy)_ gb � b. A non-variable position p in C� is

called a substitution position in C � � if it can be written as p = p0q, where
p0 is a variable position in C. In our previous example, the term fy occurs
at a substitution position, but y does not. The term b occurs twice, once at
a substitution position.

We will occasionally extend this notation to terms, equations, and sub-
sets of clauses, e.g., representing a term occurring in a closure C � � by t � �.

11

We speak of a ground closure if C� is ground. The closure C � id, where
id is the identity substitution, represents the clause C with no associated
frontier. An instance C ��� of a closure C �� (by a substitution �) represents
the clause C��. A closure C�1 ��2 is called a retraction of C �� if � = �1�2.

4

When a retraction is formed, we assume that any variables introduced are
new. For example

(P (x) _ gz0 � b) � fx 7! fy; z0 7! bg

is a retraction of the closure given in the previous paragraph.
We say that two closures C �� and D �� have disjoint variables whenever

var(C)[var(C�) and var(D)[var(D�) are disjoint. In this case C �� and
D �� represent the same clauses and frontiers as C �� and D ��, respectively,
where � = �� .

Since we are only interested in the clauses and frontiers represented by a
closures, the latter may be kept in a certain form during a refutation. Let us
say that a closure C � � is in standard form if for every variable x occurring
in C, either x� = x or x� is a non-variable. For example, the closures given
above are in standard form, whereas

P (fx; z) � fx 7! y; z 7! yg

is not. We will assume in what follows that all closures are kept in standard
form by instantiating variable�variable bindings whenever they arise. This is
merely a technical convenience and has no e�ect on the restrictions discussed
in the paper.

2.6 Reduced Closures

The main technical problem in completeness proofs for paramodulation sys-
tems is that ground inferences on ground instances of clauses (which is the
level where the fundamental properties related to completeness are proved)
do not necessarily �lift� to corresponding inferences on the clauses them-
selves, as the position of the inference may be lifted o� with the substitution.
The solution to this, due to Peterson (1983), has been to work with substi-
tutions which are reduced with respect to a suitably de�ned rewrite system
constructed from the set of ground instances of clauses; in our method we
carry this one step further and require that clauses be �hereditarily reduced,�
so that no inference need be performed inside any substitution position. In

4In [23, 24] this is called a weakening.

12

other words, the restriction that inferences not be performed at variable
positions in premises is inherited by the conclusions of inferences, so that
no inference need be performed at or below a position where a variable has
ever occurred during the accumulation of substitution terms. The key to
formalizing this approach is a suitable notion of what it means for a closure
to be reduced.5

We say that a ground closure C � � is reduced with respect to a rewrite
system R (or R-reduced) at a position p if C� is order-irreducible by R at
or below p. The closure C �� is simply called reduced with respect to R if it
is reduced at all substitution positions.

For example P (fb) _ fa � a is reduced with respect to the system

ffa � ag, but fa 6� a is not.
A non-ground closure C �� is called reduced with respect to R if for any

of its ground instances C ��� it is the case that C ��� is reduced with respect
to R whenever C� � � is (e.g., when � is normalized with respect to R, then
C � �� will be reduced with respect to R). These de�nitions are extended
to closure literals in the obvious way. Note that closures C � id with an
empty substitution part are reduced with respect to any rewrite system R.
A ground clause D is called a reduced ground instance (with respect to R)
of a set N of closures if there exists a closure C �� in N such that D = C��

and C � �� is reduced with respect to R.

3 Basic Inference Rules

We shall consider inference rules of the form

C1 � � � � � Cn � �

C � �

where n 2 f1; 2g and C1 � �; : : : ; Cn � � (the premises) and C � � (the conclu-
sion) are closures. We assume that the premises of a binary inference rule
have disjoint variables (if necessary the variables in one of the premises are
renamed with new variables), and so may give a common name � to their
substitutions for notational convenience.

5We should remark at this point that the main technical di�culties in formalizing the
�basic� concepts arise only in the context of non-Horn clauses and in the presence of
variables that occur in positive equations, but not as arguments of function symbols, in
a clause. The exposition can be considerably simpli�ed if one considers, say, only Horn
clauses.

13

3.1 Basic paramodulation

The inference systems we discuss consist of restricted versions of paramodu-
lation, equality resolution, and factoring. Let us �rst discuss paramodulation
(Robinson & Wos 1966), the basic variant of which is:

(C _ s � t) � � (L[u]_D) � �

(L[t]_ C _D) � �

where the redex u is not a variable and � = ��, where � is a most general
uni�er6 of s� and u�. These are basic re�nements of paramodulation in the
sense that uni�ers are composed with the substitution part of a closure but
not applied to its skeleton and inferences do not take place at substitution
positions (by virtue of the restriction �u is not a variable�).

Since we formulate our rules in an equational framework, basic resolution
inferences are a special case of basic paramodulation. For simplicity in
the sequel we discuss only paramodulation, leaving the translation to the
resolution case to the reader; see also Bachmair & Ganzinger (1994).

We next re�ne basic paramodulation along two parameters, �rst using a
given reduction ordering � to restrict the �rst premise, and second by the
use of a term selection function which delimits the locations in the second
premise where redexes can occur. Later on, we will in addition use a redex
ordering to specify which selected positions in both premises can be assumed
to be reduced.

The use of orderings may be motivated as follows. Assume given a
reduction ordering �. We say that a clause C _ s � t is reductive for s � t

if t 6� s and s � t is a strictly maximal literal in the clause. For example,
if s � t � u, then s � u _ s � t is reductive for s � t, but s 6� u _ s � t is
not. In general, if a clause C is reductive for s � t, then the maximal term
s must not occur in a negative literal. If the reduction ordering � is total
on ground terms, then a reductive ground clause

:A1 _ � � � _ :Am _B1 _ � � � _Bn _ s � t

can be thought of as a conditional rewrite rule

A1; : : : ; Am;:B1; : : : ;:Bn ! s � t

6We assume in this paper that all most general uni�ers are such as produced by the
Martelli�Montanari set of transformations [32]; the reader may check that when the vari-
ables in the premises are disjoint, then all substitutions will be idempotent.

14

(with positive and negative conditions), where all conditions are strictly
smaller than s � t.7 Conditional rules of this form de�ne a rewrite relation
on ground terms (�replace s by t whenever all conditions are satis�ed�),
so that corresponding paramodulations on the ground level can be thought
of as rewriting applied to ground clauses. Our completeness proof shows
that constructing a refutation proof can (at the ground level) be seen as
the process of partially constructing a convergent rewrite system from re-
ductive clauses and normalizing negative equations to identities (which are
thereupon removed).

Selection rules (generalized from Bachmair & Ganzinger 1994) de�ne a
minimal set of positions where inferences must be performed to achieve this
end. We de�ne a term selection function (or just a selection function) to be a
function S that assigns to each closure C a set S(C) of selected occurrences
of non-variable terms in C, subject to the following constraints. Let us
say that an occurrence of a literal in C is selected if it contains a selected
occurrence of a term; then we require that (i) some negative equation or
all maximal literals must be selected, and (ii) the maximal side(s) of a
selected literal, and all its non-variable subterms, must be selected. Thus,
if a negative equation in C is maximal, it must be selected.

Inferences may only take place at selected terms, but we should em-
phasize that a given selection rule may select more terms than are strictly
required; below we shall see that there is an interesting tradeo� between the
strength of the selection rule and the basic restriction. Finally, it should
be remarked that with respect to negative equations, this strategy is much
stronger than the usual ordering restrictions. In the latter, we must allow
for redexes in all maximal equations, but according to our selection strategy,
we need only select a single negative equation. This shows clearly the di�er-
ence between the don't care non-deterministic choices which must be made in
searching for a redex among the negatives namely, which negative equation
to work on next, and the choices which are don't know non-deterministic,
namely, which redex to pick in the selected term(s) in the chosen negative
equation. Essentially, our results show that orderings are signi�cant with
regard to positive equations, since they guide the construction of critical
pairs, but with negatives, orderings play a minimal role compared with se-
lection functions, since (as in SLD-resolution) the choice of a negative atom
to work on is don't care non-deterministic.

Based on these two methods for obtaining restrictions we get:

7These systems have been introduced and investigated by Kaplan (1988).

15

Basic paramodulation:
(C _ s � t) � � (L[u]_D) � �

(L[t]_ C _D) � �

where (i) u is not a variable and � = ��, where � is a most general uni�er of
s� and u�, (ii) the clause C� _ s� � t� is reductive for s� � t� and contains
no negative selected equations (thus s� will be selected), (iii) u� is a selected
term in L� _D�, (iv) L� 6� C�_ s� � t�, and (v) if t� is selected and L is a
negative literal u 6� v, then u� � v� 6� s� � t�.

We emphasize that we use selection not only to control where infer-
ences may take place, but also to disallow inferences where the �rst premise
contains negative selected equations. It is this feature that allows us to
achieve the e�ect of hyper-resolution and hyper-paramodulation strategies,
cf. Bachmair & Ganzinger (1994).

For a paramodulation inference with premises C1 � � and C2 � � and
conclusion D � � one typically can require that C1� 6� C2� and D� 6� C2�.
The fourth condition we give above not only strengthens this restriction,
but seems also easier to check in practice. These restrictions arise from the
induction ordering used at the ground level in the completeness proof and
require a more re�ned ordering on clauses, as in Zhang (1988), Bachmair &
Ganzinger (1990) and Pais & Peterson (1991), rather than just an ordering
on atoms, as in Peterson (1983) and Hsiang & Rusinowitch (1992).

The technique of selection rules for paramodulation can be used to sim-
ulate restrictions on redexes based on reduction orderings, such as standard
paramodulation and superposition. For example, ordered paramodulation
as it appears in Peterson (1983) or Hsiang & Rusinowich (1992) can be ob-
tained via a selection rule which selects both sides of each maximal equation
in a clause, and the superposition calculus of Bachmair & Ganzinger (1990)
can be obtained by selecting all maximal sides of maximal equations (and
using the equality factoring rule to be presented below). Positive paramod-
ulation (i.e., the left premise can contain no negatives) is obtained if the rule
always selects a negative equation if such exists. Also, certain results which
have previously required special proofs are obtained as immediate corollaries
of our main completeness theorem. For example, resolution is complete if
no clause is ever resolved with itself (Eisinger 1989); in the paramodulation
case, we can show that completeness is preserved if we forbid paramodulation
of a clause into its own negative literals (but note that the construction of
critical pairs must allow for the paramodulation of a clause into its own pos-
itive literals). This can easily be seen by considering a selection rule which is

16

invariant under substitution (e.g., which is determined by the skeleton of a
clause only) and never selects a positive and a negative equation simultane-
ously. In a later section we shall add further restrictions to paramodulation
in the form of blocking rules.

In addition to paramodulation we need an inference rule that encodes
the re�exivity of equality:

Equality resolution:
(C _ u 6� v) � �

C � �

where � = ��, with � a most general uni�er of u� and v� and u� 6� v� a
selected literal in C� _ u� 6� v�.

We also need a variant of factoring, restricted to positive literals:

Equality factoring:
(C _ s � t _ s0 � t0) � �

(C _ t 6� t0 _ s0 � t0) � �

where (i) � = ��, with � a most general uni�er of s� and s0�, (ii) t� 6� s�

and t0� 6� s0�, (iii) s� � t� is a selected equation and no negative literal is
selected in C� _ s� � t� _ s0� � t0�, and (iv) if t� is selected then t� and t0�
are uni�able.

Equality factoring is evidently sound, as the implication t� � t0� �
s0� � t0� is a logical consequence of the disjunction s0� � t� _ s0� � t0�. An
alternative to equality factoring is to use positive factoring plus the merging
paramodulation rule of Bachmair & Ganzinger (1990), but the technical
development for the current system is simpler.

3.2 Variable abstraction

Basic paramodulation, equality resolution, and equality factoring are our
core inference rules. We will also employ an auxiliary inference rule in our
calculus which can be applied to the conclusions of inferences for expanding
the frontier of a new closure by moving skeleton terms into the substitution:

Variable abstraction:
C[t]p � �

C[x]p � fx 7! tg�

where p is a non-variable position in C and x is a new variable. We also
speak of a variable abstraction at position p.

Obviously, we lose completeness if this inference rule is applied at arbi-
trary positions, for then no paramodulation inferences may be possible at

17

all. The problem is to �nd out at which positions variable elimination can
be safely applied. The fundamental idea here, as mentioned in the intro-
duction, is that it is possible to propagate certain �basic� restrictions on
redexes to other occurrences of the same term; for example, P (a; a) can be
abstracted to P (a ; a), since (at the ground level) if one occurrence of a
is reduced, then so is the other. In addition, it is possible to apply this rule
during the construction of the conclusions of inferences, based on informa-
tion about what terms (at the ground level) can be assumed to be reduced.
Before we formalize this idea, we motivate the notion of a �redex ordering.�

We have remarked above that paramodulation, on the ground level, cor-
responds to conditional rewriting, while its repeated application achieves
normalization of ground clauses. In this interpretation, paramodulation into
negative equations amounts to tracing rewrite proofs for the two sides of the
equation, and paramodulation into positive equations serves to construct
critical pairs, and, hence, to allow the construction of convergent rewrite
systems (our completeness proof will be founded on this idea). Term se-
lection de�nes which positions must be considered as possible redexes in
this process. One important property of convergent systems is that any
fair strategy for �nding redexes, i.e., one which does not ignore a possible
redex forever, can be used to normalize terms. For example, searching for
redexes in depth-�rst, left to right order is fair in this sense. In general, one
could de�ne a function from terms to an ordering on positions in the term,
and the normalization process could always use the ordering to search for
redexes. In our setting, in fact it is possible to order the set of all positions
occurring in selected terms in a closure; when a redex is selected, then it
may be assumed that all positions lower in the ordering are in normal form;
we may formalize this as follows.

Let R be a function which for any multiset M of (closure) terms returns
a partial order on the positions in the selected terms in M . Thus, for any
closure C, R(S(C)) is an ordering on the positions in C where redexes are
allowed in our paramodulation rules. We will call such an ordering a redex
ordering , and denote it by �R when S and C are obvious from context.
We shall see that the ordering �R serves to direct the search for a redex
among disjoint innermost redexes in a term. (Therefore, it is only necessary
to consider orderings which contain the subterm ordering on the terms in
M , i.e., if t[t0] 2M , then t 6�R t0.)

The essential idea is that when a paramodulation inference is performed
into a position q, then all selected positions p �R q can be assumed to
be reduced, and hence amenable to being moved into the substitution part

18

of the conclusion using variable abstraction. Thus, redex orderings can be
combined with selection functions to guide the variable abstraction process
as applied to the conclusions of paramodulation inferences.

Formally, we say that a position p in the conclusion C[t]p�� of an inference
is eligible for variable abstraction if, for any arbitrary rewrite system R for
which C� is order-reducible at p, either (i) some premise or the conclusion
itself is order-reducible by R at a substitution position, or (ii) the �rst
(or only) premise is order-reducible by R at a selected position, or (iii)
the second premise, in the case of a paramodulation inference applied at a
position q, is order-reducible by R at a selected position that is disjoint from
and smaller (with respect to �R) than q.

Variable elimination may be applied to eligible positions in the conclu-
sions of inferences. These additional inferences are optional, that is, variable
abstraction need not be applied to all eligible positions. Our completeness
results apply to all strategies for applying variable abstraction at eligible
positions. In practice, most eligible terms can be identi�ed by checking for
the existence of terms in suitable selected or substitution positions that are
identical to skeleton terms in the conclusion.

The technique of redex orderings is a generalization of a similar technique
used in narrowing (see Krischer & Bockmair 1991). Brie�y, the reason this
technique does not disturb refutational completeness is that in our proof we
use the fact that substitutions can be kept in normal form (with respect to a
suitable rewrite system), and so normalized terms can always be moved into
the substitution. In addition, we may restrict (at the ground level) the �rst
premise of a paramodulation inference, and the single premise of the unary
inference rules, to those clauses in which selected terms are normalized, and
may assume that selected terms in the second premise are to be normalized
using the given redex ordering �R, so that all terms less than the redex are
in normal form. Details will be given in the next section.

To summarize, we have de�ned a class of basic inference systems compris-
ing equality resolution, equality factoring, and paramodulation, plus subse-
quent variable abstraction, which depend on the following parameters: a
reduction ordering �, a selection function S, and a redex ordering function
R. Such inference systems embed four kinds of restrictions: (i) basic con-
straints preventing paramodulations into those parts of a clause generated
by previous substitutions; (ii) ordering constraints allowing only paramod-
ulations that approximate conditional rewriting (on the ground level); (iii)
selection functions excluding paramodulations into non-selected terms and
from clauses with selected negative equations; and (iv) redex orderings for

19

de�ning the order in which inferences can be assumed to have occurred.
Basic constraints de�ne the frontier between explored and unexplored re-
gions of a clause, while ordering constraints and selection are mechanisms
for controlling the application of inferences at unexplored positions; redex
orderings de�ne conditions under which the frontier can be expanded in
newly constructed closures. (A further technique for restricting inferences
based on reducibility criteria will be presented in a later section.)

The soundness of the inference system presented in this section is straight-
forward and left to the interested reader. In the next section we prove that
these basic calculi are refutationally complete in the sense that a contradic-
tion (the empty clause) can be derived from any inconsistent set of clauses.

4 Refutational Completeness

We prove completeness by showing that if a set of closures N which is
saturated with respect to our inference rules does not contain the empty
closure, then it is possible to construct a model, represented by a convergent
rewrite system, for N . This means that the empty closure can be derived
from any inconsistent set of closures.

4.1 Construction of Equality Interpretations

Let N be a set of closures in standard form and recall that � is assumed to
be a reduction ordering which is total on ground terms. We de�ne interpre-
tations R by means of convergent rewrite systems as follows.

First, we use induction on the clause ordering � to de�ne sets of equa-
tions EC and RC , for all ground instances C of closures of N .

De�nition 1 Let C be such a ground instance and suppose that EC0 and
RC0 have been de�ned for all ground instances C0 of N for which C � C0.
Then

RC =
[

C�C0

EC0 :

Moreover
EC = fs � tg

if C = D_ s � t is a reduced ground instance of N with respect to RC such
that (i) C is false in RC , (ii) C is reductive for s � t, and (iii) s is irreducible
by RC . In this case, we say that C produces the equation (or rule) s � t.

20

In all other cases, EC = ;. Finally, we de�ne R =
S
C EC as the set of all

equations produced by ground instances of clauses of N .

Clauses that produce equations are called productive. Note that a pro-
ductive clause C is false in RC , but true in RC [EC . The sets RC and
R are constructed in such a way that they are left-reduced rewrite systems
with respect to �. Hence, they are convergent, and so, as we have remarked
previously, represent interpretations of the set of clauses N , and can also be
used in conjunction with a redex ordering to normalize selected terms in a
closure.

We shall also use the following ancillary results in our completeness proof.

Lemma 1 Let C = B _ s � t be a ground instance of N where s � t is a
maximal occurrence of an equation, and let D be another ground instance of
N containing s. If C � D and s is irreducible by RC, then RC = RD.

Proof. If C0 is any ground instance of N with C � C0 � D, then EC0 =
;, for otherwise s would be reducible by RC . Therefore RC = RD [S
C�C0�D EC0 = RD. 2

Lemma 2 Let C = B_u 6� v and D be ground instances of N with D � C.
Then u � v is true in RC if and only if it is true in RD if and only if it is
true in R.

Proof. If u � v is true in RC , then u +RC v. Since RC � RD � R, we then
have u +RD v and u +R v, which indicates that u � v is true in RD and in
R.

On the other hand, suppose u � v is false in RC . If u0 and v0 are the
normal forms of u and v with respect to RC , then u0 6= v0. Furthermore,
if s � t is a rule in R n RC , then s � u � u0 and s � v � v0. (Clauses
which produce rules for terms not greater than u or v are smaller than C.)
Therefore, u0 and v0 are in normal form with respect to R, which implies
that u � v is false in RD and in R. 2

Lemma 3 Let C = B_u � v and D be ground instances of N with D � C.
If u � v is true in RC, then it is also true in RD and in R.

Proof. Use the fact that RC � RD � R. 2

The above lemmas indicate that the sequence of interpretations RC , with
C ranging over all ground instances of N , preserves the truth of ground
clauses.

21

Corollary 1 Let C and D be ground instances of N with D � C. If C is
true in RC, then it is also true in RD and R.

Next, we show that the property of being a reduced closure is also pre-
served.

Lemma 4 A ground closure C is a reduced ground instance of N with re-
spect to RC if and only if it is reduced with respect to R.

Proof. If C is not reduced with respect to R, then there is some clause D
which produces an equation s � t, and some literal L in C which is reducible
at a substitution position by s � t and such that s � t � L. Since s � t is
strictly maximal in D, clearly D � C, and C is not reduced with respect to
RC . For the converse use the fact that RC � R. 2

Finally, it will be useful in a number of places to construct reduced
closures in the following way.

Lemma 5 Suppose C � �� is a ground instance of a closure C �� in N . Then
there is a ground instance C � �� such that (i) C�� � C�� , (ii) C� � � is
reduced with respect to R, and (iii) C�� is true in RD [R] if and only if C��
is true in RD [R], for any clause D � C��.

Proof. De�ne � to be the substitution for which x� is the normal form of
x� by RC��. Then (i) and (iii) are evidently satis�ed. For (ii), since C� � �
is reduced with respect to RC�� , then clearly it is reduced with respect to
RC�� , so then by the previous lemma it is reduced with respect to R. 2

4.2 Redundancy and Saturation

We shall prove that the interpretation R is a model of N , provided N is
consistent and saturated, i.e., closed under su�ciently many applications of
the appropriate basic inference rules. In addition we shall demonstrate that
the search space can be further decreased by certain restrictions which are
based on the concept of redundancy. Roughly, a closure is redundant if it
is a consequence of smaller closures in N . Such closures are unnecessary
in saturating a set of closures, since they will play no role in the model
construction given above. In addition, it is possible to show that certain
inferences are redundant as well, in that the conclusions of such inferences
will play no role in the model construction.

22

For any ground clause C and set of clauses N , let NC be the set of
ground instances C0 of N such that C0 � C, and NC be the set of ground
instances C 0 of N such that C0 � C. Now suppose L is the maximal literal
in C and let R be a (ground) rewrite system. Then we write RC for the set
of rules l � r from R such that l � r � L, and RC for the rules l � r � L.
(This notation is consistent with that of de�nition 1.)

For any rewrite system R, set of closures N , and ground closures D and
C, let us say that D follows from the R-reduced part of NC if there exist
ground instances D1; : : : ; Dk of N such that (i) C � Di, for 1 � i � k, (ii)
if D is reduced with respect to R then so is each Di, and (iii) if each Di is
true in RDi , then D is true in RD.

De�nition 2 We call a ground closure D redundant with respect to N ,
if for any convergent ground rewrite system R for which D is reduced, D
follows from the R-reduced part of ND. Whenever the set R is obvious, we
will also say that D is redundant with respect to D1; : : : ; Dk, referring to
the Di that imply D in the sense made precise above.

For convenience in this subsection, temporarily call a position selected
via the given selection rule S in a ground instance A � �� of a closure A � �
from a given set N if it is selected in A � �, and analogously for the redex
ordering �R.

De�nition 3 A ground instance of an equality resolution or equality fac-
toring inference fromN is redundant with respect toN if, for any convergent
ground R for which the premise C is order-irreducible at substitution and
selected positions, the conclusion D follows from the R-reduced part of NC .

A ground instance
C0 _ s � t C

D

(where p is the redex position in C) of a paramodulation inference is said
to be redundant with respect to N if either some premise is redundant with
respect to N , or else D follows from the R-reduced part of NC , for any
convergent ground rewriting system R containing the rule s � t and for
which the positions in P are order-irreducible, where P is the union of the
substitution positions in both premises, the selected positions in the left
premise, and the selected positions q �R p in the second premise.

23

Finally, a closure (or an inference) is called redundant if all its ground
instances are redundant.8

Note that an equality resolution or equality factoring inference is redun-
dant by this de�nition if its premise is redundant. This characterization of
which closures and inferences are unnecessary in constructing a model for
a set of closures provides us with a characterization of which closures and
inferences are unnecessary in searching for a refutation for an inconsistent
set of closures. This provides a framework for designing useful syntactic
criteria for elimination and simpli�cation of closures.

The completeness results in this paper depend on the properties of sets
of closures in which all non-redundant inferences have been performed.

De�nition 4 We say that a set of closures N is saturated if every inference
from N is redundant with respect to N .

Saturated sets have special properties which provide for the completeness
of our inference rules.

Lemma 6 Let N be a saturated set of closures which does not contain the
empty clause, R be a rewrite system constructed from N according to de�-
nition 1, and let C = ~C � �� be an R-reduced ground instance of a closure
~C � � in N . Then

(i) C is true in RC if (i.1) C is redundant, or (i.2) C is order-reducible
by RC at a selected position, or (i.3) some negative equation in C is selected;

(ii) If C is false in RC then it must be a productive clause of the form
C = C0 _ s � t (where s � t is the equation produced), such that C0 is false
in R, and

(iii) C is true in R and in RD, for every D � C.

Proof. First of all we note that (iii) follows from (i) and (ii), by corollary 1.
Therefore we prove only the �rst two cases, proceeding by induction on the
clause ordering �. Suppose N is saturated and does not contain the empty
clause, and assume that properties (i) � (iii) hold for all reduced ground
instances D of N with C � D. We consider each subcase in turn.

(i.1) Suppose that C is redundant with respect to R-reduced ground
instances Di, 1 � i � k, of N . By the induction hypothesis we know that

8For a clause or inference to be redundant crucially depends on the choice of the
ordering � and the vocabulary
 with respect to which ground instances are considered.
In cases where we have to emphasize this dependency we will speak of redundancy with
respect to � and
.

24

each Di is true in RC (and hence in RDi), from which we may conclude that
C is true in RC .

Let us therefore assume that C is not redundant. We proceed by con-
tradiction by assuming that C is false in RC . In this case we show that
there exists a ground instance of an inference from N with C and (in the
case of paramodulation) a productive clause D with C � D, as premises; we
then show that the conclusion B of the ground inference must be a reduced
closure which is false in RC . Using the induction hypothesis for (i) and (ii)
we may infer that D is not redundant. Because N is saturated the inference
is redundant; but since neither premise is redundant, then B follows from
the R-reduced part of NC , so there exist reduced ground instances D1 : : :Dk

of N which are smaller than C. By the induction hypothesis, the Di are
true in RC , and so B is true in RC , a contradiction.

Therefore in what follows we need only provide for the existence of the
reduced conclusion B false in RC from premises C and, in the case of a
paramodulation, a productive clause D � C. Note in this argument that
B need not be a ground instance of N and we do not apply the induction
hypothesis to B.

(i.2) Suppose C is order-reducible at a selected position p by a rule s � t
in R, but is false in RC . Furthermore, assume that p is the least such
reducible selected position with respect to the redex ordering �R, and that
s � t is produced by a ground clause D = D0 _ s � t. As s � t is in RC ,
C � D. Using the induction hypothesis for (i) and (ii) and lemma 4 we may
infer that D is represented by a reduced ground instance ~D ��� (of a closure
~D � � from N)9 which is order-irreducible at selected positions, and has no
negative selected equations; furthermore, D0 is false in R, and s � t is true
in R.

We distinguish two cases, depending on whether p occurs in the negative
or positive literals of C.

In the �rst case, if C = C0 _ u[s]p 6� v, then u 6� v � D because u 6� v �
s � t and s � t is maximal in D. If t is selected, then it is irreducible by
R, and since u � v 2 RC and so u[t] +RC v, then either u = s and v � t, or
u � s, with the result that u � v � s � t as required. Thus there exists a
ground instance

D0 _ s � t C0 _ u[s]p 6� v

C0 _D0 _ u[t] 6� v

9Again, for simplicity, we use � and � for the substitutions in both closures, since these
are variable disjoint.

25

of an inference satisfying all the ordering and other conditions for paramod-
ulation; let B � � denote the conclusion of the ground inference and ~B � �0

be the result of some number of variable abstractions applied to this con-
clusion. Note that we have B� � C because s � t and u 6� v � D. Now
we know, using the induction hypothesis for (ii), that D0 is false in R and
in RC . Also u[t] � v is in RC , as both u � v and s � t are. Finally, C0

is false in RC , with the result that B is false in RC . This provides for the
necessary contradiction as mentioned above, as long as we can show that
~B � �0 is reduced.

First we verify that B �� is reduced. Consider how this closure is derived
from D = ~D � �� and C = ~C � �� . The fact that the premises are reduced
implies that every equation in C0 _D0 is reduced. It remains to show that
u[t] 6� v is reduced. Let x be a (closure) variable in t. If l � r 2 R reduces
x�, then s � t � l. Hence, s � t � l � r, and l � r would also order-
reduce x�� in the occurrence s � t in D, which is a contradiction. If x
is a (closure) variable in u[t] � v but not in t, then any equation smaller
than the occurrence of u[t] 6� v and reducing x� would also reduce x�� in
the occurrence of u[s] 6� v in C. As u[s] � v � u[t] � v we again obtain a
contradiction.

From this it is easy to see that ~B � �0 is reduced. This is because all
selected terms in D, and all selected terms less than p with respect to �R in
C, are reduced by hypothesis, and because any other term abstracted must
be relatively reduced to some other substitution term by the de�nition of
variable abstraction.10

This derives the contradiction in the case that position p occurs in a
negative literal. The case where p occurs in a positive literal is completely
analogous. The only signi�cant di�erence is that we know that u � v � D

because either u � s or u = s and v � t (since if u = s and v = t then C
would not be false in RC), so u � v � s � t. The remainder of the argument
is almost identical.

(i.3) Next, consider the case where some negative equation in C is se-
lected. By the previous cases, we may assume that C is not redundant and
is order-irreducible at selected positions. Again we assume that the clause
is false in RC , which means that all negative equations in C must be true
in RC . Thus C must be in the form C0 _ s 6� s, where s 6� s is the selected

10Observe that this inference is a ground instance of an inference from N , and hence
variable abstraction is applied only to the conclusion of this general inference, and not at
the ground level.

26

equation, since it is irreducible by R. Consider the ground instance

C0 _ s 6� s

C0

of an equality resolution inference from N (the reader may easily check that
the conditions for such an inference are satis�ed). Clearly C0 � C and C

is false in RC . The proof that C0 is reduced is trivial, since any term at a
variable position in C0 also occurs at a variable position in C, and, as with
the previous case, any variable abstractions would not change the fact that
the conclusion is reduced.

(ii) Suppose that C is false in RC . From case (i), we may assume that C
is a non-redundant instance which is order-irreducible at selected positions
by R, and which contains no negative selected equations. We also know that
C is not the empty clause. Therefore C must be in the form C0 _ s � t,
where s � t is maximal, s � t (since C can not be a tautology), and thus
s is selected. We distinguish two subcases, depending on whether s � t is
strictly maximal in C.

If it is, then the clause is reductive, and since s is irreducible in RC

then the clause produces s � t. Since C0 is false in RC , the only thing that
remains is to show that the positive equations in C0 remain false in R. Now
suppose to the contrary that C0 = C00 _ u � v, where u = v is true in R.
Since C0 is false in RC , we have u � v 2 I n RC , which is only possible if
s = u and t +RC v, with t � v. Consider the ground instance

C00 _ s � t; s � v

C00 _ t 6� v _ s � v

of an equality factoring inference, where B is the conclusion. Note that t can
not be selected, since then it would be normalized, violating the fact that
t +RC v with t � v. Hence condition (iv) for equality factoring is satis�ed.
The other conditions are easily checked. Now, since s � v � t 6� v, then
C � B, but since C and the literal t 6� v are false in RC , so is B. The only
thing which remains in order to derive the contradiction as in case (i) is to
show that B is reduced. This depends on the observation that any (closure)
variable x in t or v in the conclusion occurs also in the premise in one of the
strictly larger equations s � t or s � v. Subsequent variable abstractions,
again, would keep the conclusion reduced.

Now suppose that s � t is not strictly maximal in C. Then C0 = C00_s �
t, and we proceed almost exactly as in the previous paragraph. The only

27

di�erence is that we proceed with the assumption that t = v; therefore if
t is in the form t0 � �� and v in the form v0 � �� , then t� and v� must be
uni�able (satisfying condition (iv) for equality factoring). This concludes
case (ii) and the lemma. 2

This result allows us to show that the process of saturating a set of
closures of the form C � id will produce the empty closure i� the set is incon-
sistent. (In the following section we will discuss methods for saturation.)

Theorem 1 LetK be a set of clauses and letN be a saturated set of closures
such that C � id is in N for any clause C in K and such that any closure in
N follows from K. Then K is consistent if and only if N does not contain
the empty clause. In the latter case, R is a model of K and N .

Proof. If N contains the empty clause, K is inconsistent. On the other
hand, if N does not contain the empty clause, R is a model of any R-
reduced instance of N , as was shown in lemma 6. Now let C� be a ground
instance of K. We de�ne a substitution � by x� = tx, where tx is the normal
form of x� by R. Then C � � is a reduced ground instance of the closure
C � id in N . Therefore C� , and hence C�, is true in R. 2

5 Theorem Proving in the Presence of Deletion

Rules

We now discuss the completeness of methods for saturating a set of closures
in which we may delete super�uous closures. The central notion of this sec-
tion, that of a fair theorem proving derivation, is introduced in Subsection
5.2. The basic idea here is that at each step in the process of refutational
theorem proving, we can either add a consequence of the existing set of
clauses, or delete a subsumed or a redundant closure. After this de�nition,
we present a number of speci�c applications of redundancy, such as sim-
pli�cation and blocking. However, our de�nition of redundancy does not
explain the special case of subsumption by a clause with the same number
of literals11 and so we present the notion of subsumption �rst, in Subsection
5.1, and incorporate it more essentially into the de�nition of a fair theorem
proving derivation.

11It would be possible to modify the de�nition of redundancy to accomodate this special
case, at the cost of some additional complexity, and so we have chosen to deal with the
problem outside the framework of redundancy.

28

Before we present these results, it will be convenient to have a set of
purely syntactic su�cient conditions for the notion of redundancy for clo-
sures. For that purpose the notion of �relative reducibility� of closures is
signi�cant.

De�nition 5 A ground closure C � � is reduced relative to another ground
closure D � � if for any R, C � � is R-reduced whenever D � � is.

For example, P (g b) is reduced relative to P (fb). For non-ground closures,
this notion must be extended slightly for the contexts in which we use it.

De�nition 6 A position q in a literal L is reduced relative to a position p
in a literal L0 [closure C] modulo � if for any R and for any ground instance
L0� [C�], L�� is reduced at q whenever L0� [C�] is reduced at p. A closure
D � � is called reduced relative to C � � modulo � if for any R and for any
R-reduced ground instance C � �� , D � ��� is R-reduced at all positions at
which a variable x 2 dom(�) occurs.

For example, the position of gfy in P (gfy) is reduced relative to the po-
sition of gfy (modulo the identity substitution), but not relative to the po-

sition of fy, in Q(gfy). The closure P (fy) is reduced relative to Q(fgx)

modulo fy 7! gxg but not modulo fy 7! gcg.
The notion of �relatively reduced� is rather strong, as it requires this

property to hold for any rewrite system, but fortunately there are simpler
su�cient conditions. The essential idea is that relative reducibility can be
assured in all but pathological cases by checking that the respective substi-
tution terms in the �rst closure are a subset of the substitution terms in the
second. For instance, a closure D � � is reduced relative to C � � modulo �
if for every position p where a variable x 2 dom(�) occurs in a literal M in
D, there exists a variable y occurring in some literal L in C, such that x��
is a subterm of y� and either L� �M� or L� is negative.

The only pathologies involve substitution terms at the maximal side of a
positive equation. For example, P (fx) is not reduced relative to fx � c.

For supposing b � c, the ground instance fb � c is reduced with respect

to fb � b, but P (fb) is not.
One issue concerning closures which are reduced relative to each other

needs to be clari�ed at this point. If C � � and D � � are two closures such
that C� and D� are identical up to variable renaming, and each is reduced
relative to the other, then they are said to be identical upto renaming and

29

under reducibility . For example, Q(a) _ P (a; x) and Q(a) _ P (a ; y) are
identical in this sense. We will see later that in our inference system such
closures need not be distinguished.

We now present a set of su�cient conditions for redundancy which are
of practical signi�cance for theorem proving.

Lemma 7 Let D;D1; : : : ; Dk be closures from a set N , and �1; : : : ; �k be
substitutions such that

1. For each i, Di�i � D,

2. For each i, Di is reduced relative to D modulo �i, and

3. For any ground instance D� of D, D� is a consequence of D1�1� ; : : : ;
Dk�k� .

Then D is redundant in N .

Proof. Let R be a convergent ground rewriting system, and D� be an R-
reduced ground instance of D. Note that each variable in each Di�i occurs
in D, since Di�i � D. Thus each Di�i� is ground. Now, for any ground
substitution � = fxj 7! tjg1�j�n, temporarily de�ne �# as fxi 7! t0jg, where
t0j is the normal form of tj with respect to the rewrite system RD� . We claim
that the set

D1(�1�)#; : : : ; Dk(�k�)#

satis�es conditions (i) � (iii) in the de�nition of redundancy.
First, for each i, clearly Di(�i�) #� Di�i� � D� , so condition (i) is

satis�ed. Now, suppose Di = ~Di � �i. Because D� is R-reduced, we must
show that ~Di � �i(�i�) # is R-reduced. (This is not trivial, because (�i�) #
being normalized does not of itself imply that x�i(�i�) # is normalized.)
Now, for any occurrence of a variable x in ~Di there are two cases. If x 62
dom(�i), then x�i(�i�)#= x(�i�)# is R-normalized by de�nition. Otherwise,
if x 2 dom(�i), then since Di is reduced relative to D modulo �i, we know
x�i(�i�) is order-irreducible by R, and so any proper subterm is in R-normal
form (since it can not be at the top of a maximal side of a positive equation).
We conclude that x�i(�i�)#= x�i�i� , and so x�i(�i�)# is order-irreducible.
Thus Di(�i�)# is R-reduced. This veri�es condition (ii).

Now, for (iii) we �rst observe that the sequence of lemmas culminating
in corollary 1 are true not only for models constructed according to our def-
inition, but for arbitrary ground convergent rewrite systems. Thus, assume

30

that each Di(�i�)# is true in R(D(�i�)#); then it must be true in RD� as well,
by the extension of Corollary 1. But then by (3) above, D� is true in RD� .
2

This set of three conditions can be used to prove the completeness of the
next two deletion rules we discuss.

5.1 Basic Subsumption

First we present the form of subsumption which is used in the basic setting.
A closure C is a basic subsumer of a closure D if there exists a substitution
� such that C� is a submultiset of D, and C is reduced relative to D modulo
�; it is a proper basic subsumer if D is not a basic subsumer of C in turn.
Basic subsumption reduces to standard subsumption in the case of closures
with identity substitutions.

Note that non-proper basic subsumers are identical upto renaming and
under reducibility, as de�ned in Subsection 2.6. A technical feature of proper
basic subsumption which will be used later is the following.

Lemma 8 The relation �is a proper basic subsumer of� is well-founded and
transitive.

Proof. The only di�culty is in proving well-foundedness. We map each
closure C to a complexity measure < P;M >, where P is the number of
non-variable positions in C, and M is the multiset of integers fk1; : : :kmg,
where var(C) = fx1; : : : ; xmg and each xi occurs ki times. The lexicographic
combination of > and >mul is well-founded on such pairs. If C� = D, then
C has a strictly smaller complexity, since either C has fewer literals than
D (reducing the �rst component), � maps some variable in C to a non-
variable term (reducing the �rst component), or else C and D have the same
number of literals and � maps two variables in C to some single variable in
D (reducing the second). 2

When a closure C is a basic subsumer of a closure D, then D may be
deleted from the set of closures. The technical justi�cation for this deletion
rule is that subsumed clauses are unnecessary in constructing a model for a
set of clauses. In most cases, this is because of redundancy.

Lemma 9 Let C be a basic subsumer of D, where C contains fewer literals
than D. Then D is redundant with respect to C.

31

Proof. We simply observe that C with its associated � �ts the criteria men-
tioned in lemma 7. 2

The other case of subsumption we will deal with in the next subsection.
A natural question at this point is what to do when one clause subsumes
another in the standard sense but not the the basic sense (i.e., is not rela-
tively reduced). That we can not naively delete such subsumed clauses in
the basic setting is shown by the next example.

Example 1

:P (x; y) _ P (x; b)

:P (a; b)

a � c

P (c; b)

Suppose we use a lexicographic path ordering based on the precedence
P � Q � a � b � c. If we resolve the �rst two clauses, we obtain the
clause :P (a ; y). Since this new clause subsumes (in the standard sense)
the second clause, we might suppose that the latter clause can be deleted.
However, if we do so, the reader may verify that there is no refutation. Note
that this would not be a legal subsumption step in the basic setting, unless
we retracted :P (a ; y) to :P (a; y) before performing the deletion.

If we have a subsumer in the standard, but not the basic sense, then
we may retract the subsumer in such a way that it is reduced relative to
the closure subsumed. Since we wish to keep as much of the closure in
the substitution part as possible, this means retracting just enough of the
substitution part of the subsumer so as to satisfy the condition of relative
reducibility. We now discuss a simple deterministic way of achieving this,
by giving a su�cient condition for �relatively reduced� which essentially
requires that the substitution part of one closure can be overlapped in a
very straight-forward way onto the substitution part of another.

De�nition 7 Let s � � and t � � be closures of terms and let us temporarily
de�ne P as the set of positions in t where non-variable subterms occur.
Also, suppose that dom(�) � var(s). We say that s � � is �-dominated by
t � �, for some substitution �, written s � � v� t � �, i� s�� = t� and for each
x 2 dom(�), if x occurs in s at position p, then p 62 P . For equations, we
say that (s � t) �� v� (u � v) � � i� either s �� v� u � � and t �� v� v � �, or if

32

s�� v� v�� and t�� v� u��. For negated equations the de�nition is analogous.
For closures of multisets of literals, we have C1 � �1 v� C2 � �2 i� there exists
an injection ' from C1 � �1 into C2 � �2 such that if '(L1 � �1) = L2 � �2, then
L1 ��1 v� L2 ��2. For closures of clauses, we have (�! �) �� v� (�! �) ��
i� � � � v� � � � and � � � v� � � �.

We write � v 	 to indicate that there exists some � such that � v� 	
(in the case of closures, � is in fact a basic subsumer of).

Note that this relation is not closed under substitution, since for example
Px � id v Pa � id but Px � [x 7! a] 6v Pa.

The basic idea of the relation v� is that all terms in the closure sub-
stitution on the left side must overlap directly onto the right side inside
the closure substitution. Clearly this is a su�cient condition for one literal,
or one closure, to be reduced relative to another modulo �. But it is not
necessary, since for example P (a ; b) is reduced relative to P (b; a), but
P (a ; b) 6v P (b; a). However, for subsumption and simpli�cation (to be
presented below) it is a relatively simple condition to check, and provides
for a simple method for forming the minimal retract when the condition
fails. Roughly, if L0 ��� = L �� but L0 �� 6v� L ��, then we can take the union
U of the set of non-variable skeleton positions in L0 �� and in L ��, and form
the retract L00 � �0 of L0 � � by instantiating the positions in U (equivalently,
this can be thought of as taking the intersection of substitution positions).

We will return to another application of this test for relative reducibility
when we consider simpli�cation in a later subsection.

5.2 Fair Saturation Methods

Complete methods for theorem proving amount to procedures for saturating
a set of clauses with respect to a given set of inference rules.

De�nition 8 A (�nite or countably in�nite) sequence N0; N1; N2; : : : of sets
of closures is called a theorem proving derivation if the substitution part of
every closure in N0 is empty, and if each setNi+1 can be obtained fromNi by
adding a clause which is a consequence of Ni or by deletion of a redundant
or a subsumed clause. A closure C is said to be persisting if there exists
some j such that for every k � j, there exists a closure C0 in Nk which
is identical with C upto renaming and under reducibility.12 The set of all
persisting closures, denoted N1, is called the limit of the derivation.

12Naturally, C and C 0 may be the same closure.

33

A theorem proving derivation is called fair if N1 is saturated.

This means that a fair derivation can be constructed, for instance, by
systematically adding conclusions of non-redundant inferences from persist-
ing closures. We can also apply various deletion rules during this process,
as redundant closures and inferences stay redundant through the course of
a theorem proving derivation.

Lemma 10 (i) If N � N 0, then any closure [inference] which is redundant
with respect to N is also redundant with respect to N 0.

(ii) If N � N 0 and all closures in N 0 nN are redundant with respect to
N 0, then any closure [inference] which is redundant with respect to N 0 is also
redundant with respect to N .

Proof. It is su�cient to consider only the case of ground instances of closures
and inferences. For (i) the result is trivial for both closures and inferences,
since N � N 0. Thus consider (ii) in the case of closures. Let a ground
instance D be redundant with respect to N 0, suppose an arbitrary R is
given, and assume that we choose the set D1; : : : ; Dk as the minimal such
with respect to �mul. If we can prove that no member of this set is itself
redundant wrt N 0, then D is redundant with respect to N . Thus, suppose
some Di is redundant with respect to a set E1; : : : ; En of ground instances
of N 0. But then we can show that D is redundant with respect to

D1; : : : ; Di�1; E1; : : : ; En; Di+1; : : : ; Dk:

Clearly conditions (i) and (ii) in de�nition 3 are still satis�ed; and if each Ei

is true in REi , then Di is true in RDi
, and thus (by Corollary 1) Di is true

in RDi , and so each of the Di, 1 � i � k, is true in RDi , and the original
condition (iii) applies; thus our original set was not minimal, a contradiction.

Next we consider part (ii) of the lemma in the case of inferences. The case
of redundancy on account of redundant premises is covered by the previous
paragraph. Thus, consider an inference from N 0 with premises C1 : : :Cn

and conclusion C, which is redundant in N 0 by virtue of a set fD1 : : :Dkg of
instances of N 0 with the properties speci�ed in the de�nition of a redundant
inference. As above, we may assume that no Di is redundant, which means
that fD1 : : :Dkg � N and the inference is redundant in N . 2

This shows a fundamental property of redundancy: redundancy is pre-
served if additional closures are added or if redundant closures are deleted.

34

Redundancy is a syntactic means of determining if a clause is unnecessary in
the process of saturating a set, and has as special cases most of the common
deletion rules used in theorem provers. There are some instances of deletion
rules which can not be proved complete using the notion of redundancy we
employ, for example (as mentioned above) the special case of subsumption
by a closure with the same number of equations. However, such closures
are unnecessary in constructing a model for a set of closures. The main
completeness result of the paper may now be given.

Theorem 2 Let N0; N1; N2; : : : be a fair theorem proving derivation. IfS
j Nj does not contain the empty closure, then N0 is consistent.

Proof. Since N1 is saturated and does not contain the empty closure, by
lemma 6 we can construct a rewrite system R with an associated interpre-
tation for the set. It remains to be shown that this yields a model of

S
j Nj ,

from which we conclude that N0 is consistent. It su�ces to show that R is
a model of any ground instance C of

S
j Nj nN1. There are two cases.

Suppose such a C is not redundant in
S
j Nj . Then by lemma 10 (i)

it can not be a ground instance of a closure which was redundant at some
�nite stage Ni. The only remaining possibility is that C is subsumed by
some ground instance C0 of

S
jNj with the same number of literals. Now,

by lemma 8, we may assume that C0 is the minimal such under the proper
subsumption relation, and so there is no C00 which properly subsumes C0.
Since C0 can not be redundant in

S
j Nj (or else so would be C, since C0 is

reduced relative to C), then it must be in N1 and hence C0 and C are true
in R.

Next, suppose C is redundant with respect to
S
jNj . By lemma 10 (ii) it

is redundant with respect to R-reduced ground instances D1 : : :Dk of
S
j Nj

which are not themselves redundant. But then by lemma 6 and the previous
paragraph, each Di is true in R, and so C is true in R. This concludes the
proof. 2

5.3 Basic Simpli�cation

Simpli�cation techniques in our calculus can be designed and justi�ed using
the su�cient conditions for redundancy developed in a previous subsection.
The main problem, as with subsumption, is to insure that the relative re-
ducibility criterion holds, however, we also wish to preserve as much of the
constraint of the closure as possible during the simpli�cation process, and

35

this causes some additional complications. We present two versions of sim-
pli�cation, the �rst a very general rule using variable abstraction, and a
second version based the su�cient condition v which avoids variable ab-
straction.

Let D[l0]p � � be a closure with l0 a non-variable skeleton term, which is
order-reducible at p by an instance l�� � r�� of a closure equation (l �
r) � � from N which is reduced relative to D[l0]p � � modulo � and such that
l�� � r��. Then we can basic simplify this closure into the form

D[r�] � ���:

Then we perform variable abstraction of this new closure wrt the old closure.
(Note that by the assumption of variable disjointness for closures, and by
the idempotence of the substitutions, ��� = � + ��.)

The simpli�ed version of the closureD is added to the set and the original
can then be deleted because (as we show below) it is then redundant. The
main di�culty is in insuring that the new closure and the simpli�er are
reduced relative to the original D, modulo the matching substitution. If the
simpli�er does not satisfy this condition, then we can form a retract which
does. Naturally, we would wish to retract as few positions in the simpli�er as
possible. An additional complication is that is that some variables in l may
not be bound by �, and if these also occur in r, then we must instantiate
them when r is inserted into the simpli�ed closure to insure that it is reduced
relative to the old one. For example, we can not simplify P (f(a)) � id by
(f(x) � g(x)) � id to obtain P (g(x)) � fx 7! ag, but must instantiate x
by the matching substitution to obtain P (g(a)). The information about
substitution positions in the original closure which is lost during this process
can then be recovered by variable abstraction.

An example may perhaps clarify this rule. Suppose a closure

Pf(g a ; h(hb)) = Pf(gw; hw0) � fw 7! a; w0 7! hbg

is to be simpli�ed by a closure

f(x; hhz) � k(x; hhz) = f(x; y) � k(x; y) � fy 7! hhzg:

Then the matching substitution is � = fx 7! ga; z 7! bg, however we must
take a retract of the rule in order to perform the simpli�cation. For example,
we may form the new rule

f(x; h(hz)) � k(x; h(hz)) = f(x; hv) � k(x; hv) � fv 7! hzg:

36

Now we have relative reducibility modulo � and may simplify the literal to

Pk(ga; h(hb)) = Pk(ga; hv) � fv 7! hbg

according to our rule (we have surpressed useless bindings).
However, note that we have lost the fact that a is considered to be

irreducible by the original closure. Thus we could abstract out the a to
obtain

Pk(g a ; h(hb)) = Pk(gv0; hv) � fv0 7! a; v 7! hbg:

Our �rst version of simpli�cation, in combination with variable abstraction,
is the most general form of simpli�cation rule in our calculus.

However, if the condition v is used to insure relative reducibility, then
certain details of the general method above become more concrete. The
idea here is similar to the case of subsumption: we must insure that the
term in the simpli�er is dominated by the term in the clause being matched,
and could form the retract of the simpli�er by taking the intersection of the
non-variable substitution positions in l0 � � and l � �. In the same spirit, we
would also need to form a retract in which var(r) � var(l).

In fact, in the example above, we formed the retract in this way to obtain
relative reducibility via the condition that

f(x; hv) � fv 7! hzg v� f(gw; hw
0) � fw 7! a; w0 7! hbg:

In this framework we can express the variable abstraction process di-
rectly in the simpli�cation rule. Let us suppose we add the conditions that
var(r) � var(l) and l � � v� l0 � � in our formulation of simpli�cation, so
that � is a matcher of l� onto l0�. Let p1; : : : ; pn be the positions of all
occurrences of variables in l�. The matcher � binds these variables to sub-
terms of l0�. The only problematic variables are those x such that for every
occurrence of x in l� at position q, q is a non-variable postition in l0; for
all other variables y, some y� occurs at a substitution position in l0 � � and
hence can be preserved in the substitution part of the simpli�ed term. For
problematic x, we can not assume that the whole term x� is reduced rel-
ative to the clause being simpli�ed. Our original version of simpli�cation
solved this in brute force fashion by simply instantiating each such term
by replacing the redex by r� (the problematic variables are all in dom(�)).
However, as demonstrated above, we lose information about the portions of
such problematic x� which are known to be reduced by virtue of overlapping

37

substitution positions in l0 � �. To calculate the �minimal instantiatiation"
r�0, for each variable x 2 var(l�) occurring at positions q1; : : : ; qm, if any
qj occurs at a substitution position of t � �, then de�ne x�0 = x; other-
wise, let x�0 be the most speci�c generalization (see Huet 1980) of the terms
l0=q1; : : : ; l

0=qm. Thus the problematic variables are exactly dom(�0). Since
x� = (l0=q1)� = : : := (l0=qm)�, then for each x 2 dom(�0), x�0 contains only
variables already occurring in l0, and x�0� = x�. Now, for each problematic
variable x, the substitution postitions in x�0 � � are relatively reduced to the
closure being simpli�ed, since they are a part of �. Therefore we reformulate
the simpli�cation rule so that the simpli�ed clause is of the form D[r�0] ����
and do not perform variable abstraction. This implementation of basic sim-
pli�cation reduces to standard simpli�cation when � = � = id (cf. also the
complete version of simpli�cation used in basic narrowing as in Nutt, Rety,
& Smolka 1989, where � = id).

For example, in simplifying f(h(x; b); h(a; y)) � fx 7! a; y 7! bg by
(f(z; z) � z) � id, with the matching substitution � = fz 7! h(a; b)g, our
original rule would give us a reduction to h(a; b) � id before variable abstrac-
tion produces h(x0; y0) � fx0 7! a; y0 7! bg. We may perform this reduction
directly by taking the most speci�c generalization h(x; y) of h(x; b) and
h(a; y),and forming �0 = fz 7! h(x; y)g (note that z�0� = h(a; b) = z�), we
would simplify the term to h(x; y) � fx 7! a; y 7! bg.

Note that in the context of �eager" application of the variable abstrac-
tion rule to conclusions of inferences, the terms l0=q1; : : : ; l0=qm would all be
identical and the use of most speci�c generalization would not be necessary.
In fact, most of the fussy details above are only necessary to avoid a special
requirement that variable abstraction be so used.

To sum up, when using the su�cient condition v for relative reducibil-
ity, we can preserve as much of the original constraint on the simpli�ed
closure as possible by instantiating the replacement term r by just as much
of the matcher � as overlaps only on the skeleton of the clause being simpli-
�ed when the match from l� onto l0 is calculated, the portion overlapping
� being already �safe� for abstraction. The point here is to preserve as
much information about the frontier of a closure as possible throughout the
simpli�cation process.

The justi�cation for deleting a clause after a simpli�ed version has been
constructed is again that it is redundant. The proof is again a routine
veri�cation of the conditions in lemma 7 to show that the original closure is
redundant in the context of the simpli�er and the newly simpli�ed closure.

38

Lemma 11 Let C = (l � r) � �, D0 = D[l0] � �, D00 = D[r�] � ���, and
D000 = D[r�0] � ��� be as above. Then D0 is redundant with respect to C and
D00, and with respect to C and D000.

As with subsumption, the standard notion of simpli�cation (i.e., where
relative reducibility does not hold) is incomplete in the basic setting, as the
following example shows.

Example 2

P (f(x)) _ f(x) � b

:P (f(a))

a � c

f(c) 6� b

We assume a lexicographic path ordering based on the precedence P �
f � a � b � c, and suppose the selection rule simulates superposition, as
discussed in section 3. Let us assume that saturation begins with resolving
the �rst onto the second clause. This produces a closure, f(a) � b, which
we use to simplify the second clause, to obtain

P (f(x)) _ f(x) � b

:P (b)

a � c

f(c) 6� b

f(a) � b

From hereon it is impossible to derive the empty clause by basic superposi-
tion, as the calculus does not admit a superposition of a � c into f(a) � b.

5.4 Basic Blocking

The su�cient conditions for redundancy given in lemma 7 are fairly general,
but do not provide for all deletion rules which we would like to implement.
Two other rules we will discuss are essentially a kind of tautology deletion:
if we know that for every model represented by a convergent rewrite system
R, every R-reduced instance of a closure C is true in R, then C can be
deleted, since it is redundant by our de�nition. The �rst rule, blocking,

39

occurs when there are no R-reduced instances and also can be extended to
a rule for blocking inferences.

The main idea in this subsection is that the generation of simpli�ers
in the process of saturating a set of closures allows us to reason to some
degree about the model constructed for the ��nal� saturated set. Brie�y, if
a simpli�er l � r appears, and l� � r� for some �, then any occurrence of
l� in a clause will represent the location of a term which is reducible with
respect to the R constructed from the saturated set. This means that if l�
occurs at a substitution position, then the closure is not reduced and hence
not necessary in the construction upon which our completeness result rests.

De�nition 9 Let us call a instance l�� � r�� of a closure (l � r) � � from
N a basic simpli�er instance of N if l�� � r��. A closure C � � is blocked
with respect to a set of closures N if it is order-reducible at a substitution
position by a basic simpli�er instance of N which is reduced relative to C ��.

Note that relative reducibility always holds in this case if var(r) � var(l).
Blocked closures can always be deleted from a set.

Lemma 12 Blocked closures are redundant.

Proof. Suppose C � � is order-reducible at a substitution position in a literal
L �� by (l � r) ���. For notational simplicity let us assume that the closures
are ground (otherwise we would consider ground instances via some ground
substitution �). Thus suppose C � � is reduced with respect to some R;
we claim that (l � r) � �� satis�es conditions (i)�(iii) in the de�nition of
redundancy. Clearly (i) and (ii) hold. Now suppose (l � r) � �� is true by
virtue of equations in R no larger than itself; then the term l�� is reducible
by an equation in R no bigger than l�� � r��. But then again L � � would
be reducible at a substitution position by a smaller equation. In either case
this implies that C � � was not R-reduced, a contradiction. Thus (iii) must
hold trivially. 2

In blocking, the left side of a rule is trivially reduced relative to the
substitution term which it matches modulo the matching substitution �;
thus we need only verify that the right side is relatively reduced. A simple
way to ensure this, as mentioned above, is to verify that var(r) � var(l)
or form a relatively reduced retract. An example which shows that the
relative reducibility of the right side is necessary in blocking may be framed
as follows (a similar example could be constructed for simpli�cation).

40

Example 3

P (a; b)

:P (x; y) _ Q(x; f(y))

:Q(a; x) _ a � x

f(b) � c

:Q(a; c)

Suppose an ordering based on the precedence P � Q � R � a � f �
b � c. If we resolve the �rst two clauses, we obtain the clause Q(a ; f(b)).
Then if we resolve this new clause with the third clause, we obtain the

clause a � f(b) , which blocks Q(a _ f(b)). Since the variables of the

right hand side of the blocking equation are not in the left hand side, the
equation should be instantiated. If we do not perform the instantiation,

f(b) � c blocks a � f(b) . Therefore, both of the new clauses can be

deleted; we are left with the original set of clauses, and because of fairness,
no more inferences need be performed. We have not found a refutation,
although the original set was unsatis�able.

Note that an inference

C1 � � � � � Cn � �

C � �

is redundant by de�nition if one of the closures C1�� � � � Cn �� is blocked. It is
possible in addition to show that certain additional inferences can be blocked
during the saturation of a set of clauses; this is essentially a generalization
of the technique of blocking due to Slagle (1974) (see also Lankford 1975
and Hsiang & Rusinowich 1991)

De�nition 10 An equality resolution or equality factoring inference with
premise C � � and conclusion D � � is blocked in N if C � � is blocked or if
C � � is order-reducible at a selected position by a basic simpli�er instance
l � r � �� of N which is reduced relative to the substitution and selected
positions in C � �.

Consider a paramodulation inference

(C0 _ s � t) � � C[s0]p � �

D � �

41

(where p is the redex position), let C1 = (C0_s � t)��, and let C2 = C[s0]p��.
De�ne P as the union of the selected positions in C1, the selected positions
q �R p in C2, and the substitution positions in both these closures. The
inference is blocked in N if

(i) it is order-reducible at a position in P in C1 or C2 by a basic simpli�er
instance as above of N which is relatively reduced to the positions P , or

(ii) it is order-reducible in C2 by the instance s� � t�, at either a selected
position q �R p or at a substitution position.

Note that case (i) includes the possibility that either C1 or C2 is blocked
(as a closure). The reader should compare this de�nition with the de�nition
of a redundant inference given previously. As explained above, the funda-
mental idea here is that the equations used to do reduction can be assumed
to be true in the model R, and hence indicate the presence of reducible
terms. Note that for a simpli�er, we can use an arbitrary instance, whereas
in part (ii), we must use the instance s� � t� generated by the paramodula-
tion inference (i.e., it can not be further instantiated). This is because any
instance of a positive unit clause must be true, but we do not know which
instances (if any) of s� � t� are true.

Lemma 13 Blocked inferences are redundant.

Proof. The case where the premises are blocked is trivial by the de�nition of
a redundant inference. For the other cases it if su�cient to consider ground
inferences. Thus, consider an equality resolution or equality factoring infer-
ence with conclusion D � � and with a premise C � � which is order-reducible
at a selected position by a basic simpli�er ground instance l � r reduced
relative to the selected and substitution positions in the premise. Then for
any R for which C � � is reduced at substitution and selected positions, we
can show that l � r satis�es conditions (i)�(iii) in de�nition 3. The only
di�erence from the similar argument in lemma 12 is that we consider selected
positions in addition to substitution positions.

Now consider a ground paramodulation inference with premises (C1_s �
t) �� and C2[s

0]p �� and conclusion D � �, and which is reducible at a position
in P as speci�ed in case (i) by basic simpli�er ground instance l � r which
is reduced relative to the positions P . Again for any R we can show that
l � r satis�es conditions (i)�(iii) in de�nition 3, by considering reducibility
at substitution and selected positions. If the inference is order-reducible by
s� � t� at a position as speci�ed in case two, the argument is identical,
except that we consider a rewrite system R containing s� � t�. 2

42

Under certain very natural conditions, selection rules can be used to
precalculate which clauses will cause inferences to be blocked, and so the
work in actually constructing the inferences and checking these conditions
can be saved. For example, if the selection rule is invariant under substitu-
tion, then a clause which is simpli�able at a selected position q will form a
blocked inference whenever it is either the �rst premise or else the second
premise of a paramodulation applied at a position bigger than q.

In addition, it will sometimes be possible to perform simpler checks for
blocking when the set of simpli�ers has special properties. For instance, if
a set of simpli�ers fully de�nes a function symbol f in the sense that every
ground term containing f is reducible by a basic simpli�er instance, then it
is su�cient simply to check for the existence of f in substitution and selected
terms when blocking.

5.5 Basic Tautology Deletion

Another deletion rule which can be shown to be correct using the notion of
redundancy is tautology deletion. For example, a simple kind of tautology
in paramodulation has the form C _ :A _ A or the form C _ s � s, and
can be shown to be redundant with respect to the empty set of closures.
This is because a clause which is always true in any model is unnecessary
in the construction of models. Thus any tautology can be deleted. In our
setting, in addition, it is possible to de�ne another kind of tautology by
virtue of the fact that we represent models by convergent rewrite systems
and require closures to be reduced (at the ground level) in our completeness
proof. This implies that for any convergent rewrite system R, an R-reduced
ground equation of the form (x � s) � �, where x� � s�, must always be
false with respect to R, since any rewrite proof between the two sides must
reduce x�. When such an equation occurs negatively in a clause C, then C
must be true with respect to R.

De�nition 11 A clause of the form (C _ x 6� s) � � is a basic tautology if
x� � s�.

A routine veri�cation of the conditions for redundancy, in the case where
the set fD1; : : : ; Dkg is empty, gives us the following result.

Lemma 14 Basic tautologies are redundant in any set N .

43

It is also possible to do a similar check during the construction of an
inference

C1 � � � � � Cn � �

C � �

on closures. If any of C1 � � � � � Cn � � are tautologies or basic tautologies,
then the inference is redundant and need not be performed.

6 Basic Completion

We next look at the relationship between the Knuth/Bendix completion
method and saturation up to redundancy. One question is under what cir-
cumstances a saturated set of equations is convergent (and not just ground
convergent). In this section we consider only positive unit clauses, which for
simplicity can be thought of as equations. (Since we will only reason about
saturated sets below, we need not consider closures, but only the clauses
represented by them.)

By a basic completion procedure we mean any procedure that accepts
as input a set of equations E and a reduction ordering � and generates
a fair theorem proving derivation from E in which all deduction steps are
by basic paramodulation and all deletion steps are by basic simpli�cation,
basic subsumption, or blocking. We have shown that the interpretation
generated from the limit E1 of a fair derivation is a model of E which can
be represented by a convergent ground rewrite systemR consisting of certain
ground instances of E1. Thus, the set of all orientable ground instances ofE
(that is, the set of all instances s� � t�, for which s� � t�) is convergent on
ground terms. In this sense, saturation of a (�nite or recursively enumerable)
set of equations up to redundancy under the basic strategy may be thought
of as a basic variant of the ordered completion procedure.

An interesting situation arises when all equations in E1 are orientable
with respect to �. We will show that in that case, E1 is actually convergent
on all terms. Let F be the given set of function symbols and V be the given
set of variables. We �rst introduce a set of new constants C, such that a
bijection � : V ! C exists. Furthermore, let � : C ! F be the function that
maps each constant in C to the same minimal (with respect to �) constant
in F .

The reduction ordering � can be extended to an ordering �� on T (F [
C;V) as follows (Bachmair, Dershowitz, and Plaisted 1989): s �� t if and
only if either �(s) � �(t) or else �(s) = �(t) and s �lpo t. (Here �lpo denotes

44

a lexicographic path ordering based on a total well-founded precedence re-
lation on F [C and the mapping � is extended from C to T (F [C) in the
usual way.) Note that �� is indeed a reduction ordering that extends � and
moreover is total on the set of ground terms T (F [C) (cf. Bachmair 1991).

Lemma 15 Let � be a reduction ordering that is total on T (F) and E be a
set of equations between terms in T (F ;V), such that s � t, for all equations
s � t in E. Then, for all terms u and v in T (F ;V) with �(u))E�� �(v) we
have u)E� v.

Proof. Suppose u and v are terms of the form u[s�] and u[t�], respectively,
where s � t is an equation in E and �(u) �� �(v). We have either s � t or
t � s, so that �(�(u)) 6= �(�(v)). This implies �(�(u)) � �(�(v)), from which
we may infer s � t and hence u � v. 2

We have the following result.13

Theorem 3 Let � be a reduction ordering that is total on T (F). Let E be a
set of equations between terms in T (F ;V) and E1 be the limit constructed by
a basic completion procedure for inputs E and �. If s � t, for all equations
s � t in E1, then E1 is a convergent rewrite system on T (F ;V).

Proof. First observe that any fair derivation from E with respect to � (over
the set of ground terms T (F)) can also be interpreted as a fair derivation
fromE with respect to �� (over the set of ground terms T (F[C)). The limit
E1 of the derivation is thus convergent on all ground terms in T (F [C).
We claim that it is also convergent on T (F ;V).

If u and v are terms in T (F ;V), such that u,�
E1

v, then �(u),�
E1

�(v)
and, by ground convergence, �(u) +

E
��
1

�(v). By the above lemma we get
u +E�

1
v, which completes the proof. 2

The substitution positions in the rewrite systems produced by basic com-
pletion have no signi�cance when such systems are used for reduction, how-
ever it is interesting that when these systems are used for basic narrowing
(see below), substitution positions can be added to the positions at which
narrowing is forbidden. This can be easily seen by recasting narrowing
problems of the form R j= 9(s � t)? in the form of a refutation of the set
R [fs 6� tg using the inference systems presented here; see also Chabin,
Anantharaman & Rety 1993.

13We remind the reader of the caveat expressed in the footnote to de�nition 3.

45

7 Summary

In this paper we have de�ned a framework for paramodulation (and com-
pletion) which depends on a reduction ordering, a selection function, and a
redex ordering to restrict inferences along several dimensions. The �basic�
strategy forbids inferences into substitution positions. Ordering restrictions
work both at the level of clauses, at the level of literals, and at the level of
terms to restrict inferences. (We remark here that it is possible to re�ne the
notion of selection in a way analogous to the notion of a �complete set of
positions" in Fribourg (1989). Essentially, we only need to select positions
which include some redex at the ground level so that we may provide for an
inference in the completeness proof. The de�nition of selection given in this
paper is a very general one which assumes no special information about the
clauses. With more information, for example in the presence of additional
constraints on clauses, it may be possible to restrict selection.) Selection
is particularly signi�cant in de�ning restrictions on inference positions in
negative literals, whereas orderings are more signi�cant on positive literals.
Finally, redex orderings on selected positions de�ne reducibility criteria on
positions in clauses. These results can be thought of as de�ning the frontier
between the explored and unexplored parts of the clause and for controlling
the application of inference rules in the unexplored regions. In addition to
the standard inference rules, variable abstraction can be performed to ex-
tend the basic restriction on closures, and a variety of deletion rules which
implement a very general notion of redundancy have been presented.

The basic strategy was introduced explicitly�as far as we know�for
the �rst time in Russia by Degtyarev (1979), who sketches a basic strategy
for paramodulation, but we do not have any detailed information about his
calculus. It was introduced in the West in a more comprehensive way by
Hullot (1980), and further studied by Nutt, Rety & Smolka (1989). This
latter paper shows that the basic strategy con�icts to some degree with
simpli�cation, and a method for dealing with this was described. In ad-
dition, various of the techniques described in this paper, such as selection,
blocking non-reduced closures, and variable abstraction, were described in a
comprehensive framework. Redex orderings are a more general form of the
Left-to-Right Basic Narrowing rule of Herold (1986) and Bosco et al. (1987)
(see also Bockmayr et al. 1992). The current paper can thus be thought of as
an extension and development of techniques discovered �rst in the narrowing
framework to the full �rst-order calculus in a refutational setting.

D. Plaisted has remarked to us that some features of Brand's modi-

46

�cation method (Brand 1975) are reminiscent of the basic strategy, and
the theorem prover described by Nie & Plaisted (1990), which uses a simi-
lar transformation, also avoids paramodulation into substitution terms. A
critical pair criterion similar to the basic strategy is described in Smith &
Plaisted (1988). McCune (1990) has conjectured that it is never necessary to
perform paramodulation inside Skolem functions. Indeed, this re�nement is
a special case of basic paramodulation, and hence the conjecture is a corol-
lary of our results. More generally, (basic) paramodulation inferences need
never be applied to proper subterms of function symbols, such as Skolem
symbols, that occur in the input clauses with just variables as arguments.

R. Nieuwenhuis and A. Rubio have also independently developed an in-
ference system for completion and for refutational theorem proving based
on basic superposition and proved completeness in the context of deletion
rules such as subsumption and simpli�cation (Nieuwenhuis & Rubio 1992a).
In addition, they have developed a comprehensive framework for ordering
constraints in combination with equational constraints (essentially the same
as our closure substitutions) and analysed the role of initial constraints and
problems with deletion in this framework (Nieuwenhuis & Rubio 1992b). Al-
though we have not stressed it here, this paper can be seen as a contribution
to the theory of constrained rewriting and deduction (see Kirchner, Kirchner
& Rusinowich 1990). The current project grew out of a lemma necessary
in the proof of Snyder & Lynch (1991), and was presented in a preliminary
form at the 4th Uni�cation Workshop in Barbizon, France, without deletion
or blocking rules, and using a very di�erent style of proof. The current pa-
per is a long version of the abstract presented at the Eleventh Conference
on Automated Deduction (Bachmair et al. 1992).

Our results, in addition to providing a means of making paramodula-
tion theorem provers (and related systems, such as completion procedures)
more e�cient, show that substitutions, which are produced initially as most
general uni�ers which calculate the intersection of ground instances of uni-
versally quanti�ed clauses, in fact play only this role in theorem proving, in
the sense that they need not be subject to equational inferences themselves.
We view these results as a robust answer to the question posed by L. Wos
and cited in the introduction in the following sense. Essentially, our results
depend on the fact that terms in clauses can be forbidden for paramodula-
tion inferences when, at the ground level, they represent irreducible terms
in the construction of the model described in Section 4. The user specifying
additional forbidden terms in the original set of clauses�which would be
more in the spirit of set of support�seems to require that we can prove that

47

these clauses are reduced to start with; since in general it is di�cult or im-
possible to know what models could be constructed for a set of clauses being
saturated (except in a limited sense when simpli�ers arise), it seems that
the results presented here contain the strongest possible such restrictions.

Acknowledgments. We wish to thank Dennis Kfoury and Steve Homer
of Boston University for graciously providing funds for the third author
during the academic years 1990�92. We would also like to thank Michael
Rusinowich, David Plaisted, Pierre Lescanne, Deepak Kapur, H.-J. Ohlbach,
Robert Nieuwenhuis, Albert Rubio, Zino Benaissa, Nachum Dershowitz, and
the anonymous referees for helpful discussions on the ideas presented here.
Thanks also to Jean-Pierre Jouannaud for his interest in this work.

References

[1] L. Bachmair and H. Ganzinger. On Restrictions of Ordered Paramodu-
lation with Simpli�cation. In Proc. 10th Int. Conf. on Automated Deduction,
Lect. Notes in Comput. Sci., vol. 449, pp. 427�441, Berlin, 1990. Springer-
Verlag.

[2] L. Bachmair and H. Ganzinger. Rewrite-based Equational Theorem Prov-
ing with Selection and Simpli�cation. To appear in Journal of Logic and Com-

putation (1994).

[3] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic Paramod-
ulation and Superposition. In Proc. 11th Int. Conf. on Automated Deduc-

tion, Lect. Notes in Arti�cial Intelligence, vol. 607, pp. 462�476, Berlin, 1992.
Springer-Verlag.

[4] L. Bachmair. Canonical Equational Proofs. Birkhauser Boston, Inc., Boston
MA (1991).

[5] A. Bockmayr, S. Krischer, and A. Werner. An Optimal Narrowing
Strategy for General Canonical Systems. In Proc. of CTRS , M. Rusinowich
and J.L. Remy (Eds.), LNCS vol. 250, pp. 483�497, Berlin, 1992.

[6] P.G. Bosco, E. Giovannetti, and C. Moiso. Re�ned Stategies for Se-
mantic Uni�cation. In Proc. of TAPSOFT'87 , LNCS, vol. 250, H. Ehrig et al.
(Eds.), pp. 276-290, Berlin, 1987.

[7] D. Brand. Proving Theorems with the Modi�cation Method. SIAM Journal

of Computing 4 :4 (1975) pp. 412�430.

[8] J. Chabin, S. Anantharaman, & P. Rety. E-Uni�cation via Constrained
Rewriting. In Proceedings of Seventh Workshop on Uni�cation, Boston Uni-
versity, F. Baader & W. Snyder (Organizers), June 1993.

48

[9] A. Degtyarev. The Monotonic Paramodulation Strategy. In Proc. 5th All-

Union Conference on Mathematical Logic. Novosibirsk (1979). (In Russian.)

[10] N. Eisinger A Note on the Completeness of Resolution without Self-
resolution. Information Processing Letters 31 (1989) pp. 323-326.

[11] M. Fay. First-order Uni�cation in an Equational Theory. In Proc. 4th Work-

shop on Automated Deduction, Austin, Texas (1979).

[12] L. Fribourg. A Strong Restriction of the Inductive Completion Procedure.
J. Symbolic Computation 8 (1989) 253�276.

[13] A. Herold. Narrowing Techniques Applied to Idempotent Uni�cation. SEKI-
Report SR-86-16, Univ. Kaiserslautern (1986).

[14] J. Hsiang and M. Rusinowich. Proving Refutational Completeness of The-
orem Proving Strategies: The Trans�nite Semantic Tree Method. J. ACM 38

(1991) 559�587.

[15] G. Huet Con�uent Reductions: Abstract Properties and Applications to
Term Rewriting Systems. J. ACM 27 (1980) 797�821.

[16] J.-M. Hullot. Canonical Forms and Uni�cation. In Proc. 5th Int. Conf.

on Automated Deduction, Lect. Notes in Comput. Sci., vol. 87, pp. 318�334,
Berlin, 1980. Springer-Verlag.

[17] S. Kaplan. Positive/negative Conditional Rewriting. In Conditional Term

Rewriting Systems, Lect. Notes in Comput. Sci., vol. 308, pp. 129�143, Berlin,
1988. Springer-Verlag.

[18] C. Kirchner, H. Kirchner and M. Rusinowich. Deduction with Sym-
bolic Constraints. Revue Francaise d'Intelligence Arti�cielle Vol 4, no. 3

(1990) pp. 9-52.

[19] Krischer, S., and A. Bockmayr. Detecting Redundant Narrowing Deriva-
tions by the LSE-SL Reducibility Test. In Proc. 4th Int. Conf. on Rewriting

Techniques and Applications, Lect. Notes in Comput. Sci., vol. 488, pp. 74�85,
Berlin, 1991. Springer-Verlag.

[20] D. Lankford. Canonical Inference. Tech. Rep. ATP-32 , Dept. of Math. and
Comp. Sci., Univ. of Texas, Austin, TX (1975).

[21] W. McCune. Skolem Functions and Equality in Automated Deduction. In
Proc. 8th Nat. Conf. on AI, MIT Press, 1990, pp. 246�251.

[22] X. Nie and D. Plaisted. A cOmplete Semantic Back-chaining Proof System.
In Proc. 10th Int. Conf. on Automated Deduction, Lect. Notes in Comput. Sci.,
vol. 449, pp. 16�27, Berlin, 1990. Springer-Verlag.

[23] R. Nieuwenhuis and A. Rubio. Basic Superposition is Complete. In
Proc. European Symposium on Programming , Rennes, France (1992).

49

[24] R. Nieuwenhuis and A. Rubio. Theorem Proving with Ordering Con-
strained Clauses. In Proc. 11th Int. Conf. on Automated Deduction, Lect.
Notes in Arti�cial Intelligence, vol. 607, pp. 477�491, Berlin, 1992. Springer-
Verlag.

[25] W. Nutt, P. Réty, and G. Smolka. Basic Narrowing Revisited. J. Sym-
bolic Computation 7 (1989) 295�317. Reprinted in Uni�cation, C. Kirchner
(ed.), Academic Press, London (1990).

[26] J. Pais and G. Peterson. Using Forcing to Prove Completeness of Resolu-
tion and Paramodulation. J. Symbolic Computation 11 (1991) pp.3-19.

[27] G. Peterson. A Technique for Establishing Completeness Results in Theorem
Proving with Equality. SIAM Journal of Computing 12 (1983) pp. 82�100.

[28] G.A. Robinson and L. T. Wos. Paramodulation and Theorem Proving
in First-order Theories with Equality. In B. Meltzer and D. Michie, editors,
Machine Intelligence 4 pp. 133�150. American Elsevier, New York, 1969.

[29] J. Slagle. Automated Theorem Proving with Simpli�ers, Commutativity,
and Associativity. J. ACM 21 (1974) pp. 622�642.

[30] M. Smith and D. Plaisted. Term-rewriting Techniques for Logic Program-
ming I: Completion. Report TR88-019, Department of Computer Science,
Univ. North Carolina (1988).

[31] W. Snyder and C. Lynch. Goal Directed Strategies for Paramodulation.
In Proc. 4th Int. Conf. on Rewriting Techniques and Applications, Lect. Notes
in Comput. Sci., vol. 488, pp. 150�161, Berlin, 1991. Springer-Verlag.

[32] W. Snyder. A Proof Theory for General Uni�cation. Birkhauser Boston,
Inc., Boston, MA (1991).

[33] L. T. Wos, G. A. Robinson, D. F. Carson, and L. Shalla. The Concept
of Demodulation in Theorem Proving. Journal of the ACM, Vol. 14, pp. 698�
709, 1967.

[34] L. Wos. Automated Reasoning: 33 Basic Research Problems. Prentice Hall,
Englewood Cli�s, New Jersey (1988).

[35] H. Zhang. Reduction, Superposition, and Induction: Automated Reasoning

in an Equational Logic. Ph.D. Thesis, Rensselaer Polytechnic Institute (1988).

50

