
Redundancy Criteria for

Constrained Completion

Christopher Lynch Wayne Snyder�

March 5, 1995

Abstract

This paper studies completion in the case of equations with constraints consisting of �rst-
order formulae over equations, disequations, and an irreducibility predicate. We present several
inference systems which show in a very precise way how to take advantage of redundancy notions
in this framework. A notable feature of these systems is the variety of tradeo�s they present
for removing redundant instances of the equations involved in an inference. The irreducibility
predicates simulate redundancy criteria based on reducibility (such as prime superposition and
Blocking in Basic Completion) and the disequality predicates simulate the notion of subsumed
critical pairs; in addition, since constraints are passed along with equations, we can perform
hereditary versions of all these redundancy checks. This combines in one consistent framework
stronger versions of all practical critical pair criteria. We also provide a rigorous analysis of
the problem with completing sets of equations with initial constraints. Finally, an interesting
consequence concerning the recalculation of critical pairs in completion procedures is discussed.

1 Introduction

This paper presents a framework for exploiting redundancy notions in the context of a completion
procedure for constrained equations. The constraint language consists of �rst-order formulae over
atomic constraints consisting of equations, disequations, and an irreducibility predicate. An infer-
ence schema is presented which shows precisely the tradeo�s involved in modifying constraints in
order to delete unnecessary instances of the equations involved. The notion of redundancy we use
is due to Bachmair and Ganzinger [1] (see also [17]), and amounts to a semantic version of the well-
known subconnectedness criterion. Building on recent work on Basic Paramodulation [4, 5, 15],
on constrained completion [11, 15, 16], and on various critical pair criteria (see [3] for a survey),
we show how a wide variety of techniques for removing redundant equations can be combined and
strengthened in a consistent framework. The tradeo�s we explore are essentially re�nements of the
techniques for weakening constraints in the deletion rules of Basic Paramodulation. Special cases
of this inference system show how to implement strict improvements of critical pair criteria based
on reducibility (such as prime superposition and Blocking in Basic Completion) and on the notion
of subsumed critical pairs. In addition, we analyze the e�ect of initial constraints on this system.1

It is hoped that this research contributes to the further development of the theory of constrained
equational reasoning and to the practical improvement of existing completion procedures.

The paper is organized as follows. Following a section of preliminary de�nitions, in section 3
we formally discuss the relationship between constraints and redundancy, and then in section 4
present our inference system and discuss its general features and its relationship to other critical

�Computer Science Department, Boston University, 111 Cummington St., Boston, MA 02215, U.S.A.,
lynch,snyder@cs.bu.edu.

1For a discussion of the e�ect of initial ordering constraints see [16].

1

pair criteria. In section 5 we discuss constraint solving with irreducibility constraints. In section 6
we develop the theoretical justi�cation for this system and rigorously prove completeness. In
section 7, we show how it is possible to apply our completion process without recalculating critical
pairs after the left hand side of a rule is simpli�ed. In section 8 we show how this framework can
be used to analyze completion of sets of equations with initial constraints. We conclude with a
comparison with previous work and a discussion of current and future directions.

2 Preliminaries

We present here a brief overview of the notation and preliminary de�nitions necessary for the paper;
for a more thorough coverage, see the books [3, 20] and, in particular, the seminal paper [11].

2.1 Equations, Orderings, and Constraints

We assume the reader is familiar with the construction of a set of terms T (�; X) from a given
signature � of constant and function symbols and a set of variables X . In this paper we implicitly
assume a �xed signature � and use �+ to denote an arbitrary extension of this signature.

The set of variables occurring in a term t is denoted V ar(t). We generally use the letters l, r,
s, t, u, and v for terms, and the letters w, x, y, and z for variables. A multiset is an unordered
collection with possible duplicate elements. For any multiset M , the number of occurrences of an
object x is denotedM(x). An equation is a binary multiset fs; tg, conventionally represented s � t,
where s and t are �rst-order terms over the given signature. We often denote equations by the
Roman letters A, B, C, and D. Sets of equations are denoted by E or R.

By a ground term or equation we mean one containing no variables. The set of ground terms
constructed from a signature � is denoted T (�). A substitution is a mapping from variables to
terms, e.g., fx1 7! t1; : : : ; xn 7! tng, which is almost everywhere equal to the identity, and is
typically denoted by Greek letters �, �, �, �, or � . We de�ne the domain of a substitution � as the
set Dom(�) = f x j x 6= x� g. The application of a substitution � to a term t, denoted t�, is de�ned
as usual. Composition of substitutions is denoted by juxtaposition; if � and � are substitutions,
then x�� = (x�)�, for all variables x. A substitution � is said to be a grounding substitution for an
object � if �� has no free variables.

We assume that a reduction ordering � (i.e., a well-founded ordering closed under substitution
and context application) total on T (�) is given, and that this ordering can be extended to a
reduction ordering total on any T (�+).2

Such an ordering can be extended to a well-founded ordering �mul on �nite multisets of terms as
follows: M �mul N if (i)M 6= N and (ii) whenever N(s) > M(s) thenM(t) > N(t), for some t such
that t � s. The ordering � on equations is simply �mul restricted to binary multisets. If E is a set
of equations and A is an equation, we de�ne EA = fB 2 E jB � Ag, and EA+ = fB 2 E jB � Ag.
The maximum of a set S of equations, denoted max(S), is de�ned as the smallest S0 � S such that
8B 2 S; 9B0 2 S0; B � B0. We denote an equation s � t where s � t by the expression s ! t and
call it a rewrite rule; note in this case that we must have V ar(t) � V ar(s). An orientable instance
of an equation s � t is an instance s� � t� such that s� � t�, or an instance t� � s� such that
t� � s�.

If S is a set of equations and E is true in every model of S we write S j= E. If S and T are
two sets of equations such that, for all equations A, S j= A if and only if T j= A, then we write
S � T and say that S is logically equivalent to T . It is assumed that the reader is familiar with
the standard notions of rewriting. A rewrite system which is terminating and con�uent on ground

2For example, we can combine a well-founded precedence over � and a well-founded ordering of �+ n � using
ordinal addition to obtain a well-founded ordering on �+ and then use the lpo.

2

terms is called ground canonical , and if it is terminating and con�uent on all terms it is simply
called canonical .

We also assume an ordering <r on all the subterms of the left hand side of each rewrite rule
(where �r� stands for �redex ordering,� as in [5]). The ordering must have the property that s <r t

implies that t is not a subterm of s. Note that this ordering may be di�erent for each equation,
even if two equations have the same left hand side. Examples of such orderings are a postorder
traversal, or a reduction ordering.

The constraint language we shall use is a modi�cation of the one presented in [11] to account
for irreducibility constraints. An irreducibility constraint Irr(s) can be used to forbid inferences
into particular subterms of an equation which are known to be irreducible, for example if they are
produced by application of a substitution; this is a particular kind of redundancy check, called the
Basic Strategy in [4, 5], which here is developed further in the context of completion with equational
and disequational constraints. Other kinds of redundancy checks, such as Prime Superposition [10],
also involve reasoning about reducibility of terms involved in an inference, and can be represented
by irreducibility constraints. In addition, we shall propagate irreducibility constraints through
inferences, thus providing hereditary versions of these redundancy checks, and also use them to
explain the �no variable-overlaps� condition, and the modi�cations necessary to this condition
when the initial set of equations contains constraints.

Irreducibility constraints in completion are used in the context of an evolving rewrite system
which successively approximates the limit canonical system; thus in practice we can only state that
a constraint Irr(s) in the context of a current rewrite system R is false when s is reducible by R.
Note that if a term is reducible at some stage of the completion process by a rewrite rule, then it
will be reducible at all later stages; thus once an irreducibility predicate becomes false it remains
false. However, the only way we can say that such a constraint is true is when we can be assured
that a term is in normal form in the limit, which is generally impossible at a �nite stage of the
completion process. But the partial information we have about reducibility at each �nite stage of
the process will be su�cient to eliminate many redundant equations and inferences, including those
covered by all current critical pair criteria which use some notion of reducibility.

We now formally develop the notion of constraints we shall use. For additional information on
constraints, see [11] and references presented there.

De�nition 1 The set of constraints C is de�ned inductively as the smallest set of expressions
containing the atomic constraints >, ?, s = t, and Irr(s) (for every pair of terms s, t), and such
that whenever '1 and '2 are in C, then so are ('1 _ '2), ('1 ^'2), :('1), (9x: '1), and (8x: '1).

A literal is an atomic constraint or its negation. A literal :(s = t) is called a disequation,
abbreviated by s 6= t.

The set of free variables in a constraint ', denoted V ar('), is de�ned in the usual way. These
are the variables that the constraint in fact constrains, and solutions are substitutions over these
variables. Thus, constraints act as �lters for the allowable instances of equations. We typically use
' and to denote constraints. We observe the normal conventions for removing parentheses. In
the sequel an idempotent substitution fx1 7! t1; : : : ; xn 7! tng can be equivalently considered to be
a constraint of the form x1 = t1 ^ � � � ^ xn = tn: We shall make free use of this below, for example
forming a new constraint by adding a substitution, e.g., '^�. In addition, we extend the predicate
Irr() to sets of terms, where Irr(ft1; : : : ; tng) is de�ned to be Irr(t1) ^ : : :^ Irr(tn).

In what follows we have occasion to refer to a ground rewrite system R constructed from
instances of equations. This system is only used to give a meaning to the predicate Irr() in the
proofs and is not part of the completion process, and hence is considered to be an unconstrained
set of ground equations. We now de�ne the meaning of a constraint relative to R (cf. [11]).

3

De�nition 2 Let R be a ground set of unconstrained equations over a signature � and contained
in �. We de�ne the solutions Sol�R(') of a constraint ' relative to R inductively as follows. First,
Sol�R(?) = ;. Then, for any ground substitution � with range T (�),

1. � 2 Sol�R(>);

2. � 2 Sol�R(s = t) i� s� = t�;

3. � 2 Sol�R(Irr(s)) i� s� is ground and there exists no s0 2 T (�) such that s0 � s� and s0 is
equivalent to s� modulo Rs��s�;3

4. � 2 Sol�R('1 ^ '2) i� � 2 Sol�R('1) \ Sol
�
R('2);

5. � 2 Sol�R('1 _ '2) i� � 2 Sol�R('1) [Sol
�
R('2);

6. � 2 Sol�R(:') i� � 62 Sol�R(');

7. � 2 Sol�R(9x:') i� there exists some t 2 T (�) such that fx 7! tg� 2 Sol�R('); and

8. � 2 Sol�R(8x:') i� for every t 2 T (�), fx 7! tg� 2 Sol�R(').

Note that this is not a set of solutions wrt a theory R, as in [11]; the rewrite system R is only used
for the irreducibility constraints (roughly R represents the rewrite rules existing at a �nite stage of
the completion process). The use of the system Rs��s� in case 3, i.e., the set of equations in R with
one side smaller than s� and the other side less than or equal to s�, is a technical necessity for the
induction in the completeness proof, and will be explained below. An alternate way of stating this
case, given that � is total on ground terms, is that s� is the smallest term in its equivalence class
modulo Rs��s� .

Thus, each constraint and each ground rewriting system de�ne a set of ground substitutions;
a non-ground substitution � is said to be a solution if every ground substitution �� is a solution.
Two constraints ' and are said to be equivalent if Sol�

+

R (') = Sol�
+

R () for any R and �+. A
constraint is satis�able if there exists some solution for someR and �+, and unsatis�able (and hence
equivalent to ?) otherwise; it is valid (and hence equivalent to >) if for any R and �+, any ground
substitution over �+ is a solution. Clearly, when R is empty, Irr(s) is equivalent to > for any s. We
say that ' is stronger than or a strengthening of if for every R and �+, Sol�

+

R (') � Sol�
+

R ();
alternately, is weaker than or a weakening of '. (Note that �stronger than� and �weaker than�
both include the case �equivalent to.�) We should emphasize here that the set of solutions to a
constraint is not decidable when R is an in�nite set (say the ground instances of a �nite set of
rewrite rules existing at some stage of the completion process). As discussed above, our approach
to irreducibility constraints is based on using whatever partial information can be gleaned from
the current set of rules to eliminate redundancy and improve the e�ciency of the whole process;
hence it will not be necessary to have a complete constraint solver. We will discuss this further in
section 5.

2.2 Constrained Equations

A constrained equation is simply an equation between two terms plus a constraint, e.g., s � t [[']].
(Later we shall extend this notation to append other constraints to the equation.) The constraint
determines which ground instances of the equation are available. Since an equation A without
a constraint can be considered to be a constrained equation A[[>]], in the sequel we use the word
equation in general to denote a constrained equation. The symbols A, B, etc. will be used to denote
either an equation with its constraint or simply the equation part, depending on the context. By

3Hence, s� will be in normal form with respect to any rewrite system R0 contained in � and equivalent to Rs��s�.

4

(s � t[[']])� we mean s� � t�[['�]], where by '� we denote the replacement of each free occurrence
of x 2 Dom(�) in ' by x�. We assume the normal conventions for avoiding free variable capture.
Any free variable in ' which does not occur in A is assumed in A [[']] to be existentially quanti�ed
at the innermost possible level. For instance, if we write f(x) � x [[x 6= g(y)]], it should be read as
f(x) � x [[:9y(x = g(y))]].

Remark In order to preserve completeness, it will be necessary to maintain constrained equations
in a certain restricted form. We only allow a constraint of the form s � t[[: : : Irr(u) : : :]] if either
u � s or u � t. For example, this will hold if u is a proper subterm of either s or t. If this
restriction does not hold, then [[: : : Irr(u) : : :]] is weakened to the form [[: : :? : : :]] if Irr(u) occurs
negatively (i.e., in the scope of an odd number of negations). If the restriction does not hold and
Irr(u) occurs positively , then a more re�ned form of weakening is possible: if u is a constant or
a variable, then [[: : : Irr(u) : : :]] is weakened to the form [[: : :> : : :]]; but if u = f(u1; : : : ; un), we
can weaken the constraint into the form [[: : : Irr(u1)^ : : :^ Irr(un) : : :]]; this decomposition of the
term must be iterated just until the restricted form is attained. The idea, naturally, is to preserve
as much of the constraint as possible. We shall assume in the sequel that all equations have this
restricted form, in particular, for the sake of clarify, we shall not mention this weakening process
explicitly when forming new equations in the conclusions of inferences. In addition, it is possible
to simplify constraints in other ways (see [11]).

Next we de�ne what is a ground instance of a constrained equation.

De�nition 3 For any ground R contained in � and signature �, the set of ground instances of an
equation A[[']] relative to R and � is de�ned as

Gr�R(A[[']]) = fA� jV ar(A�) = ; and � 2 Sol�R(')g:

The set of ground instances relative to R of a set E is then de�ned as Gr�R(E) =
S
A2E Gr�R(A):

Hereafter, we omit � when it is not relevant.
The erasure of an equation A[[']] is de�ned as A[[>]] and similarly for sets of equations. Therefore

the set of all ground instances of an equation (ignoring the constraint) is Gr�R(erasure(A)), but
since R serves no purpose, we denote this as Gr�(erasure(A)). Similarly Gr�(erasure(E)) =
S
A2E Gr�(erasure(A)).
The constraints on equations are used to restrict the ground instances to only those that are

useful to complete the set of equations. The other instances of the equations are true in the
equational theory, but not necessary for the completion process. Thus, the erasure of a constrained
equation represents all the instances of the equation that are true. When the completion process
is �nished, it may be more convenient to erase the constraints on each equation. We show in our
completeness proof that, after erasing the constraints, we still have a canonical rewrite system. In
section 8, we discuss how to use our framework in the context of initial constraints. In that case,
not all instances of an equation will be true. Therefore, in that section, the concept of erasure is
rede�ned, so it still represents all the instances of an equation that are known to be true. In this
way, we give a framework which formally shows the distinction between constraints placed on the
equations for e�ciency of the completion process and constraints which are necessary to preserve
the soundness of the completion procedure.

By the above de�nition, for some R, a particular equation A[[']] may have no instances, for
example if ' is Irr(a) and R = fa! bg. In particular, ground equations with constraints may not
have any ground instances! If no irreducibility constraints are present, then naturally R plays no
role in de�ning the ground instances. In general, the constraint will delimit the possible ground
instances. For example, if A is gfy � a[[Irr(fy)]], then gfa � a is an instance relative to R =
ffb � cg, but not gfb � a.

5

For an inference � in the form
A[['1]] B[['2]]

C[['3]]

on equations from E, and given a ground set R of unconstrained equations, if A� , B� , and C� are
ground instances relative to R of the premises and conclusion, then we may call

A� B�

C�

a ground instance of � relative to R. By an inference from ground instances of E relative to R we
mean a ground instance of some inference from E relative to R.

We shall not need the notion of constrained rewriting in this paper, except in the trivial case
of sets of ground rewriting systems, and the reader is referred to [11] for details.

3 Redundancy and Constraints

In this paper we present several inference systems for constrained completion. These systems are
designed to show the various tradeo�s which can be employed when applying redundancy notions
to eliminate certain instances of constrained equations involved in the inferences. The tradeo�s
basically arise from considering how to strengthen the constraint attached to one of the equations
involved in the inference, possibly at the expense of another constraint. This is a re�nement of
the kind of constraint weakening which is necessary in the deletion rules of Basic Paramodulation
[4, 5, 15]. We also show how previously presented inference systems such as Basic Completion
[5, 15] and general superposition [23, 24] can be seen as special cases of this inference system by
setting the parameters correctly.

3.1 Redundancy and Correct Equations

Intuitively, a redundant equation is an equation which is implied by smaller equations. Such
equations need not play a role in completion, and hence can be removed. This is a semantic version
of the well-known subconnectedness criterion [3] which encompasses simpli�cation, subsumption
and deletion of identities. It was �rst presented by [1, 17], and our current formulation owes much
to the paper [5]. The main di�erences have to do with the presence of constraints and the fact
that we avoid the use of Skolem constants in this paper by talking about redundancy in arbitrary
extensions of the given signature.

De�nition 4 Let R be a set of ground rewriting rules and A and B ground equations over a
signature �. A is R-redundant below B in E if for every extension �+ there exist ground instances
A1; : : : ; An from Gr�

+

R (E) such that (1) each Ai � B and (2) if R j= Ai for each i, then R j= A.
If A and B are non-ground equations, then A is R-redundant in E below B if, for every �+, for
every grounding substitution � for A and B such that A� 2 Gr�

+

R (A) and B� 2 Gr�
+

R (B), A� is
R-redundant in E below B�. If B is omitted it is assumed to be A and E will be omitted if it is
available from context. If A is R-redundant for any canonical R, then A is simply called redundant.

Now let M = fB1; : : : ; Bkg be a set of equations. We say that A is R-redundant in E up to
M if, for every �+, for each grounding substitution � for A and M such that A� 2 Gr�

+

R (A) and

Bi� 2 Gr�
+

R (Bi) for each i, there exist ground instances A1; : : : ; An from Gr�
+

R (E) such that (1)
each Ai � max(B1�; : : : ; Bk�) and (2) if R j= Ai for each i, then R j= A.4

For instance, equations all of whose ground instances are identities and equations with un-
satis�able constraints are trivially redundant. Some more interesting examples of redundant

4The point of this rather complex notion will be made clear following the next de�nition.

6

equations may perhaps clarify the de�nition. The equations f(x) � x [[x = a ^ x 6= a]] and
f(a) � b [[Irr(a) ^ :Irr(a)]] are both redundant because they have no ground instances. The
equation f(x) � f(x) is redundant because it is an identity and therefore implied by the empty set
of equations. The equation f(a) � b is redundant if the equations a � c and f(c) � b exist in E
(where a � c), because they imply f(a) � b. The equation f(a) � b [[Irr(b)]] is redundant if the
equations a � c and f(c) � b [[Irr(b)]] exist in E, because any R which makes true all instances
of the smaller equations also makes true f(a) � b [[Irr(b)]]. The equation f(a) � b [[Irr(a)]] is
redundant if the equation a � c is in E because any equation which makes a � c true will reduce
a and therefore f(a) � b [[Irr(a)]] has no instances.

A comment on the use of the extended signature �+ is in order. The usual method of proving
that the result of an ordered completion process is canonical (and not just that the set of orientable
instances is ground canonical) is to add a set of Skolem constants to the signature during the
completeness proof. Then it is shown that no property of the constants was used during the
inference process or the completeness proof. In our setting, it is important to be precise about
the signature vis a vis constraints, since we do not want to delete an equation whose constraint is
unsatis�able in the given signature, but satis�able with the addition of Skolem constants. For this
reason, we consider a more complex de�nition of redundancy which accounts for extensions to the
signature. This explains the transition from ground canonical to canonical in a more fundamental
way.

In this paper we present a framework for representing redundancy information explicitly in an
equation, by adding constraints to the equation which give more information about which instances
are redundant; this information can then be propagated during inferences under certain conditions.
In this framework a constrained equation will be represented by an equation and a triple represented
as A [['1; '2;M]], where A is an equation, M is a set of equations, and '1 and '2 are constraints.
We can think of this as an extension of the original notation A [[']], so that the �rst constraint '1
still represents the available instances of the equation, i.e., Gr�R(A [['1; '2;M]]) = Gr�R(A [['1]]).
The other constraint and the set M record redundancy information in the following way.

De�nition 5 Let E be a a set of constrained equations over �. Then A [['1; '2;M]] 2 E is correct
in E (or simply correct if E is obvious) if for all R and every extension �+

1. Gr�
+

R (A [['1]]) � Gr�
+

R (A [['2]]),

2. If B 2 Gr�
+

R (A [['2]]) nGr
�+

R (A [['1]]) then B is R-redundant in E, and

3. If B 2 Gr�
+

(erasure(A)) then B is R-redundant in E up to M .

For example, an unconstrained equation is written in correct form A [[>;>; fAg]]. We will
hereafter assume that all equations are in correct form, but may eliminate a su�x of the parameters
if they are not relevant.

The last two components are used to store information about the history of an equation. When
an equation is created, '1 = '2. Irreducibility constraints may be added to '1 to indicate that
variables may be assumed to be in normal form. At that point, and at every point after that,
'1 is stronger than '2. Then, when inferences are performed, the constraints on '1 are further
strengthened, because certain instances of the equation have been simpli�ed and are no longer
needed. Throughout the completion process, the constraint '1 becomes stronger while '2 remains
the same, as more redundant instances are removed from '1. Thus, an equation can use the
constraint '2 when it is being used as a simpli�er, because '2 allows more instances to be available
to simplify another equation. The component M is also used to allow more instances to be used
as a simpli�er. M is the set of original axioms which are ancestors of the equation. Since we are
working with initially unconstrained equations, we know that all instances of an equation are true,
not just the instances represented by '1 and '2. Therefore, M is a set of unconstrained equations

7

which imply all instances of A. If an equation bigger than all equations in M is simpli�ed by A,
then we know that all instances of A are available to perform the simpli�cation.

Essentially, redundancy is used in the completeness proof to show at what point in the induction
equations become true. If an equation is implied by smaller equations, then it is not needed
in constructing the canonical rewrite system. In passing such information around the inference
system, it becomes useful to separate the ordering requirements in the de�nition of redundancy
(e.g., �Ai � A�) from the logical requirements (e.g., �if R j= Ai...�). Thus it is useful to know when
the logical requirements are satis�ed by a set of equations smaller than some other equation B. In
practice, it is only necessary to consider axioms (original equations) involved in the construction of
A during the completion process, and so M records the history of the equation in this way. Any
equation is true in a model constructed to satisfy its associated set M . In practice we only need
to save the maximal elements in M , so M could be replaced with a smaller set, max(M). This
parameter does not change once a particular equation is constructed.

This paper is primarily concerned with techniques for modifying constraints during the process
of completion, in order to take advantage of redundancy information. We will denote such a
constraint modi�cation by the notation

A [['1; '2]]) A [[1; 2]];

where sometimes we omit the second occurrence of A for simplicity. The main idea used in this
paper is that such transformations can be performed whenever we only delete redundant instances
of equations, or add instances which are provable. We may formalize this as follows.

De�nition 6 Let E be a set of constrained equation over �. A constraint modi�cation A [['1; '2]])
A [[1; 2]] is correct in E (or simply correct if E is obvious) if for all R and �+,

1. Every member of Gr�
+

R (A [['1]]) nGr
�+

R (A [[1]]) is R-redundant in E;

2. Gr�
+

(erasure(E)) j= Gr�
+

R (A [[1]]) nGr�
+

R (A [['1]]); and

3. Every member of Gr�
+

R (A [[2]]) nGr
�+

R (A [['2]]) is R-redundant in E.

The point of the �rst condition is that we only delete redundant equations, the second says
that any instances added must be consequences of the underlying equational theory, and the last
requires that any weakening of the second constraint only involve the adding of additional redundant
instances. This insures that if an equation is correct, then such a modi�cation will produce another
correct equation.

Lemma 1 Let E be a set of equations over � containing A [['1; '2]]. Consider the constraint mod-
i�cation A [['1; '2]]) A [[1; 2]], and let E0 be (E nA [['1; '2]])[A [[1; 2]]. If the modi�cation
is correct in E and A [['1; '2]] is correct in E then A [[1; 2]] is correct in E and, for all R and
�+, Gr�

+

R (E0) is formed by deleting redundant equations from Gr�
+

R (E) and adding equations that

follow from Gr�
+

(erasure(E)).

Proof. This follows immediately from the de�nition of correct constraint modi�cation. 2

The framework introduced in this subsection for expressing redundancy notions, and for trans-
forming constraints, will be used to delete instances of equations during the completion process.
We can also make explicit redundancy notions which are usually left implicit in the form of the
inference system. For example, it is well known that in paramodulation and completion, overlaps
at variable positions are not necessary for completeness. The technical reason for this is that a
ground instance of a clause or equation which is reducible at a substitution position is redundant,

8

since we can normalize the substitution terms, and this smaller instance, with the equations used
to do the normalization, imply the original instance. In our framework we can make this explicit,
representing the irreducibility condition in the constraint. An unconstrained equation fx � gx

would be represented in correct form here as fx � gx [[Irr(x);>]], which says that any binding for
x must be irreducible. Note that we can not in general in completion say when such a constraint
is true, because we are evolving successive approximations of a limit canonical system, but it is
su�cient to consider cases where the constraint is false, to simulate the �no overlaps at variable
positions� condition and also signi�cant extensions to the Basic strategy.

3.2 Equation Sets with Initial Constraints

In the main body of this paper, we consider only the problem of completing an initially uncon-
strained set of equations, where constraints are added during completion to record information
about redundant instances of equations. The goal is to make the process more e�cient. However,
sometimes initial constraints are useful to express information in a compact form (cf. [11]), and
so it is worth extending our framework to this situation and understanding what is required. In
addition, it turns out that the standard �no variable overlaps� condition can be naturally expressed
using the irreducibility predicate. Thus we will present the general framework for initial constraints
now, although in the rest of the paper (except for section 8) we assume only a very simple form of
initial constraint to represent the �no variable overlaps� condition. In section 8 we will return to
consider the more general case of initial constraints.

Initial constraints are problematic, as it is well�known that some sets of equations with initial
constraints are not completeable without overlapping at variable positions or performing some
inferences involving the constraints themselves. For example, fx � gx [[x 6= b]] and a � b, where
f � g � a � b, is not canonical (since fb and gb have no rewrite proof), but no overlap exists
at a non-variable position. The fundamental problem is that the restriction of a paramodulation-
type inference system to non-variable positions depends on showing that ground instances which
are reducible inside a substitution term are redundant. The idea is that if we normalize the
substitution terms, then the reduced instance and the reducing equations are smaller than, and
imply, the original instance. When we are using constraints, we must know that these reduced
instances are available. This is not so in our example above, and so we can not show that all ground
instances of the �rst equation which are reducible at a substitution position are redundant, which
in turn means we can not restrict inferences to non-variable positions and preserve completeness.
In our framework, this means we can not represent this equation with initial constraint in the form
fx � gx [[Irr(x)^x 6= b; x 6= b]], since fa � ga is not redundant, as the reduced instance fb � gb is
not available. We would need to make a weaker assertion than Irr(x), namely that x is irreducible
if b is not, namely, fx � gx [[(Irr(x)_ Irr(b))^ x 6= b; x 6= b]]. When the system contains just the
two equations given, then b is irreducible and we can not assume x is bound to an irreducible term,
and hence must allow a variable overlap. Suppose further that the unconstrained equation b � c

exists, so that Irr(b) is not true. Then we need not perform a variable overlap, since we know that
Irr(x) is true. As a practical matter, since we can only say when an irreducibility constraint is
false in an evolving system, this means that when initial constraints are present, we only have a
criterion for eliminating variable overlaps. In any case, we can state very precisely the relationship
between initial constraints and the necessity for variable overlaps, at the cost of some technical
machinery which we now introduce.

We will de�ne a binary function IrrCon from Irr which will take a variable and a constraint as
arguments and produce a new constraint which shows which irreducibility conditions can be added
to the constraint so that some redundant instances of the equation have been deleted because they
are reducible. Then we will de�ne a function called IrrV ar which will recursively allow us to add
these irreducibility constraints. We will also de�ne a function called NoIrrV ar which will allow us
to add new instances of an equation which are redundant by the given instances.

9

De�nition 7 Let V be the set of all variables. Then de�ne IrrCon : V � C �! C such that

IrrCon(x; ') = Irr(x)_ 9y(Irr(y)^ :'[x 7! y]):

The function IrrCon takes a variable x and a constraint ' as arguments. It returns a new
constraint saying that x is irreducible if every irreducible substitution for x satis�es '. The idea
behind this is that we can delete reducible instances of the equation if they are redundant by
virtue of available irreducible instances. This generalizes the �no overlaps at variable positions� of
ordinary paramodulation and completion to the case of initial constraints. Note that all reducible
instances will be redundant if all irreducible instances satisfy '.

For example, IrrCon(x;>) = Irr(x)_9y(Irr(y)^:>) = Irr(x)_9y(Irr(y)^?) = Irr(x)_? =
Irr(x). Since there are no irreducible instances of x which do not satisfy x, we can remove the
reducible instances of x in the constraint >.

Following the example at the beginning of this subsection, IrrCon(x; x 6= b) = Irr(x) _
9y(Irr(y)^ y = b) which is equivalent to Irr(x)_ Irr(b). If x is not irreducible then there must be
irreducible substitution for x which does not satisfy the constraint. But since b is the only value of
x which does not satisfy the constraint, we can say that b is irreducible if x is not irreducible.

Now we de�ne the functions IrrV ar and NoIrrV ar which tell us how to modify the constraints
in an equation to delete these redundant instances. The function IrrV ar takes a set of variables
S and a constraint ' as an argument. The output of the function is a new constraint which
represents ' conjoined with the condition that each variable in S is irreducible as long as there is
no substitution for that variable which is irreducible and does not satisfy '. This guarantees that
 removes only redundant instances from the equation constrained by '.

The function NoIrrV ar does exactly the opposite of IrrV ar. It takes a set of variables S
and a constraint ' as inputs. Its output is a constraint which represents the instances of the
equation constrained by ' which are represented by ' or redundant by the instances represented
by '. The constraint adds values for each variable x in S which are reducible, as long as we can
be guaranteed that the normal form of x satis�es the constraint. This will be true as long as there
are no irreducible instances which do not satisfy the constraint.

The functions IrrV ar and NoIrrV ar are just recursive applications of the function IrrCon.
By abuse of notation, we also extend IrrV ar and NoIrrV ar to allow an equation as the �rst
argument. In that case, it is interpreted as meaning the variables in that equation.

De�nition 8 Let E be the set of all equations. De�ne IrrV ar : 2V � C �! C recursively so that

� IrrV ar(;; ') = ' and

� IrrV ar(fxg [S; ') = IrrV ar(S; ')^ IrrCon(x; IrrVar(S; ')):

Similarly de�ne NoIrrV ar : 2V � C �! C so that

� NoIrrV ar(;; ') = ' and

� NoIrrV ar(fxg [S; ') = NoIrrV ar(S; ')_ :IrrCon(x;NoIrrVar(S; ')).

We also de�ne IrrV ar;NoIrrVar : E � C �! C so that

� IrrV ar(A;') = IrrV ar(V ar(A); ') and

� NoIrrV ar(A;') = NoIrrV ar(V ar(A); '):

Given the examples above, it is easy to see that IrrV ar(fxg;>) = Irr(x) and IrrV ar(fxg; x 6=
b) = (x 6= b)^ (Irr(x)_ Irr(b)). In both cases, the only instances removed were redundant. Also,
the reverse holds true, i.e., NoIrrV ar(fxg; Irr(x)) = > and

NoIrrV ar(fxg; x 6= b^ (Irr(x)_ Irr(b))) = (x 6= b):

10

In both cases, only redundant instances were added. This formalizes the constraint modi�cation
which we discussed at the beginning of this subsection.

Now we can show that the constraint modi�cation which removes all reducible instances of an
equation is correct.

Lemma 2 A [['; ']]) A [[IrrVar(A;'); NoIrrVar(A;')]] is a correct constraint modi�cation.

Proof. First note that for every variable x and constraint '[x], the meaning of IrrCon(x; ') is
that the binding for x is irreducible or there is some irreducible term t which does not satisfy the
constraint '[x]. Therefore any A� 2 A [[' ^ IrrCon(x; ')]] is a ground instance of A such that
� satis�es ' and either x� is irreducible or there is an irreducible instance A� such that '� is
unsatis�able. For every R, if C is an instance in GrR(A [[']])nGrR(A [['^ IrrCon(x; ')]]) then C
is reducible by R, and in addition all irreducible instances of A satisfy '. Therefore C reduces to an
instance that satis�es '. This means that C is redundant in any E containing A [['^IrrCon(x; ')]].

Therefore all members of A [[']] are redundant in any E containing A [[IrrV ar(A;')]], and all
members of A [[NoIrrVar(A;')]] are redundant in any E containing A [[']]. Therefore all members
of A [[NoIrrVar(A;')]] are redundant in any E containing A [[IrrV ar(A;')]]. 2

This shows us that for any equation A and constraint ' we can replace the equation A [[']] by
the equation A [[IrrV ar(A;'); NoIrrVar(A;')]], because to do so gives us a new correct equation
and it only removes redundant instances of the original equation.

For example the following constraint modi�cations are correct.

� f(x; y) � f(y; x) [[>;>]]) [[Irr(x)^ Irr(y);>]]

� f(x; y) � f(y; x) [[Irr(x)^ Irr(y);>]]) [[Irr(x)^ Irr(y);>]]

� f(x) � g(x) [[Irr(x)^ x 6= b;>]]) [[Irr(x)^ x 6= b; (Irr(x)^ x 6= b) _ Irr(b)]]

Such explicit irreducibility constraints make the role of initial constraints clearer. In section 8,
we present a method for introducing explicit irreducibility constraints into equations with initial
constraints and show how the inference system would need to be relaxed in order to allow a limited
form of variable overlap. Until then, however, we shall con�ne ourselves to initially unconstrained
sets of equations. Such equations are represented in correct form as A [[Irr(x1)^ : : :^ Irr(xn);>]],
where fx1; : : : ; xng = V ar(A). We assume all initial sets of equations have this form.

4 Constrained Critical Pair Generation

In this section we give a generalization of the critical pair rule from [11] for ordered completion
and show how a variety of tradeo�s may be obtained in deleting various instances of the equations
involved in an inference of this form. We will prove that the inference rules are sound and that
all equations created are correct. Then we discuss the manner in which the constraints of the
equations involved may be modi�ed. The basic idea is to delete instances of the right premise
which are redundant by virtue of instances of the conclusion and the left premise, and there is a
tradeo� between how many instances of the right premise to delete and how many instances of the
other equations are made available. We will present several possibilities and prove their correctness.
In section 6, we will prove that the completion procedure is complete, i.e., that a ground canonical
set of equations is generated in the limit.

11

4.1 The C-Deduce Inference Schema

The following inference schema characterizes the class of critical pair rules we consider in this paper.

C-Deduce
s � t [['1; '2;M]] u[s0] � v [[1; 2; N]]

u[t]� � v� [[�1;�2;M� [N�]]

where

1. s� 6� t�,

2. u[s0]� 6� v�,

3. u[s0]� � v� 6� s� � t�

4. � = mgu(s; s0),

5. �1 = '1�^ 1�^Irr(T), where T = fw jw is a proper subterm of s�g[fw jw is a subterm
of u� and w <r s

0�g,

6. �2 = NoIrrV ar(u[t]� � v�;�1).

In addition, this schema speci�es that we may perform any correct constraint modi�cations on the
conclusion and the premises, subject to the following restrictions:

� We may weaken �1, but only to a constraint that is still a strengthening of IrrV ar(u[t]� �
v�;>) (so that we still forbid inferences into variable positions); and

� We may strengthen �2, but only to a constraint that is a weakening of�1 (else the conclusion
is no longer correct).

Speci�c instances of this general schema may involve speci�c constraint modi�cations; examples
will be given below.

The constraint �1 represents the strongest possible conditions we can have to make the com-
pleteness proof go through. In general in the inference rules we present, equations will have the form
A [[Irr(s1) ^ � � � ^ Irr(sn) ^ '01; '2;M]], where any variable in A occurs in some si, as mentioned
above. That condition already holds if �1 is not weakened, because all premise equations have
the constraint that their variables are irreducible, and all variables in the conclusion are from the
premises. Note that we have not explicitly stated the condition �where s0 is not a variable,� but in
fact this will be a consequence of the irreducibility constraints built up during the inference process.
Inferences involving variable overlaps can be shown to be redundant and hence unnecessary.

The constraint �2 allows us to add some redundant instances for the second constraint on
the premise. For instance, if �1 = Irr(x) ^ Irr(y) then �2 = NoIrrV ar(�1) = >. As long
as �2 remains a weakening of �1, we are guaranteed that the conclusion is correct. Performing
more constraint modi�cations will allow us to apply some simpli�cations to the equations in the
inference, as long as only redundant instances are deleted.

If we had ordering constraints, we could add the �rst three conditions of C-Deduce as constraints
in the the conclusion of the inference, with the 6� replaced by �. This would allow us to hereditarily
guarantee that the ordering conditions hold (see [16]).

The following lemma assures us that any instances of the C-Deduce schema is sound and that
it produces a correct equation.

Lemma 3 Let E be a set of equations over �. If the premises of an inference which is an instance
of C-Deduce are correct equations in E then, for every R and �+, every R-instance of the conclusion
is implied by some equations in Gr�

+

R (E). Also, the conclusion is a correct equation in E.

12

Proof. The reader will verify that the inference is sound. To prove the correctness of the conclusion,
we note that, for all R and �+, all instances in Gr�

+

R (u[t]� � v� [[�2]])nGr
�+

R (u[t]� � v� [[�1]]) are
redundant. This follows from lemma 2 and the fact that�2 is a strengthening ofNoIrrV ar(u[t]� �
v�;�1). Also, all �-instances of both premises are true by equations smaller than some equation
in M� [N�. Therefore all instances of the conclusion are true by equations smaller than some
equation in M� [N�. 2

In section 4.2, we will show how it is possible to remove redundant instances of the right premise.
In addition, it is possible to de�ne situations under which the inference itself is redundant and hence
need not be performed. Before we de�ne this notion, we need to de�ne a ground version of our
inference rule. The Ground-Deduce rule is simply a superposition of the form

s � t u[s] � v

u[t] � v

where s � t, u[s] � v, and u[s] � v � s � t. Such an inference is called a ground instance modulo
R of a C-Deduce inference if there exists a � which is an R-solution to, and grounds, the premises
and the conclusion, and maps the inference onto the Ground-Deduce inference.

De�nition 9 For any E and ground R, a Ground-Deduce inference as given above is R-redundant
if (i) either premise is R-redundant, or (ii) the conclusion is R-redundant below u[s] � v. A C-
Deduce inference is R-redundant if every ground instance wrt R is R-redundant. If an inference is
R-redundant in E for every R, then it is simply called redundant in E.

4.2 Constraint Modi�cation

The inference rules we present are instances of the C-Deduce schema presented above; to de�ne
an inference rule, then, we need to say what the constraints in the conclusion are, and how the
constraints in the premises are (potentially) modi�ed. For each case, we must show that the
conditions of C-Deduce are satis�ed.

First we present two general constraint modi�cation rules, CM1 and CM2 , that may be applied
to strengthen the right premise after an inference has been performed. The general idea of these
inference rules is that after the conclusion has been added to the set of equations, some instances
of the right premise are now redundant. The constraint modi�cation rules allow us to remove
those redundant instances. The tradeo�s occur in considering whether we want to strengthen the
right premise by deleting as many instances of the right premise as possible, in which case we need
perhaps to weaken the other equations by making more instances available, or whether we wish to
strengthen the conclusion as much as possible, in which case we can not delete as many instances
of the right premise. Essentially these rules can be thought of as combinations of simpli�cation and
critical pair rules, or as re�nements of the special simpli�cation rule used in Basic Paramodulation
[4, 5, 15].

To see which instances are redundant, we give the following lemma, which is proved by a simple
application of the de�nition of correct constraint modi�cation.

Lemma 4 Let A [[']], A1 [['1]]; � � � ; An [['n]] be correct equations in E. Let � be a substitution such
that, for all grounding substitutions � , A1��; � � � ; An�� j= A�� , and for all i, Ai�� � A�� . Then
all instances of A [['^�^'1^� � �^'n]] are redundant. Therefore A [[']]) [['^:(�^'1^� � �^'n)]]
is a correct constraint modi�cation.

De�nition 10 Let CM1 be the right premise constraint modi�cation rule: 1) 1^:(�^�2^'2),
and let CM2 be the rule: 1) 1 ^ :(� ^�2).

13

For example, suppose that � is the substitution [x 7! a; y 7! fa], 1 is the constraint >,�2 is the
constraint >, and '2 is the constraint Irr(gx). Then CM1 modi�es 1 to x 6= a_y 6= fa_:Irr(gx),
which can be simpli�ed to the equivalent constraint x 6= a_y 6= fa_:Irr(ga). If y does not appear
in the equation constrained by 1, then 1 can be simpli�ed to x 6= a _ :Irr(ga). The constraint
modi�cation CM2 modi�es 1 to x 6= a_ y 6= fa. If y does not appear in the equation constrained
by 1, then 1 can be simpli�ed to x 6= a.

If s� � t� � u[s0]� � v� and t� � s� then CM1 applied to the right premise simply deletes
instances of the right premise that are redundant due to instances of the left premise that exist,
instances of the left premise that are redundant, and instances of the conclusion. Therefore the
resulting right premise is a correct equation.

Lemma 5 If s� � t� � u[s0]� � v� and t� � s� then CM1 is a correct constraint modi�cation.

Proof. We only need to apply the previous lemma, since �2 represents instances of the conclusion
that are true by equations equal to or smaller than it, and '2 represents instances of the left premise
that are true by equations equal to or smaller than it. 2

The only way the condition that s� � t� � u[s0]� � v� can be violated is if the overlap is at
the root and t� and v� are not comparable, in which case the conclusion will not be orientable; in
standard completion this causes an immediate failure. The condition that t� � s�, also, cannot be
violated in standard completion. Therefore, in standard completion, the constraint modi�cation
CM1 is always possible. In ordered completion, it is necessary to check these conditions.

If, in addition to the above conditions, M� �mul fu[s0]� � v�g, then CM2 applied to the
right premise deletes instances of the right premise that are redundant due to instances of the
conclusion and some instance of the left premise. This can be any instance of the left premise, not
just the instances that exist. This is because the third constraint on the left premise guarantees
that all instances of the equation are true by equations smaller than the right premise. Therefore
the resulting right premise is correct after the constraint modi�cation.

Lemma 6 If s� � t� � u[s0]� � v�, t� � s�, and M� �mul fu[s
0]� � v�g, then CM2 is a correct

constraint modi�cation.

Proof. The proof here is the same as the proof of the previous lemma, except we need the fact that
all �-instances of the left premise are true by equations smaller than or equal to some equation in
M�. 2

4.3 CCP Rule

The �rst inference system we will present is called CCP (Constrained Critical Pairs). In this case
the constraint in the conclusion is as strong as possible, the left premise is not weakened, and some
instances of the right premise are deleted.

De�nition 11 Let CCP be the instance of C-Deduce where �1 = '1� ^ 1� ^ Irr(T), �2 =
NoIrrV ar(u[t]� � v�;�1), and where CM1 is performed if s� � t� � u[s0]� � v� and t� � s�.

Now we consider some examples of this rule. In all the examples for the rest of section 4, we
will assume the following convention for each constraint A [['1; '2;M]] with missing parameters.
If M is missing we assume it is fAg and a missing '2 is assumed equal to '1, and a missing '1 is
assumed to be >. Consider the inference

fa � b fx � gx [[Irr(x);>]]

b � ga [[Irr(a); Irr(a); fa� ga]]

14

on axioms. If we use the CCP rule then we may apply CM1 to the constraint of the right premise

as follows: Irr(x)) Irr(x)^ (x 6= a _ :Irr(a)).
We give one more example to illustrate a use of the irreducibility constraints. Consider the

CCP inference
fa � b fa � ga

b � ga [[Irr(a); Irr(a); fa� ga]]

The �rst constraint on the right premise becomes :Irr(a) using CM1. Any inference using this
equation as left premise is now redundant because a must be irreducible in an inference. That is,
when fa � ga is used as a left premise, fa can be restricted to be in normal form (cf. the prime
superposition criterion discussed in section 4.5), which violates the constraint.

The point of our approach is to try to restrict the available instances while at the same time
storing information about which instances are redundant. In the CCP inference �1 is as strong
as it can be in an inference. Given the value of �1 we have made �2 as weak as possible so we
can delete more of the instances of the right premise. For example, if �1 = > then �2 = Irr(x).
In general, if �1 = Irr(x) ^ '0 and '0 does not further constrain x, then �2 = '0 (this process is
iterated). The application of CM1 at the end of the inference step will delete as many instances of
the right premise as possible, given that the emphasis here is on strengthening the conclusion.

4.4 C-Simplify Rule

Our second rule based on C-Deduce emphasizes strengthening the constraint of the right premise
as much as possible, essentially by simplifying as many instances of the right premise as possible
by instances of the left premise. In this case we may have to weaken the left premise and construct
a weaker conclusion than in the previous rule.

De�nition 12 C-Simplify is the instance of C-Deduce such that �1 = 1�, �2 = NoIrrV ar(u[t]� �
v�;�1), and where in addition if s� � t� � u[s0]� � v� and t� � s�, then we change 1 in the
right premise to 1 ^ :�; �nally, unless M� �mul fu[s

0]� � v�g holds we must further modify the
premise constraints so that '1) '1 _ (� ^ 1 ^ :'2) and '2) '2 _ (� ^ 1).

Consider the �rst example given above, except as a C-Simplify inference instead of a CCP
inference:

fa � b fx � gx [[Irr(x);>]]

b � ga [[>]]

Applying CM1, the constraint of the right premise is modi�ed as follows: Irr(x)) Irr(x)^x 6= a.

Comparing this with CCP, we see that C-Simplify has given the right premise a stronger constraint,
but the conclusion has a weaker constraint.

We can now show how constraints provide additional information usable in later inferences.
Assume we followed the C-Simplify inference just given with

fx � gx [[Irr(x)^ x 6= a;>]] gfa � c

gga � c [[?;?; gfa� c]]

The �rst thing to note is that this inference is redundant because the constraint on the conclusion
is unsatis�able. Therefore the inference does not need to be performed. However, we may be
interested in simplifying the right premise, so we still perform the inference. Using C-Simplify we
get gga � c [[>]] for the conclusion. The �rst constraint on the right premise becomes ? which
means that none of the instances of the equation are necessary. However, the second constraint

15

is still > which means that all the instances are redundant. Therefore we may use it to simplify
an equation if we like, without weakening the constraint, but we are never required to use it in
an inference. This illustrates the bene�t of the second constraint. If we had not saved the second
constraint we would have had to weaken the �rst constraint on the left premise.

To illustrate the bene�t of the third component of the constraint triple we consider following
the CCP inference in the �rst example with

ga � b [[Irr(a); Irr(a); fa� ga]] fga � ga

fb � ga [[Irr(a); Irr(a); fga� ga]]

If we want this to be a C-Simplify inference the conclusion can be weakened to

fb � ga [[>;>; fga� ga]]:

Then we can use CM2 to set the �rst constraint of the right premise to ? as in the previous example,
since all instances of left premise are true by equations smaller than the right premise.

In C-Simplify, we perform the CM1 or CM2 constraint modi�cation. But, before CM1 is
performed it may be necessary to add some instances of the left premise. We are always allowed
to add instances to an equation, since we assume our initial set of equations is unconstrained, with
the result that all instances of each equation are true. Therefore the above constraint modi�cations
are instances of CM1 and CM2.

These two rules illustrate the range of tradeo�s available. In CCP we do not weaken the
conclusion or the left premise, so that we can only eliminate some instances of the right premise.
In C-Simplify we must weaken the constraints on the conclusion and the left premise in general
but we can then delete all possible instances of the right premise. It is possible to de�ne inference
rules between these two extremes. In the next de�nition we present two rules which weaken the
conclusion but not the left premise of the inference.

De�nition 13 Suppose s� � t� � u[s0]� � v� and t� � s�. Then we de�ne the rule CCP1
as the instance of C-Deduce where �1 = '2� ^ 1� ^ Irr(T), �2 = NoIrrV ar(u[t]� � v�;�1),
and with the strengthening 1) 1 ^ :(� ^ '2 ^ Irr(T)). If in addition, we have M� �mul

fu[s0]� � v�g, then we may de�ne the instance CCP2 of C-Deduce where �1 = 1� ^ Irr(T),
�2 = NoIrrV ar(u[t]� � v�;�1), and such that 1) 1 ^ :(� ^ Irr(T)).

The reader will note that these constraint modi�cations are instances of CM1 and CM2.
In a similar manner it is possible to de�ne other inference rules that partially weaken the

conclusion and the left premise so some instances of the right premise are deleted. For instance we
can weaken the constraints on the conclusion so that just the irreducibility constraints remain, or
we can weaken the constraints so that just the equational and disequational constraints remain.5

Thus it is possible to de�ne a spectrum of possible critical pair rules in our framework.
In this section we have presented critical pair rules for constrained completion. In order to

implement a completion procedure based on these rules, we would need to embed these in a
comprehensive set of inference rules such as described in [3]. This is a relatively straightfor-
ward adaptation of the ideas above, except that deletion rules are formalized in our framework
as blocking rules, which are presented in section 5. Irreducibility constraints give us blocking rules
based on the reducibility of terms in constraints Irr(s). For example, suppose we have equations
A [[� � �Irr(u[s0]) � � �]] and s � t[[']], where s� = s0 and s� � t�. Then the �rst equation can be
changed to A [[� � �(Irr(u[s0])^:('�)) � � �]]. Clearly if all instances of s � t are available, i.e., ' = >,

5To be precise we would also need to keep the irreducibility constraints on the variables of the conclusion to avoid
superposing into variables.

16

then this corresponds to solving the constraint Irr(u) by replacing it with ?. In cases where only
certain instances of s � t are available, then we can only falsify the irreducibility constraint for
those instances of s0. Such blocking rules are closely related to constraint solving techniques. See
section 5 for a discussion.

4.5 Relationship to Critical Pair Criteria

We have indicated in the introduction that this technique of constrained critical pairs covers all
known critical pair criteria. In the remainder of this section we show how we can set the parameters
of the C-Deduce rule to give other critical pair criteria as special cases of ours. To start with we
consider completion without constraints.

The standard critical pair rule can be represented in our system by letting �1 = Irr(x1)^ � � �^
Irr(xn), where fx1; : : : ; xng = V ar(u[t]� � v�), and �2 = >. This is only necessary to disallow
superposition into variable positions. The standard simpli�cation rule can be represented by the
same conclusion, with the right premise modi�ed using CM1. Since simpli�cation is only performed
when � is a matcher, the �rst constraint on the right premise becomes ? so the equation may be
deleted.

Prime superposition [10] is a critical pair criterion which states that an inference is unnecessary
if the left hand side of the left premise is reducible. This follows directly from our redundancy
criteria. An inference is redundant if Irr(s�) is unsatis�able. In fact one result of our inference
system is a hereditary version of prime superposition because that constraint is kept with the
equation and passed along in future inferences.

General superposition [24] and the critical pair criteria discussed in [12, 21, 22] are all examples
of a more general principle of subsumed critical pairs [3]. Once an overlap on an equation A is pro-
duced, involving an mgu �, then it is no longer necessary to consider overlaps on A involving mgus
less general or equal to �. We simulate these critical pair criteria with disequational constraints.
The constraints on the conclusion would be the same as the constraints in the (unconstrained)
critical pair rule. The di�erence is that CM1 is then performed. The �rst constraint of the right
premise then becomes 1 ^ :�. This disallows further superpositions into the right premise where
the mgu is less general than or equal to �, since these instances are no longer present. In fact our
inference system suggests a hereditary version of general superposition, allowing constraints to be
passed from the premises of an inference to the conclusion. In other words, if a right premise has
been overlapped with mgu �, then the conclusion also never needs to be overlapped with an mgu
less general or equal to �. Note that this is only true when CM1 can be performed, i.e., when the
ordering conditions hold. In that case, we say that CM1 is possible.

In addition to naturally simulating subsumed critical pair criteria with our inference system we
also naturally simulate Basic Completion [5, 15]. In Basic Completion each equation consists of
a skeleton and a substitution. In this strategy, when an inference is performed the mgu is saved
with the substitution and not applied to the skeleton. Then we never overlap a position generated
by substitution; this is a stronger, hereditary version of the �no variable overlaps� restriction. We
simulate Basic Completion with irreducibility constraints. In the conclusion of an inference we let
�1 = '1� ^ 1� and �2 = NoIrrV ar(u[t]� � v�;�1). Essentially, all constraints would be con-
junctions of irreducibility constraints; constraints on the variables of the premises are instantiated
by the mgu which restricts us from superposing into those positions. Thus the �frontier� of the
terms (to use the terminology of [5]) is presented by the terms in the constraints. A blocking rule
is necessary to implement the restriction, naturally. In fact, this is stronger than the formulation
from [4, 5] because we are allowing irreducibility constraints on terms that do not appear in the
equation; as long as they are smaller than some side of the conclusion, they can be inherited from
the premises and preserved. If we let �1 = '1�^ 1�^Irr(T), where T = fwjw is a proper subterm
of s�g [fwjw is a subterm of u and w <r s

0�g we simulate Basic Completion with selection rules
and redex orderings, a stronger form of Basic Completion from [5], because in that case we have

17

added the hereditary version of prime superposition.
Basic Completion needs a special form of simpli�cation to be complete, as shown in [4, 5,

15]. In Basic simpli�cation only the substitution positions of the right premise are allowed to be
substitution positions of the conclusion. Then certain skeleton positions of the left premise must
be instantiated by the substitution before simpli�cation is performed. The only skeleton positions
which do not need to be instantiated are the ones which also appear in the substitution of the right
premise. For our simulation of Basic simpli�cation we set �1 = 1� and �2 = NoIrrV ar(u[t]� �
v�;�1). Then we weaken the constraints on the left premise by: '1) '1 _ (� ^ 1) and '2)
'2 _ (� ^ 1). Finally we perform CM1. Since � matches s to s0 the result of CM1 will be 1)?
and the right premise may be deleted. A stronger version of Basic Completion would be to use
CM2 which would give us more cases where the terms in the left premise need not be instantiated
in order to weaken 1 to ?. Also, we need not require that � be a matching substitution. In that
case we would simplify some instances of the right premise. We can also formulate the blocking
rule from [5] in our framework. We will expand upon this in the next section.

In the conclusion we will discuss the further relationship of our work with other papers such as
[11].

5 Constraint Solving

Since the constraints are used to determine when equations and inferences are redundant, we need
a constraint solving algorithm. This algorithm does not need to be complete in the sense that it
always determines whether or not a constraint is satis�able, because the only result of an incomplete
algorithm is that some redundant equations won't be deleted and some redundant inferences will
be performed. The more unsatis�able constraints a constraint solving algorithm could detect, the
more useful it will be. However, the algorithm does need to be sound in the sense that it should
not say that a constraint is unsatis�able when it is satis�able, because that would cause the system
to delete equations that are not redundant and not perform necessary inferences.

Whether we view this as an actual completion procedure or a formalism for describing and
proving complete other completion procedures, it is necessary to develop some techniques for con-
straint solving. First we show, for every term t and set of equations E, a constraint containing
only equational and disequational predicates, such that t is reducible in E if is true. So then,
given a set of equations E, we transform a predicate Irr(t), appearing in a constraint ', into the
conjunction Irr(t) ^ : . Given a constraint solver working on only equality and disequality con-
straints, we describe below how to give a new constraint solver that tries to solve ' but ignores the
irreducibility predicate. This will give us a generalization of the blocking rule from [5].

Lemma 7 Let E be a set of equations containing the rewrite rules fs1 ! t1 [['1]]; � � � ; sn !
tn [['n]]g. Let A [[� � �Irr(u) � � �]] 2 E. Let fu1; � � � ; umg be the set of all subterms of u. Let
 =

W
1�j�m

W
1�i�n('i ^ (uj = si)). Then A [[� � �Irr(u) � � �]]) A [[� � �(Irr(u) ^ :) � � �]] is a

correct constraint modi�cation.

Proof. To show the correctness of the constraint modi�cation, we will show that for any R and �+,
every member of M = Gr�+R (A [[: : : Irr(u) : : :]]) nGr�+R (A [[: : :(Irr(u)^ :) : : :]]) is R-redundant
in E. Suppose A� 2 M . This implies that � 2 Sol�+R () and � 2 Sol�+R (Irr(u)). But then
� 2 Sol�+R ('i ^ (uj = si)) for some i and j. Therefore, � 2 Sol�+R ('i). Also � 2 Sol�+R (uj = si),
so u� = si�. Therefore si� ! ti� 2 Gr

�+
R (si ! ti [['i]]). If R does not make si� ! ti� true, then

A� is R-redundant, since anything larger than si� ! ti� in Gr�+R (E) will be R-redundant, and
u� is smaller than some term in A�. If R does make si� ! ti� true, then � 2 Sol�+R (:Irr(u)), a
contradiction. 2

From this we can formulate the blocking rule.

18

De�nition 14 Let E be a set of equations containing A [['[Irr(w[s0])]]] and s ! t [[]]6 , such
that � = mgu(s; s0) and '� implies �. Then the blocking rule is the constraint modi�cation
A [['[Irr(w[s0])]]]) [['[Irr(w[s0])^ :�]]].

The blocking rule is most interesting when s� = s0, so that the constraint Irr(w[s0]) is equivalent
to ? since w can be reduced. In that case the constraint modi�cation is A [[� � �Irr(w[s0]) � � �]])
[[� � �? � � �]]. This is useful when = >, because then obviously '� implies �. The previous lemma
shows that the blocking rule in addition to being a constraint modi�cation, moreover does not
change the ground instances of A [[']] for any R. Therefore, blocking should always be performed
when it is applicable, because it simpli�es the constraint.

Some algorithms have been shown to be complete for quanti�ed �rst order constraints with
equational and disequational predicates over an extended signature (see [13, 14]).7 Given such
an algorithm, we could apply it to the modi�ed constraint. The algorithm would ignore the irre-
ducibility constraints. If an irreducibility predicate appears positively it is changed to >. If an
irreducibility predicate appears negatively, it is changed to ?. This will give us all the instances that
appear in any R if the set of equations that are smaller than A [[']] is canonical. In general, this will
not be the case, so the constraint solver will not �nd all the redundant instances with this method.
For example, suppose we have the ordering f � a � b � c and E = fA [[Irr(f(b))]]; a! b; a! cg.
Then A [[Irr(f(b))]] is redundant in E but the constraint solver described above will not determine
that fact. That is because the set of equations smaller than A is not canonical. In fact, the only
way to write a complete constraint solver is to be able to determine whether a term is irreducible
in the canonical set of equations implied by all smaller equations, which is undecidable. Therefore
the problem of solving our constraints is undecidable. So in practice, it is necessary to just detect
reducibility in the current system.

We would like to investigate the class of unsatis�able constraints which can be detected by an
e�cient algorithm. For instance, the constraints generated by (hereditary versions of) the critical
pair criteria discussed in subsection 4.5 have a particularly simple form, a conjunction of simple
constraints. The Basic Completion approach (and the Blocking rule above) produces a conjunction
of irreducibility predicates, which can be checked for unsatis�ability by solving each one separately.
The criterion of subsumed critical pairs generates constraints of the form :�1^:�2^: : :^:�n which
can be checked for unsatis�ability in the same way, by solving each of them separately. Therefore,
the combination of the two types of constraints may be solved in the same way.

The point here is that we have provided a very general framework for preserving redundancy
information during completion, and the techniques for encoding various existing critical pair criteria
require relatively simple constraint solving techniques. The subject of more sophisticated (or simply
more e�cient) constraint solvers for our class of constraints is a subject of future research.

6 Completeness

We now consider the completeness of the rules presented in section 4. We emphasize that we are
considering only the critical pair rules here, and not the full complement of completion inference
rules. It is su�cient for completeness however to consider only the critical pair rules.

Following the paradigm developed at length in the book [3], we de�ne a derivation to model
the process of completion. The di�erences here have to do with the nature of constrained inference
rules, which add and delete certain ground instances of the equations involved in a subtle way.

De�nition 15 A sequence < S0; S1; : : : > of sets of equations over � is a derivation from S if
S0 = S and for each i � 0, for any R and �+, Gr�

+

R (Si+1) = (Gr�
+

R (Si) [E1) nE2 where E1 and

6This could be stated even more generally, by requiring only that s� � t�.
7For related results on solving ordering constraints, see [6, 9].

19

E2 are sets of equations such that Gr�
+

(erasure(Si)) j= E1 and each equation in E2 is R-redundant
in Si.

Let S1 =
S
j

T
k�j Sk. We call S1 the limit of the derivation. Any equation A 2 S1 is called

persisting. A set S is saturated if, for every pair of equation in S, if an instance of C-Deduce exists
involving those equations then some instance of C-Deduce involving those equations is redundant in
S. A derivation is fair if the limit is saturated.

Fair derivations can be constructed by performing all inferences among persisting equations in
some systematic fashion such as breadth-�rst search, or breadth-�rst modulo size.8 An inference
rule can be viewed as a transformation from one set of equations to another set of equations. Some
instances are added to the set and some deleted. The next result shows that redundant instances
of equations and inferences stay redundant when equations are added or when redundant instances
are deleted.

Lemma 8 Suppose E is a set of equations over a signature �, and R a rewrite system. Further
suppose E0 is a set of equations and �+ an extension such that Gr�

+

R (E) � Gr�
+

R (E 0). Then:

1. Any equation (or inference) which is R-redundant in E is also R-redundant in E0; and

2. If all ground instances in Gr�
+

R (E 0) n Gr�
+

R (E) are R-redundant in E0, then any equation
which is R-redundant in E0 below B is also R-redundant in E below B, and any inference
which is R-redundant in E0 is also R-redundant in E.

Proof. Without loss of generality we prove the result for only ground instances of both equations
and inferences. The proof for (1) is trivial, since adding more instances to Gr�

+

R (E) does not
a�ect the ability to select the appropriate Ai. For (2), suppose A is R-redundant below B in
E0. Choose the set fA1; : : : ; Ang minimal wrt the multiset extension of the equation ordering.
Suppose some Ai is not in Gr�

+

R (E), and thus is R-redundant. Then there is a set of equations
fB1; � � � ; Bmg which are all smaller than Ai and such that if R j= Bk for each k, then R j= Ai. Thus
fA1; � � � ; Ai�1; B1; � � � ; Bm; Ai+1; � � � ; Ang is smaller than the original set and su�cient to prove the
R-redundancy of A below B, a contradiction. This shows that each of the Ai must have been in
Gr�

+

R (E). The case of inferences is a trivial extension of this result. 2

This will su�ce to show that the inference systems presented are su�cient to saturate a set of
equations. We now show that saturated sets are canonical. In our framework, this will allow us to
argue that our constrained completion systems will produce canonical sets in the limit. Our proof
follows very much in the lines of the proof in [5], with the addition of the constraint formalism.
In addition, there are some delicate features of the proof which relate to the use of an arbitrary
extended signature (to play the role ordinarily played by Skolem constants) and also irreducibility
constraints de�ned relative to a rewrite system which is constructed inductively from the set of
constrained equations itself. (This induction is the reason for the use of Rs��s� in case (3) of
De�nition 2.)

First we give a method for constructing a canonical set of ground rewrite rules from a given set
of equations.

De�nition 16 Let E be a set of equations over a signature � and EQ denote the set of all ground
equations over some extension �+. We de�ne the ground rewriting system RE over �+ using
induction on (EQ;�) by associating with each A 2 EQ a rewrite system RA+ . Assume for a ground
equation A that RB+ has been de�ned for each ground equation B with B � A, and let RA be
de�ned as

S
B�A RB+. Then RA+ = fAg [RA if A is a member of Gr�

+

RA
(E) in the form s � t

where s � t and s is irreducible by RA; otherwise RA+ = RA. Finally de�ne RE as
S
A2EQ RA+ .

8Typically completion procedures order their queues by size for e�ciency.

20

The properties of the preceding de�nition we shall need are as follows.

Lemma 9 For RE as just de�ned,

1. If A 2 Gr�
+

RA
(E), then A 2 Gr�

+

RE
(E);

2. RE and RA for any A 2 EQ are ground canonical;

3. There is no equation A 2 RE such that RA j= A; and

4. For all equations A 2 Gr�
+

RE
(E), RE j= A i� RA+ j= A.

Proof. The �rst claim follows from our assumption in section 2.2 that in equations of the form
s � t[[� � �Irr(u) � � �]], u � s. For the second, clearly the fact that RE (and any subset thereof) is
terminating and left�reduced implies that it is canonical. For (3), if R(s�t) j= (s � t), then there
would be a rewrite proof between s and t, and since s � t, then s would be reducible by R(s�t),
a contradiction. For the last claim, the if direction, and the only if direction in the case of an
identity are trivial. Now suppose A is in the form s � t, with s � t, and there exists a rewrite proof
for A in RE. Then s is reducible by RE ; but it is reducible at the root only if RA includes fs � tg
and below the root only by a strictly smaller equation. Thus A has a rewrite proof in RA+ . 2

We now explore the conditions under which such a construction results in a rewrite system
equivalent to the original E in a certain sense.

Theorem 1 Let E be a saturated set of equations such that for each A [['1; '2;M]] 2 E, '1 is
stronger than Irr(V ar(A)). Then RE is equivalent to Gr�

+

RE
(E).

Proof. For convenience of notation, let R denote the set RE . Since R � Gr�
+

R (E), we proceed to

show by contradiction that R makes true every member of Gr�
+

R (E). Let s � t (with s � t) be the

least (wrt �mul) member of Gr�
+

R (E) such that R 6j= s � t. If s is irreducible by Rs�t, then by the
construction, s � t would be in R, a contradiction. Therefore s is in the form s[l]p for l � r 2 R,
where s � t �mul l � r and l � r. We assume that the position p is the least such reducible
position wrt <r. We thus have a Ground-Deduce inference

l � r s[l]p � t

s[r] � t

We now show that this inference is R-redundant, by proving that it is a ground instance of a legal
C-Deduce inference on constrained equations in E.

Now we know that l � r must be a member of some

Gr�
+

R (l0 � r0[['1; '2;M]])

via a ground substitution �1, and s[l] � t must be a member of some Gr�
+

R (s0[u] � t0[[1; 2; N]])
via a ground substitution �2. In other words, �1 is an R-solution of '1, and �2 of 1. Since we
may assume the two equations are variable�disjoint, we may form the substitution � = �1 [�2.
Therefore there exists an inference

l0 � r0[['1; '2;M]] s0[u]p � t0[[1; 2; N]]

s0[r0]� � t0�[[�1;�2; P]]

for � = mgu(l0; u) and there exists � such that �� = �. This is a legal C-Deduce inference, since u
must be a non-variable term occurring in s, as � is an R-solution of 1, which is no weaker than
Irr(V ar(s0[u])) (this implicitly uses part (1) of the previous lemma).

21

Now � is a solution of '1 ^ 1, and l � r 2 R (so l is R-irreducible by smaller equations), and
furthermore the redex position is minimal in <r ; thus � is an R-solution of '1� ^ 1� ^ Irr(T)
(with T as in the de�nition of C-Deduce).

Clearly the ground inference is an R-instance of the C-Deduce inference. Since E is saturated,
the inference, and therefore its ground instance, are R-redundant. Now, clearly l � r is not R-
redundant, by part (3) of the previous lemma. Similarly, since s � t is the least member of Gr�

+

R (E)
false in R, it can not be R-redundant.

Thus the only possibility which remains is that the conclusion s[r] � t is R-redundant below
s[l] � t. But then, since l � r is also true in Rs�t, and fl � r; s[r] � tg j= s[l] � t, then s[l] � t

would be R-redundant, a contradiction.
Thus R makes true every member of Gr�

+

R (E). 2

We now state the main completeness result of the paper.

Theorem 2 Let E be a set of unconstrained equations and S be a set of equations of the form
A [[Irr(Var(A));>]] for A 2 E. Let < S; � � � > be a fair derivation from S. Then Gr�

+

RS1
(S1) is

ground canonical and equivalent to E over ground terms. In addition the set of orientable instances
of the erasure of S1 is a canonical rewriting system equivalent to E.

Proof. For simplicity, let R = Gr�
+

RS1
(S1). Since S1 is saturated, the previous two results show

that RS1 is ground canonical and equivalent to R. By Lemma 8, R is equivalent to Gr�
+

RS1
(E),

which is identical with Gr;(E) (since E has no constraints). Thus RS1 is ground canonical and
equivalent to E. Since RS1 � R, and by soundness of C-Deduce, S1 is ground canonical and
equivalent to E. Finally, R � erasure(S1) and R � Gr�

+

(erasure(S1)) imply that erasure(S1)
is ground canonical and equivalent to E on ground terms. Since we have shown this for any
extension �+ of our given signature �, erasure(S1) is canonical. 2

The use of the arbitrary extension �+ may now be seen as a substitute for the standard technique
of adding Skolem constants in order to prove that the result of an ordered completion process is
not only ground canonical, but canonical (cf. theorem 3 in section 6 of [5]).

This proves completeness in the ordered completion case. However, to relate this to standard
completion (where failure due to unorientable equations is a possibility) and ordinary notions of
(unconstrained) rewriting, the �rst two conditions of the C-Deduce inference rule must be replaced
by s � t and u[s0] � v.

Corollary 1 Let E and S be as above, and let C-Deduce be modi�ed as just mentioned. Let
< S; � � �> be a fair derivation from S, where for every equation s � t [[']] in S1 we have s � t or
t � s. Then erasure(S1) is canonical and equivalent to E.

This shows that our inference system produces a canonical rewriting system in the limit if no
failure due to unorientable equations occurs. Note that the result of the process is a constrained
set of rewrite rules whose constraints do not alter the equational theory of the set of rules or the
fact of its being canonical, but only remove some unnecessary instances of the rules. However, if
solving such constraints during the rewriting process is undesirable (e.g., if they are undecidable),
then our results also show us that the constraints can simply be erased.

7 The Recalculation Problem

This paper is about methods for eliminating unnecessary computation in completion procedures.
An interesting problem along these lines is one we call the recalculation problem. Typically in a
completion procedure a subset SAT of equations is maintained which are saturated (i.e., all critical

22

pairs among the equations have already been generated). After equations are oriented and used for
simpli�cation, they may be used to generate critical pairs and then added to SAT. The problem is
that when equationss in this set are simpli�ed on the bigger side, they need to be re-oriented and to
go through the saturation process with the other equations in SAT again, potentially reconstructing
critical pairs already in the system. (It can be shown using the techniques of redundancy developed
in [3], and hence in our notions of redundancy, that simpli�cation of the smaller side of an equation
in SAT does not require such recalculation, since any newly calculated critical pairs would be
redundant.)

In general, the notion of a fair derivation sequence does not provide enough information to give
us interesting criteria for eliminating such recalculation. It would be useful to know what additional
properties a completion procedure must have to avoid certain kinds of recalculation.

Our framework allows us to show precisely which critical pairs need to be recalculated when the
left hand side of a equation is simpli�ed. Suppose that an equation s � t[[']] 2 SAT (with s � t)
is simpli�ed at position p into s0 � t[['0]] (retaining its orientation of s0 � t). Then the question
is which overlaps of the new equation with the other equations of SAT need to be considered for
completeness. Our results show that in any system where the constraints are never weakened,
the right premise is strengthened as much as possible, and the constraints are inherited by the
conclusion of an inference, only overlaps strictly above p need be considered.

In fact we can show a more general result concerning not just simpli�cation steps, but arbitrary
inference steps, because the system cannot distinguish between the two. Since every critical pair
inference is considered as a simpli�cation, the inferences do not need to be recalculated. Therefore,
this is the one example we know of where restrictions imposed by constraints actually allows one to
be more restrictive elsewhere. The tradeo� comes when the disequational constraint which prevents
recalculation also prevents other simpli�cations from being done, as we show in an example below.

The following theorem assumes that the CM1 constraint modi�cation rule is possible. Therefore
the theorem holds for standard completion, because CM1 is always possible. In the case of ordered
completion, the result only holds for inferences where the left premise and conclusion are smaller
than the right premise. This requires that the left premise be ordered. To prove the result, we just
need to show that certain inferences are redundant because the constraint is not satis�ed.

Theorem 3 Let I be an instance of C-Deduce of the form

s � t [['1; '2;M]] u[s0]p � v [[1; 2; N]]

u[t]� � v� [[�1;�2;M� [N�]]

where �1 is no weaker than '1� ^ 1� and 1 is modi�ed to a constraint that is no weaker than
 1 ^:(� ^'1). Then the completion procedure is complete for inference rule I, with the restriction
that after the above inference is performed, no further inference of s � t needs to be performed into
u[s0] � v at position p. Also no inference of s � t needs to be performed into any later descendant9

of u[s0] � v at position p, unless an inference is performed at a position above, at or below p to
create that descendant.

Proof. We must show that after an inference is performed at position p, the constraint disallows
that inference to be repeated, that constraints never become weaker, and that constraints are
inherited by the conclusion of an inference. The �rst condition is true because, after an inference
is performed the constraint is modi�ed to a constraint that is no weaker than ^ :(� ^ '). This
shows that the inference does not need to be redone, because it would be redundant. The second
condition is given. The third condition is a result of the fact that the constraint on the conclusion
of an inference is not any weaker than '1�^ 1�. This ensures that constraints from both premises
are inherited by the conclusion of an inference. 2

9By descendant of A, we mean a conclusion of an inference with some premise A, or any descendant of the
conclusion.

23

In other words, in these systems, overlaps at disjoint positions need not be recalculated after
a critical pair inference or a simpli�cation. The reason is that these critical pairs would involve
instances which are now redundant, and hence can be ignored. An example of this type of system
is CCP.

We now give an example showing that the above theorem does not hold in general for standard
completion (without constraints). In other words, we exhibit a set of equations, and an order
of critical pair inference and simpli�cation steps that is seemingly fair, but a canonical rewriting
system is not produced (unless critical pairs into disjoint positions of simpli�ed terms are allowed).
There is an order of critical pair inference and simpli�cation steps which would result in a canonical
inference system, however there is no way for a completion procedure to know in advance which is
the best way to order the inference and simpli�cation steps to avoid recalculations. We emphasize
that this example is intended merely to show that the above theorem does not hold in general,
therefore the example is as simple as possible.

Consider the following set of equations under the following ordering: a > f > g > b > c > d > e.

� g(b)! c

� f(a; g(x))! e

� a! d

� a! f(d; g(b))

First form a critical pair between f(a; g(x)) ! e and g(b) ! c. You get f(a; c) ! e which
simpli�es by a ! f(d; g(b)) to f(f(d; g(b)); c) ! e. Then simplify f(a; g(x)) ! e by a ! d

to f(d; g(x)) ! e. Simplify f(f(d; g(b)); c) ! e by f(d; g(x)) ! e to f(e; c) ! e. Simplify
a! f(d; g(b)) by g(b)! c and a! d to f(d; c)! d.

The �nal rewrite system is:

� g(b)! c

� f(d; g(x))! e

� a! d

� f(d; c)! d

� f(e; c)! e

There are no more inferences that can be performed unless we recalculate critical pairs. But
this is not a canonical rewrite system. For instance d � e but they are both in normal form.

Suppose we re-do the above derivation using disequational constraints. In that case, we �rst
form a critical pair between f(a; g(x)) ! e and g(b) ! c to get f(a; c) ! e. Then, we can add
a disequational constraint to the equation f(a; g(x)) ! e, so it becomes f(a; g(x)) ! e [[x 6= b]].
As before, the equation f(a; c) ! e can be simpli�ed by a ! f(d; g(b)) to f(f(d; g(b)); c) ! e.
Then simplify f(a; g(x)) ! e [[x 6= b]] by a ! d to f(d; g(x))! e [[x 6= b]]. Now, because of the
disequational constraint, we cannot simplify f(f(d; g(b)); c)! e by f(d; g(x))! e [[x 6= b]]. The
reader will note that the set of equations can now be completed. The point of this example is that
the disequational constraint prevents recalculation of critical pairs, but at the same time disallows
some simpli�cations. It is another example of the tradeo�s that must be made when deciding how
constraints are used.

24

8 Initial Constraints

In this section, we extend the previous results to sets of equations with initial constraints. This
requires us to re-de�ne the de�nition of erasure and some of the previous constraint modi�cation
rules. It also forces us to e�ectively paramodulate below variables in some instances. The necessity
of paramodulating below variables can create an ine�cient theorem prover. Therefore the results
of this section may not be useful in practice. However, even if that is the case, we think this section
is very useful in that it presents a framework which shows explicitly which constraints are used to
control the inference and which constraints are necessary to prove soundness.

Throughout this paper, we have been assuming that all equations are initially unconstrained.
But what happens if the completion procedure tries to operate on a set of constrained equations?
Unfortunately, completeness is lost. Consider the following example.

Suppose we have an ordering f � g � h � a � b and E = ff(x) � g(x) [[x 6= h(b)]]; a � bg.
There are no inferences among these two equations. We can show that f(h(b)) � g(h(b))) because
f(h(b)) � f(h(a)) � g(h(a)) � g(h(b)). However neither f(h(b)) nor g(h(b)) can be rewritten using
equations in E. So E is not canonical.

One way to deal with this situation would be to weaken the constraint f(x) � g(x) [[x 6= h(b)]]
as we sometimes need to weaken the constraint on a simpli�er. Unfortunately, this is not sound.
So we have to deal with the problem in some other way. What we can do is to superpose at
variables or below variables. For the example above, it is not enough to superpose at variables. It
is necessary to unify the variable x with h(a) which contains the left hand side of a rewrite rule as a
subterm, e�ectively using a functional re�exivity axiom. This process is described below. Another
alternative, discussed in [11], is to expand out the constraint based on the signature. For example,
a disequation x 6= f(y) is equivalent to x = a_ x = b_ (x = f(z)^ z 6= y) if the signature is simply
fa; b; fg. Note that this does not work in our context of extended signatures.

To handle initial constraints we must add one more parameter to each constrained equation.
We will represent a constrained equation as A [['1; '2;M; '3]]. The �rst three parameters represent
the same thing as before. The fourth parameter has been added to represent all of the instances
that are true by equations less than or equal to M . For all R, if B 2 GrR(A [['3]]) then B is
redundant in E up to M . We de�ne erasure(A [['1; '2;M; '3]]) = A [['3]]. This new de�nition of
erasure is necessary to ensure the soundness of the completion procedure.

The constraint modi�cation A [[']]) A [[IrrVar(A;'); NoIrrVar(A;')]] was discussed in
section 3. We gave an example of the result of this constraint modi�cation on a constrained
equation. For an unconstrained equation the result of IrrV ar(A;') is a conjunction of irreducibility
conditions on all the variables in A. These constraints are passed on in inferences, so they enforce
the restriction that no superposition take place at or below a variable. However, for constrained
equations, the result of IrrV ar(A;') is not a conjunction on all the variables, so we are not
forbidden to superpose at or below variable positions. As we saw in the example above, this is
necessary for completeness. With the additional constraint, the C-Deduce rule is as follows.

C-Deduce
s � t [['1; '2;M; '3]] u[s0] � v [[1; 2; N; 3]]

u[t]� � v� [[�1;�2;M� [N�; '3� ^ 3�]]

The only di�erence between this de�nition and the original de�nition is the fourth parameter
of the constraint. The conclusion inherited the conjunction of the constraints of the premises with
� applied. Those are the only instances of the conclusion that we know are true in the theory. This
parameter is very important to preserve soundness. We must use this parameter if we want to add
new instances of an equation by changing the �rst parameter of the constraint.

However, this rule is not good enough to preserve completeness. We need to add an additional
version of the C-Deduce rule that allows us to superpose below variables. The inference looks like
this:

25

C-Deduce-Below
s � t [['1; '2;M; '3]] u[x] � v [[1; 2; N; 3]]

u[w[t]]� � v� [[�1;�2;M� [N�; '3� ^ 3�]]

where w is some arbitrary term containing s.
The use of w is necessary because we could have uni�ed x with any term w containing s as a

subterm. So � = [x 7! w[s]]. This inference is redundant if 1� is not true. Moreover, the inference
is not sound if 3� is not true. So we must not perform the inference in that case. The inference
is also redundant if 2� is true, because then the conclusion of the inference follows from the
right premise. Since we are superposing into variables, this procedure may be useless in practice.
However, the redundancy criteria may restrict the inference enough so it is useful.

When dealing with initially constrained equations, we have to be careful not to add instances of
equations which are not implied by the theory. That is what the fourth parameter of the constraint
is used for. For example, in section 4 we gave some correct constraint modi�cation rules and then
gave particular examples of those rules. Some of the examples required adding instances of the left
premise or conclusion in order to simplify more instances of the right premise. In order not to lose
soundness we have to alter the modi�cations of the constraints that add instances.

We need to change the constraint modi�cations as follows. For the C-Simplify rule �1 should be
set equal to 1�^'3� instead of 1�. This is because we can only add instances that we know follow
from the theory. The constraint modi�cations are replaced by the following: 1) 1 ^ :(� ^'3),
'1) '1 _ (� ^ 1 ^ '2 ^ '3), '2) '2 _ (� ^ 1 ^ '3).

A similar thing happens in the CCP1 and CCP2 inferences. For CCP1, �1 is set equal to
'2� ^ 1� ^ Irr(T)^ '3�. For CCP2, �1 is set equal to 1� ^ Irr(T) ^ '3� and the constraint
modi�cation on 1 becomes 1) 1 ^ :(� ^ Irr(T)^ '3).

For initially constrained equations, the constraint solver must be complete for the kind of
constraints that may appear as the fourth parameter (i.e., the initial constraints). Otherwise, the
system is not sound.

Given the changes in the de�nition of erasure and constraint modi�cation to preserve soundness,
and the change to the inference rule to preserve completeness, the completeness proof of section 6
applies directly to the case of initial constraints. Note that some of the de�nitions have been
presented in a general way, so that they would apply to the case of initially constrained equations.

We must remember the remark given in section 2.2 of this paper. The remark stated that
irreducibility constraints will always be kept in such a form that the term in the irreducibility
constraint is smaller than the equation. That causes a problem for initial irreducibility constraints,
because, in order to preserve completeness we must keep the irreducibility constraints in this form.
However, in order to preserve soundness we are not allowed to weaken constraints that derive from
initial constraints. This is a contradiction, so we in general cannot handle initial irreducibility
constraints. For example, the set

a � b [[Irr(b)]]; a � c [[Irr(b)]]; b � e [[Irr(a)]]

where a � b � c � e, has no meaning, according to our semantics, and we can not perform
the overlap of the �rst two equations. The di�culties with initial irreducibility constraints is
unfortunate, and perhaps there is some restricted form in which they are tractable. This would be
useful in that initial irreducibility constraints can be used to semantically constrain variables. For
example, in a �eld we would like to have an axiom x � x�1 = 1 [[x 6= 0]] but include the fact that x
is not only syntactically distinct from 0, but also is not equivalent to 0 in the theory. This can be
represented by the axiom x � x�1 = 1 [[x 6= 0^ Irr(x)]] since in general 0 will be irreducible and so
the irreducibility constraint on x embeds the condition that the binding for x not be equivalent to
0.

However, initial equational and disequational constraints may be handled as discussed above.
For that case, we have described a sound and complete inference procedure, i.e., we need the two

26

rules C-Deduce and C-Deduce-Below. The constraint modi�cations still apply, but we must ensure
that the left premise is never weakened more than '3.

9 Conclusion

We have presented several inference systems which show in a very precise way how to take advantage
of redundancy notions in the context of constrained equational reasoning. These systems illustrate
the tradeo�s involved in this framework in a rigorous way. We hope that this research contributes
to the further development of the theory of constrained equational reasoning and to the practical
improvement of existing completion procedures.

The method of proof used in this paper was adapted from [5] (see also [15]), which in turn
adapted the results of [1] (cf. [17] and [25]). However, the inference systems are developments
of the rules from the seminal paper [11] to show how irreducibility constraints can be used to
express the idea of Basic Completion in combination with other kinds of equational constraints to
encode other critical pair critiria such as subsumed critical pairs. Nieuwenhuis and Rubio [15] also
expressed Basic Completion in terms of constraints. However, they used equational constraints
instead of irreducibility constraints. We prefer to use irreducibility constraints, so as not to confuse
them with equational constraints.

The completion system in [11] is designed for a set of equations with initial constraints. The au-
thors are not concerned with e�ciency constraints and redundancy. As we have shown in section 8,
completion is not complete with initially constrained equations unless we allow superposing into
variables. In order to insure completeness [11] considered some additional inference rules which
basically had the purpose of turning constrained equations into unconstrained equations. In sec-
tion 8 we showed how completeness can be preserved with initial constraints by allowing a limited
form of variable overlap. Our completeness proof is the �rst one we are aware of for equational
and disequational constraints without any additional rules, except for the extension of C-Deduce.
Also Nieuwenhuis and Rubio [16] have a method of dealing with initial ordering constraints with-
out adding any additional rules, and equational and disequational constraints can be encoded by
ordering constraints. However, they only allow a speci�c class of initial constraints, while we allow
all initial constraints at the cost of the extension of C-Deduce. We should remark that although
we do not consider ordering constraints, it seems that they could be added to our system without
major alterations of the framework. This topic is left for future research.

We do not expect that this framework in its entirety would be necessarily be an e�cient and
usable form of completion procedure. We instead view it as a theoretical model for constrained
completion, some of whose special cases may turn out to be practically useful. Our current research
focuses on simple and e�cient subcases of the general framework which promise to eliminate as
many redundant inferences and equations as possible without excess amounts of overhead. A
particular focus is on subclasses for which e�cient constraint solving techniques exist.

10 Acknowledgements

We would like to thank Claude Kirchner for his encouragement and we would also like to thank
the anonymous referees for pointing out numerous errors and providing suggestions for constructive
changes. Also, we thank Hubert Comon for his remarks on constraint solving in extended signatures.

References

[1] L. Bachmair and H. Ganzinger. Rewrite-based Equational Theorem Proving with Selection and
Simpli�cation. Journal of Logic and Computation 4 (1993) pp. 1�31.

27

[2] L. Bachmair and N. Dershowitz. Critical Pair Criteria for Completion. Journal of Symbolic

Computation 6 (1988) pp.1�18.

[3] L. Bachmair. Canonical Equational Proofs. Birkhauser Boston Inc., Boston MA (1991).

[4] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic Paramodulation and Superposition.
Proc. 11th Conference on Automated Deduction, Springer-Verlag LNAI 607, Berlin (1992) pp. 462�476.

[5] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic Paramodulation and Superposition.
To appear in Journal of Information and Computation.

[6] H. Comon. Solving Symbolic Ordering Constraints. International Journal of Foundations of Computer

Science 1 (1990) pp. 387�411.

[7] J. Hsiang and M. Rusinowitch. Proving Refutational Completeness of Theorem Proving Strategies:
The Trans�nite Semantic Tree Method. Journal of the ACM 38 (1991) pp. 559�587.

[8] G. Huet. Con�uent Reductions: Abstract Properties and Applications to Term Rewriting Systems.
Journal of the ACM 27 (1980) pp. 797�821.

[9] J-P. Jouannaud and M. Okada. Satis�ability of Systems of Ordinal Notations with the Sub-
term Property is Decidable. Automata Languages and Programming, 18th International Colloquium,
Springer-Verlag LNCS 510, Berlin (1991).

[10] D. Kapur, D. Musser and P. Narendran. Only Prime Superpositions Need to be Considered in
the Knuth-Bendix Completion Procedure. Journal of Symbolic Computation 6 (1988) pp.19�36.

[11] C. Kirchner, H. Kirchner and M. Rusinowitch. Deduction with Symbolic Constraints. Revue
Francaise d'Intelligence Arti�cielle 4:3, (1990) pp. 9�52.

[12] W. Küchlin. A Con�uence Criterion Based on the Generalized Newman Lemma. Proc. Eurocal '85 ,
Springer-Verlag LNCS 204, Berlin (1985) pp.390�399.

[13] K. Kunen. Answer Sets and Negation as Failure. Proc. 4th International Conference on Logic Pro-

gramming, MIT Press, Cambridge MA (1987).

[14] M. Maher. Complete Axiomatization of the Algebras of Finite, Rational and In�nite Trees. Proc. 3rd
Annual Symposium on Logic in Computer Science, IEEE COmputer Society Press, Los Alimitos CA
(1988) pp. 348�357.

[15] R. Nieuwenhuis and A. Rubio. Basic Superposition is Complete. Proc. European Symposium on

Programming , Springer-Verlag LNCS 582, Berlin (1992) pp. 371�389.

[16] R. Nieuwenhuis and A. Rubio. Theorem Proving with Ordering Constrained Clauses. Proc. 11th

Conference on Automated Deduction, Springer-Verlag LNAI 607, Berlin (1992) pp. 477�491.

[17] J. Pais and G. Peterson. Using Forcing to Prove Completeness of Resolution and Paramodulation.
Journal of Symbolic Computation 11 (1991) pp.3�19.

[18] G. Peterson. Complete Sets of Reductions with Constraints. Proc. 10th Conference on Automated

Deduction, Springer Verlag LNCS 449, Berlin (1990) pp. 381�395.

[19] G. Smolka. Logic Programming over Polymorphically Order-Sorted Types. PhD thesis, Universität
Kaiserslautern, FB Informatik, West-Germany (1989).

[20] W. Snyder. A Proof Theory for General Uni�cation. Birkhauser Boston Inc., Boston MA (1991).

[21] F. Winkler. Reducing the Complexity of the Knuth-Bendix Completion Algorithm: A Uni�cation of
Di�erent Approaches. Proc. Eurocal '85 , Springer Verlag LNCS 204, Berlin (1985) pp.378�389.

[22] F. Winkler and B. Büchberger. A Criterion for EliminatingUnnecessary Reductions in the Knuth-
Bendix Algorithm. Proc. Coll. on Algebra, Combinatorics and Logic in Computer Science, Gyor Hun-
gary, pp. 849�869.

[23] H. Zhang and D. Kapur. Consider only General Superposition in Completion Procedures Proc. 3rd

International Conference on Rewriting Techniques and Applications, Spring-Verlag LNCS 355, Berlin
(1989) pp.513�529.

28

[24] H. Zhang and D. Kapur. Unnecessary Inferences in Associative-Commutative Completion Procedures

Mathematical Systems Theory 23 (1990) pp. 175�206.

[25] H. Zhang. Reduction, Superposition, and Induction: Automated Reasoning in an Equational Logic.
Ph.D. Thesis, Rensselaer Polytechnic Institute (1988).

29

