
Fast Algorithms for Uniform Semi-Uni�cation

Alberto Oliart�

Laboratorio Nacional de Inform�atica Avanzada, A.C.

R�ebsamen 80, Xalapa, Veracruz, Mexico

aoliart@lania.mx

Wayne Snyder

Boston University Computer Science Department

111 Cummington Street

Boston, MA 02215

snyder@cs.bu.edu

January 16, 2003

Abstract

Uniform semi-uni�cation is a simple combination of matching and uni�cation de�ned as
follows: Given two terms s and t, do there exist substitutions � and � such that s�� = t�?
We present two algorithms for this problem based on Huet's uni�cation closure method, one
producing (possibly) non-principal solutions, and one producing principal solutions. For both
we provide a precise analysis of correctness and asymptotic complexity. Under the uniform
cost RAM model (counting assignment, comparison, and arithmetic operations as primitive)
our �rst algorithm is asymptotically as fast as Huet's method, O(n�(n)), where � is the func-
tional inverse of Ackermann's function. Under a model which counts assignments and com-
parisons of pointers, and arithmetic operations on bits, the cost is O(n2 �(n)2). Producing
principal solutions is more complex, however, and our second algorithm runs in O(n2 �(n)2)
and O(n2 log2(n�(n)) loglog(n�(n))�(n)2) under these two models.

1 Preliminaries

This this section we will present the basic notions necessary for the remainder of the paper, and
motivate our study of asymptotically fast algorithms for semiuni�cation. In general we follow the
standard notations established by [4], and provide here only a brief review of the most important
ideas; readers requiring a more complete introduction to uni�cation are referred to the comprehen-
sive survey [2]

We work with �rst-order terms T (F ;X) (denoted by the symbols s, t, u, and v) over a �xed
signature F (denoted by f , g, and h) and set of variables X (represented by w, x, y, and z). When

�Supported by CoNACyT.

1

it simpli�es the notation, we write unary function symbols without parenthesis, e.g., h(f(h(x); a))
would be written as hf(hx; a). By s[t] we indicate that s contains a distinguished subterm t, and
we extend this notation to sets of equations. A substitution (represented by � and �) is a function
from variables to terms almost everywhere equal to the identity. The application of a substitution
to a term is represented in the form s�. The composition �� is the function which maps each x to
(x�)�. We denote the n-fold composition of � by �n. If �1 and �2 are substitutions then we say
that �1 � �2 i� there is a substitution � such that �2 = �1�.

We say that a term s matches onto t i� there exists a substitution � (a matcher) such that
s� = t. Matchers, when they exist, are unique. A uni�cation problem is a pair of terms denoted
s=? t, and has a solution (or uni�er) � i� s� = t�. Uni�ers are, in general, not unique, and it is
well known that a uni�cation problem has a uni�er i� it has a most general uni�er , i.e., a uni�er
� such that for any other uni�er � of s and t, � � �.

Semi-uni�cation is a combination of matching and uni�cation formally de�ned as follows.

De�nition 1 A semi-uni�cation instance is a set of inequalities fs1 �
? t1; : : : sn �

? tng and is
solvable if there exist substitutions �1; : : : ; �n and � such that si��i = ti� for each i. Since the �i
can be uniquely generated once � is given, we call � the solution or semi-uni�er of the instance.
A semi-uni�er � is principal if for any other semi-uni�er �0 we have � � �0. A semi-uni�cation
problem is uniform when n = 1.

Semi-uni�cation has applications in term rewriting, type checking for programming languages,
proof theory, and computational linguistics (see [9] for a comprehensive list of references). Although
it has a simple de�nition, it has proved remarkably diÆcult to analyze precisely. In its general
form the problem has been shown to be undecidable [9], with an exceedingly diÆcult proof. The
uniform case is decidable, and various authors have given algorithms (see Section 8), however,
a careful analysis of the asymptotic complexity of the problem has not been performed. In this
paper we present a two decision procedures based on the Huet uni�cation closure method. The
�rst can produce a (possibly non-principal) solution, or fail if no solution exists, in O(n�(n))
under the uniform cost RAM model (which counts only assignments, comparisons, and additions
and subtractions of integers), where n is the number of symbols in the the problem instance.
Thus, the complexity of deciding a uniform semi-uni�cation instance and producing a solution is
asymptotically equivalent to deciding an instance of standard uni�cation using Huet's uni�cation
closure algorithm. However, as we explain below, arithmetic is a signi�cant part of the algorithm,
and it is also interesting to consider a model which counts assignment and comparison of pointers
and arithmetic operations on bits. Under this model, the cost of the �rst algorithm is O(n2 �(n)2).
However, the �rst algorithm produces solutions which may not be principal; if principal solutions
are desired, we must do additional work, and in particular must perform GCD to keep weights on
the links in reduced form. This boosts the cost, and the resulting algorithm runs in O(n2 �(n)2)
under the uniform-cost model and O(n2 log2(n�(n)) loglog(n�(n))�(n)2) under the bit-cost RAM
model. Both algorithms run in quadratic space.

2

2 A Naive Decision Procedure by Transformations

The basic idea of the algorithms we present in this paper (due to [8]) is to transform a semiuni�cation
problem s�? t into a kind of uni�cation problem on '(s)=? t, where ' is a placeholder for the
matching substitution �. The uni�cation algorithm used is di�erent from standard uni�cation
because in the presence of the placeholder ' one must be careful about applying substitutions (i.e.,
the Variable Elimination rule) and because the failure condition related to the occurs check is more
delicate.

In this section we explore the logical properties of the problem by �rst considering how the rule-
based approach to standard uni�cation (see [2]) must be modi�ed to account for these di�errences.1

The algorithm begins with an instance s�? t and either fails (if no solution exists) or terminates
with a set of pairs of terms from which a solution (possibly non-principal) may be extracted. By
considering how the primitive operations of this rule-based approach may be eÆciently performed,
we develop the eÆcient methods presented later.

Before presenting the rules, we must formalize the notion of a placeholder for a matching
substitution.

De�nition 2 Let ' be a unary functional symbol not in F . The set of '-terms is T' = T (F [f'g;X).
For any term t, '0t = t and 'i+1t = '('it).

Let � be a substitution over terms in T and let t be a '-term. Then

tf�g =

8>>>>><
>>>>>:

x if t = x

f(s1f�g; : : : ; snf�g) if t = f(s1; : : : ; sn)

�i(t0f�g) if t = 'it0

Thus, we may think of t 2 T' as a term that has a (single) unknown substitution applied to some
of its subterms, and t0f�g is the term in T that results when an actual substitution � is instantiated
for ' and applied to those subterms.

In fact, we are generally only interested in the e�ect of substitutions on variables, and so we
will distribute ' down into subterms using rewrite rules of the form

'(f(s1; : : : ; sn)) �! f('(s1); : : : ; '(sn))

for every f 2 F . The normal form of a term t under these rules will be denoted by bt. In other
words, we may push the ocurrences of ' down until they either disappear (at constants) or can be
pushed no farther (at variables). Clearly, tf�g = bt f�g:

For example, if t = '(f(x; '(f(y; z)))) and � = fx 7! a; y 7! hyg, then

t f�g = f(a; f(hhy; z))

1The rules presented in this section are essentially the same as those in [8], however, they are worth presenting
again, in the interests of being relatively self contained.

3

and bt = f('x; f('2y; '2z)):

To ensure termination, we will also need a well-founded ordering on '-terms.

De�nition 3 Let > be a �xed total ordering on Var(s; t). Then for any '-terms 'ns and 'mt,
'ns > 'mt i�

1. s; t 2 X and s > t, or

2. s; t 2 X and t = s and n > m, or

3. t 2 X and s 62 X .

This ordering is not total, but will suÆce for termination of the rule set, which we now de�ne.

De�nition 4 The set of rules S Let E be a set of equations on '-terms, let s; t, and u be
'-terms, and � be a total ordering on Var(s; t; u).

Push:
E [f'(f(s1; : : : ; sn))

?
= tg) E [ff('(s1); : : : ; '(sn))

?
= tg

E [fs
?
='(f(t1; : : : ; tn))g) E [fs

?
= f('(s1); : : : ; '(sn))g

Decompose:

E [ff(s1; : : : ; sn)
?
= f(t1; : : : ; tn)g) E [fs1

?
= t1; : : : sn

?
= tng

Transitivity:

E [fs
?
= t; t

?
=ug) E [fs

?
=u; s

?
= t; t

?
=ug

Orient:
E [fs

?
= tg) E [ft

?
= sg if t � s

Substitute:
E [fs['nx]

?
= t; 'nx

?
=ug) E [fs[u='nx]

?
= t; 'nx

?
=ug

Fail:
E [ff(: : :)

?
= g(: : :)g) ? if f 6= g

E [f�nx
?
= f(: : : ; �mx; : : :)g) ? if n � m

4

By [we mean multiset union and by s[u='nx] we mean that u is substituted for an occurrence of
the term 'nx in s.

We now de�ne what it means for a set of equations on '-terms to have a solution.

De�nition 5 A set of equations on '-terms E = fs1=
? t1; : : : ; sn=

? tng has a solution if there
exist substitutions � and � such that s1�f�g = t1�f�g; : : : ; sn�f�g = tn�f�g. We say that � is a
solution to E. The set of all solutions of E is denoted by Sol(E).

A set of equations on '-terms which is not a failure set, but which no rule applies, is called a
solution set . The following result can be easily shown (see [8]).

Theorem 1 Let E = f'(s)=? tg. If s and t are semi-uni�able, then any application of the above
rules to E will result in a solution set; otherwise any application of the rules will result in ?.

We illustrate how this naive decision procedure works with two examples.

Example 1: f(x; f(y; z))�? f(f(z; x); x)
We de�ne the ordering among variables as z > y > x.

The algorithm starts with the equation

'(f(x; f(y; z)))
?
= f(f(z; x); x);

which becomes, after pushing on the left side,

f('(x); f('(y); '(z)))
?
= f(f(z; x); x):

After decomposition we get the equations

'(x)
?
= f(z; x); x

?
= f('(y); '(z)):

Substituting in �rst equation using the second and then pushing on the left, we obtain:

f('2(y); '2(z))
?
= f(z; f('(y); '(z))); x

?
= f('(y); '(z)):

Finally, after applying Push, Decompose, and Orient, we get

x
?
= f('(y); '3(y)); '4(y)

?
= f('(y); '3(y)); z

?
='2(y):

No more rules apply and hence the two terms are semi-uni�able.

Example 2: g(f(x; y); f(y; z))�? g(z; x)
After pushing on the left we have the equation

g(f('(x); '(y)); f('(y); '(z)))
?
= g(z; x):

5

After applying Decompose and Orient, we obtain:

z
?
= f('(x); '(y)); x

?
= f('(y); '(z)):

Using the �rst equation to substitute into the second, and pushing on the right side, we have:

z
?
= f('(x); '(y)); x

?
= f('(y); f('2(x); '2(y)))

and by virtue of the second equation this reduces to ?. Hence the terms are not semi-uni�able.

3 A Fast Decision Procedure

The method presented in section 2 is obviously not very eÆcient: duplication of variable occur-
rrences leads to duplication of terms, substitution is time-consuming, and the best order in which
to apply the rules is not clear. As in the case of standard uni�cation, we may develop a more eÆ-
cient algorithm by representing terms as directed acyclic graphs (DAGs) with unique occurrences of
variable nodes, and using Union-Find data structures; both are necessary to achieve almost-linear
time and both can be translated into the case of semi-uni�cation very naturally.2 For example, the
instance � = fg(f(x; y); f(y; z))�? g(z; x)g used in Example 2 would have a DAG representation
as follows:

f

y z

g

x

g

f

We assume that the reader is familiar with this standard data structure for terms, and refer
those needing more background to the survey [2].

2Using DAGs without Union-Find results in a quadratic upper bound for standard uni�cation [3]; the use of
Union-Find to achieve almost linear time is due to [7]. In Section 8 we will explain in some detail why the Huet
algorithm is the most natural approach for fast semi-uni�cation. For the application of DAGs and Union-Find to
Robinson's original algorithm see [14].

6

3.1 The Semi-Uni�cation Algorithm Based on Uni�cation Closure

The algorithm presented in this section3 builds equivalence classes of subterms in DAGs by adding
pointers (\class links") between the nodes on the graph; thus, as in the Huet method, equivalence
classes of terms to be uni�ed are represented by a tree of pointers, with one term (the \represen-
tative") at the root. However, in our case, the algorithm also has to account for the matching
substitution (represented by '). The class links account for the application of the matching sub-
stitution with two weights, the source weight and the target weight, which count the number of
applications of ' on each side of the directed link in a similar way to the algorithm of chapter 2. A
class link of the form r -

n m s says that the term r is a member of the class whose representative
is s, and that �n(r) = �m(s), in other words, a link represents an equation between '-terms. In
addition, the data structure for the links has a Boolean ag (or \mark") that is only used for the
proof of correctness of the algorithm. The links are added to the graph (and perhaps later marked),
more or less as equations are added and removed in the naive algorithm presented above.

We now present our algorithm in detail. Our graph nodes have the following properties :

1. class : indicates the class representative for that node. This contains two weights, a source
cost and a target cost. At the beginning it is initialized to point to itself, with both weights
equal to 0.

2. size : Indicates the size of the class when the node is a class representative.

3. children : List of the subterms of the term in the original DAG.

4. self loop : Indicates the presence of a self-loop. It is initialized to false for all nodes in the
original DAG.

5. in stack : Indicates whether the node is in the stack used for �nding cycles. Initialized to
false.

6. processed : Indicates whether the node has already been processed in the �nding of cycles.

7. cycle cost : Indicates the cost of the traversed path when searching for cycles.

8. func : The functional symbol in a node. It is null if the node represents a variable.

Each link has associated with it a Boolean ag called mark, which is set to false when it is �rst
created, and may be set to true sometime during the algorithm. We say that a link is marked if
the mark ag is true. In addition, we maintain a global list LSF which contain the nodes that are
involved in self-loops (i.e., have links that start and end at the same node); this is critical in the
decision procedure, as we see below.

The algorithm may now be given. Our driver function SU �rst calls function Semiunify; if
Semiunify returns true it then calls function Cycle. This function returns true if both Semiunify
and Cycle return true.

3This paper is based on the �rst-author's Ph.D. thesis [13] and the reader is referred to that document for a more
extensive development of the two algorithms presented in this paper.

7

boolean SU (term s, term t) f // s � t ?
return Semiunify(s; 1; t; 0) AND Cycle(s; t)

g

Function Semiunify returns true if there are no symbol clashes. As a side e�ect it adds links
to the DAG that represents the two terms. After this, the resulting graph is not necessarily a
DAG. The links added by the algorithm to the DAG represent membership in a given class of
nodes. To do this it uses the well-known almost-linear Union-Find algorithm. The Union function
is embedded in the Semiunify function, and Find is de�ned below.

boolean Semiunify(term s, int n, term t, int m) f

(n1;m1; s
0) = Find(s); // Find link s -

n1 m1 s0 to representative (1)
(n2;m2; t

0) = Find(t); // Find link t -
n2 m2 t0 to representative (2)

// Check for symbol clash

if (func(s0) != func(t0) and both are non-null)
return false;

// Determine new path between s0 and t0

(w1; w2) =Getpath((m2; n2); (m;n); (n1;m1));

// Check for self-loop.

if (s0 == t0) f // Union not necessary, but have self-loop
if (w1 6= w2)

self loop(s0) = true;
return true; (3)

g else f // Classes distinct, take union
// Assume, wlog, that size(s0) � size(t0), so s0 is new
// representative. The link to be added here is t0 -

w2 w1 s0.
// The case for size(s0) < size(t0) is analogous.

class(t0) = (w2; w1; s
0);

size(s0) = size(s0) + size(t0);
if (func(s0) == null) and (func(t0) != null)

func(s0) = func(t0); // func(t0) is new function node
else if (func(s0) != null) and (func(t0) != null) f

// Calculate link between function nodes and push down
(p1, q1, s

0) = Find(func(s0)); // s0 and t0 are unchanged (4)
(p2, q2, t

0) = Find(func(t0)); (5)
(k1, k2) = GetPath(((p1; q1); (w1; w2); (q2; p2)));
return Sulist(subterms(func(s0)), k1, subterms(func(t0)), k2); (6)

g

8

g g

Function Sulist traverses the list of subterms of a DAG node and returns true if Semiunify
returns true for each subterm.

Function Getpath returns the weights for a new link to be added to the graph. It receives the
weights for three links, which represent the links to be collapsed. The new link goes from the node
that is at the source of the �rst link to the node that is the target of the last link. Given the pairs
of integers (m2; n2); (m;n); (n1;m1), the pair of weights returned by Getpath is (w1; w2), where

w1 = maxfm2;m2 � n2 +m;m2 � n2 +m� n+ n1g
w2 = w1 � ((((m2 � n2) +m)� n+ n1)�m1)

This corresponds to deriving an equality �w1(s0) = �w2(t0) from the equalities �m1(s0) = �n1(s),
�n(s) = �m(t), and �m2(t0) = �n2(t). Such an inference is sound according to an appropriate set of
rules for equational inference which preserve solvability but not principality of solutions extracted.
This is because the set includes a rule for cancellation of �; e.g., s��2 = t�� is solvable i� s�0� = t�0

is, however the solution to the second is larger (in fact it is ��). For a decision procedure this is
not an issue, although in order to extract principal solutions, we will need to modify the graph to
recover the original links (see below), which accounts for its higher complexity.

Function Find(s) is from the fast Union-Find algorithm, but it also calculates the weights
of the new compressed links constructed in a manner similar to GetPath. It returns the class
representative of the class of term s together with the weights that correspond to the compressed
path from s to the class representative. The function also compresses the path to the representative
of any other node that is in the original path from s.

Function Cycle checks for bad cycles in the terminal graph which indicate the non-existence
of solutions. To �nd cycles this function uses the well-known linear algorithm, while performing a
calculation similar to that used in GetPath to derive equational consequences of the equivalence
links followed. If a cycle x -

n m x is found, where m � n, then this indicates that the system
implies a bad equation �m(x) = �n(f(: : : x : : :)), which is suÆcient for the non-existence of solutions
(cf. [8]). Secondly, if a cycle of any kind involving a node with a self-loop is found, then this
is also suÆcient for non-existence, since this implies the existence of an equational consequence
�p(s) = �q(s), which can be used to pump the exponents in the cyclical equation to produce a bad
equation. If neither of these conditions holds, it can be shown that the graph has a solution, and
so Cycle returns true.

4 Examples

We now demonstrate the decision procedure on the two examples presented previously, plus one
more that shows how instances may fail to semi-unify if a self-loop is produced during the algorithm.

9

4.1 Example 1 Revisited

This shows how a problem may have an instance of an occurs check equation and still be semi-
uni�able. The DAG representing the problem ff(x; f(y; z))�? f(f(z; x); x) is as follows:

y z x

ff

f f

In these diagrams, we will indicate a call to Semiunify on two nodes as an equivalence link,
denoted by an undirected dotted line, which indicates that the two nodes are about to be put in the
same equivalence class, distinguishing it from an actual link between a node and the representative
for its class (as before, a dashed arrow). After the �rst call to Semiunify we have an equivalence
link between the two top nodes; one of the two nodes is chosen as representative (arbitrarily, since
they are both function nodes) and this link turns into a pointer to a class representative:

y z x

ff

f f

1 0

Now the link between the top nodes is pushed down by the recursive calls to Semiunify and a link
is placed on the left subterms x and f(z; x) and pointed to the latter term as representative. A

10

link is then placed on the right subterms; no weights have yet changed in any of these arcs. Here
is a view of the graph before the representative is chosen:

y z x

ff

f f

1 0

1

0

0

1

Since x has a pointer to a class representative, then the equivalence link to x must be repointed
to this representative, by adding a new arrow, with new weights calculated along the path from
f(y; z) to f(z; x):

y z x

ff

f f

1 0

1

0

02

At this point, the new link between f(y; z) and f(z; x) must be pushed down into the subterms.
The link is pushed down to z and y, and since neither has a representative, one is arbitrarily chosen,
and then the subterms y and x are linked; here is the diagram before the representative is chosen
for this last link:

11

y z x

ff

f f

1 0

1

0

02

2 0

2 0

Now the equivalence link between z and x must be repointed so that it joins the representatives
of these two terms, and this means building a representative pointer between y and f(z; x); since
the class of the latter is larger (with 3 terms) than the class of the former (with 2 terms), the latter
is chosen as the new representative. A representative pointer is built, with new weights calculated
along the path y, z, x, f(z; x):

y z x

ff

f f

1 0

1

0

02

2 0

5

0

No other arcs are added to the DAG after this, and the algorithm would proceed to check for cycles.
In fact, the DAG has a cycle, from the link x -

1 0 f(z; x). Because the cost on x is greater than
the cost on f(z; x) this is not a bad cycle, and therefore the instance has a solution. The decision
procedure would return true.

4.2 Example 2 Revisited

The DAG for the two terms was given at the beginning of Section 3. The ' is applied to the
g node that represents the head of the left term in �, so the �rst link to be added is between

12

those two nodes. This represents the �rst set of equations in the process, which contains only one
equation, namely '(g(f(x; y); f(y; z)))=? g(z; x). This means that both nodes belong to the same
equivalence class, and we arbitrarily choose the right hand side node as the representative of the
class. The graph at this point appears as follows:

f

yx

f

z

g g01

In the naive algorithm, we would push down the ' using Push and then Decompose the equation;
in the graph algorithm the same e�ect may be obtained by pushing down the link (with its weights)
onto the subterms. After this step, we have this graph:

f

yx

f

z

gg
1 0

1

0

1

0

As already noted in Example 2, this particular instance has no solution, and the problem is a
occurrence of the second failure condition (a kind of occurs check). This is reected in the graph
as a so-called bad cycle among the links. There are actually two such bad cycles in this graph:

13

one of them starts at x, and the other one in z. The loop from x is given by following the link
x -

0 1 f , then following the subterm link from f to z, then the link z -
0 1 f , and �nally

back to x through the corresponding subterm link.

However, not all occurs checks indicate non-semi-uni�ability (i.e., when n > m in the second
failure condition in our naive algorithm), and not all cycles in the graph are bad. The weights in
the links play a role in the cycles, and in this particular case, if we traverse every weighted link,
subtracting the target weight (second value) from the source weight (�rst value), when we return
to x we have an accumulated negative value, which means that this is a bad cycle, which means
that the instance has no solution. Instead of �nding a bad occurs check using a kind of equational
rewriting, we do it here using graph traversal and arithmetic on the weights.

4.3 Example 3: A Cycle with a Self-Loop

In the previous example we saw an instance that has no solution because of a bad cycle, we
now present an example with no solution because of a self-loop. This is in a sense equivalent
to a bad cycle, because the self-loop (considered equationally) can be used to rewrite any cycle
into a bad cycle by pumping the exponent of one side of the equation. Our instance here is
f(x; f(x; z))�? f(f(x; y); x), corresponding to the following DAG:

ff

f f

01

yx z

After pushing down the links into the subterms and repointing, we obtain:

14

ff

f f

01

yx z

0

1

2 0

Pushing down the link between f(x; z) and f(x; y) into the left subterms gives us a self-loop on x,
which is repointed and thereby moved up to f(x; y). Pushing down onto the right subterms gives
us the completed DAG:

ff

f f

01

yx z

0

1

2 0

2

0

2 0

There is a good loop x -
1 0 f(x; y), however the self-loop participates in this good loop, so that

the decision procedure would return false, as the instance is not semi-uni�able.

5 Correctness of the Decision Procedure

To prove the correctness of the decision procedure we interpret the class links on the graph as
equations over '-terms. This means that at the end of the procedure we are left with a set of
equations, and we show that this �nal set of equations has a solution if and only if the instance of
semi-uni�cation given as input to the algorithm has a solution. We use the term \semi-uni�cation
graph" (or, in what follows, simply \graph") for any graph obtained at any point during the

15

procedure described above with an arbitrary instance � as input. We �rst show that the algorithm
terminates.

Lemma 1 If � = fs�? tg is an instance of semi-uni�cation, then the call SU(s; t) terminates.

Proof: The call to function SU produces calls to functions Semiunify and Cycle, however, the
latter is the well known algorithm to �nd cycles in a graph and obviously terminates.

The only non-trivial case is the recursive function Semiunify. We �rst note that functions
Find and Getpath, which are called on the body of Semiunify obviously terminate. Thus the
only issue are the recursive calls to Semiunify itself. Let us associate with each call to this function
the number of equivalence classes in the graph before the call. Note that equivalence classes are
only joined, never split. The �rst call to the function is associated with the number of nodes in the
graph, and before each recursive call through Sulist in line (6), the (formerly distinct) classes of
the terms s and t are joined, reducing the measure. Hence the function terminates. 2

Each class link of the form t -
n m s, where s and t are subterms of the graph, represents an

equation on '-terms of the form 'nt=? 'ms. At each step of the process, a class link is added to
the graph, or a class link is substituted with another. Each of these new graphs represents a new
set of equations on '-terms, so the process can be interpreted as building the �nal set of equations
through intermediate sets of equations, starting from a set with only one equation.

De�nition 6 For any graph G, the set of equations represented by G is

E(G) = f'ns=? 'mt j there is an unmarked arc s -
n m t in Gg[

f'ns=? 'ms j a self-loop was added to s with weights m;ng

Given an instance of semi-uni�cation � = ft�? ug, the set of equations associated with the graph
after the �rst call to Semiunify is f't=? ug, which obviously has a solution if and only if � has one.
The graph changes with every call to Semiunify, Find and Cycle. To show that the resulting
changes on the corresponding sets of equations preserves solvability (to be de�ned below), we now
de�ne a set of transformations on the sets of equations, show that these transformations preserve
solvability, and that changes made to the graph by the above-mentioned functions are equivalent to
�nite sequences of the transformations on the sets of equations. These transformations are based
on the transformations described in section 2. For technical reasons we need to mark some parts of
a term in an equation with the symbol !, which does not a�ect the term in any way. For example,
if s is a term, then the marked version is denoted by s!.

De�nition 7 Let E be a set of equations on '-terms, and let s; t, and u be '-terms. We de�ne
the following sequence of transformations.

� E [fs=? tg)0 E [ft=? sg.

� E [fs=? tg)1 E [fbt=? bsg.

16

� E [f'nf(s1; : : : ; sn)=
? 'mf(t1; : : : ; tn)g)2

E [f'nf(s1; : : : ; s
!
i; : : : ; sn)=

? 'mf(t1; : : : ; t
!
i; : : : ; tn); '

nsi=
? 'mtig

for 1 � i � n, with si; ti unmarked.

� E [f's=? 'tg)3 E [fs=? tg.

� E [fs=? tg)4 E [f's=? 'tg.

� E [fs=? t; t=? ug)5 E [fs=? u; t=? ug.

� E [fs=? t; t=? ug)6 E [fs=? t; s=? ug.

� E [ff(s!1; : : : ; s
!
n)=

? f(t!1; : : : ; t
!
n)g)7 E.

� E [fs['nx] =? t; 'nx=? ug)8 E [fs[u='nx] =? t; 'nx=? ug.

Furthermore, let) =)0 [)2 [: : :[)8 and let)n
i denote n applications of rule)i.

We say that)i, i 2 f1; : : : ; 8g, preserves solvability if and only if E)i E
0 implies Sol(E) �

Sol(E0) and Sol(E) = ; implies Sol(E0) = ;.

The sense in which these transformations (corresponding to the actions of our algorithm) pre-
serve solvability is make precise in the next result.

Lemma 2 (a) If E)i E
0; i 2 f0; 1; 2; 4; 6; 7; 8g then Sol(E) = Sol(E0).

(b) For any substitutions � and �, and '-term

'i(t); ('it)�f�g = (t�f�g)�i = t��if�g:

(c) If � 2 Sol(E [f'n+it=? 'm+isg, then �0 = ��i 2 Sol(E [f'nt=? 'msg).

(d) Let E = E0 [f'nt=? 'msg. Then E1 = E0 [f'n+is=? 'm+itg has a solution if and only
if E has a solution.

(e) If E)3 E
0 then Sol(E0) � Sol(E).

(f))4 preserves solvability.

Proof: The only non-trivial part of this lemma is (c). Clearly we have

('nt)�0f�g = t�0�nf�g = t��n+if�g = ('n+it)�f�g =

('m+is)�f�g = s��m+if�g = s�0�mf�g = ('ms)�0f�g:

Let 'ku=? 'jv 2 E. Since ('ku)�f�g = ('jv)�f�g, then

('ku)�0f�g = u�0�kf�g = u��k+if�g = v��j+if�g = v�0�kf�g = ('jv)�0f�g:

17

2

We now need to show that these transformations to the graph by function Semiunify can be
explained in terms of the transformations de�ned above. The changes occur at points (1) - (6), of
which (1), (2), (4) and (5) are all equivalent, since they are calls to function Find.

Lemma 3 Assume that graph G has a the following unmarked links:

t -
n1 m1 s -

n2 m2 u;

where u is the representative. Then, the call Find(t) generates the graph G1, such that G1 is equal
to G everywhere except on the part shown, which is changed to:

s -
n2 m2 u �m3 n3 t

where n3 = maxfn1; n1�m1+n2g and m3 = n3� (n1�m1+n2)+m2, and E(G1) has a solution
if and only if E(G) has a solution.

Proof: Upon inspection of the code for function Find we observe that only one more call to
Find is issued, speci�cally Find(s), which returns the triplet (u; n2;m2). After this, function
GetPath is called with parameter the list [(n1;m1); (n2;m2)]. This call returns the values n3 =
maxfn1; n1 �m1 + n2g and m3 = n3 � (n1 �m1 + n2) +m2. Finally, the class link for node t is
replaced by one that points to node u, which is the representative, adding the corresponding values
as the weights. And this is the only change to the graph, so the graph G1 is generated and it is
equal to G except at the part shown.

To show that E(G) has a solution if and only if E(G1) has one, we �rst note that there is
a set of equations E1 such that E(G) = E1 [f'

n1t=? 'm1s; 'n2s=? 'm2ug and E(G1) = E1 [
f'n3t=? 'm3u; 'n2s=? 'm2ug. We need to consider two cases: (1) m1 < n2, and (2) m1 � n2. For
the �rst case, we note that n3 = maxfn1; n1 �m1 + n2g = n1 �m1 + n2, and m3 = n3 � (n1 �
m1 + n2) +m2 = m2. Therefore we have that

E(G))
(n2�m1)
4 E1 [f'

n3t
?
='n2s; 'n2s

?
='m2ug)5 E1 [f'

n3t
?
='m3u; 'n2s

?
='m2ug;

and we have that
E1 [f'

n3t
?
='m3u; 'n2s

?
='m2ug = E(G1):

Therefore E(G) has a solution if and only if E(G1) has a solution.

For the second case we have that n3 = n1 and m3 = n1� (n1�m1+n2)+m2 = m1�n2+m2.
We therefore have that

E(G))
(m1�n2)
4 E1 [f'

n1t
?
='m1s; 'm1s

?
='m3ug;

and we also have that

E1 [f'
n1t

?
='m1s; 'm1s

?
='m3ug)5 E1 [f'

n3t
?
='m3u; 'm1s

?
='m3ug)

(m1�n2)
3 E(G1):

Therefore, since the transformations used preserve solvability, E(G) has a solution if and only if
E(G1) has a solution. 2

18

Lemma 4 A call to Find on a node on a graph G produces a graph G1 such that E(G) has a
solution if and only if E(G1) has a solution.

Proof: The proof of this lemma is by induction on the number of calls generated by the �rst call
to Find using Lemma 3 2

Lemma 5 Let � = ft�? ug be an instance of semi-uni�cation. Then the call Semiunify(t; 1; u; 0)
returns a graph GS such that � has a solution if and only if E(GS) has a solution.

Proof: We prove the following by induction on the total number of calls to the function Semiunify:

Let G be a semi-uni�cation graph, and let t; u be nodes in the graph. Let E = E(G) [
f'ns=? 'mtg. Then the graph GS that results from the call Semiunify(s; n; t;m) is
such that E has a solution if and only if E(GS) has a solution.

Semiunify calls itself recursively through a call to Sulist. Assume that E has a solution.

Base case: The function executes �rst lines (1) and (2). Let G2 be the grpah after the execution
of (2). By lemma 4 we have that E has a solution if and only if E(G2) has one. We call s0 and t0

the respective representatives returned by the call to Find. Since only one call is generated, either
line (3) or line (4) is executed, but not (5), (6) and (7). If it executes (3) then a self loop with
weights w1 and w2 is added to s0 = t0. The resulting graph is GS, and E(GS) contains the equation
'w1s0=? 'w2s0.

We observe also that the equations 'n1s=? 'm1s0 and 'n2t=? 'm2t0 are in E2 = E(G2) [
f'ns=? 'mtg. We now show that it is possible to go from E2 to E(GS) using). We �rst observe
that

w1 = maxfm2;m2 � n2 +m;m2 � n2 +m� n+ n1g

and
w2 = w1 � (m2 � n2 +m� n+ n1) +m1:

We can easily check that w1 = maxfw0

1; w
0

1 �w0

2 + n1g and w2 = w1� (w0

1 �w0

2 + n1) +m1, where
w0

1 = maxfm2;m2 � n2 +mg and w0

2 = w0

1 � (m2 � n2 +m) + n. Using a similar argument to
the one used in the proof of lemma 3, it is easy to check that ES can be obtained from E2 using a
combination of)3;)4, etc. If line (4) is executed, then the argument is basically the same as the
previous case, the only di�erence being that the equation added is not a self loop.

Induction Hypothesis. Assume that the lemma is true for fewer than n calls. To show that the
lemma is true for n calls, we notice that the call Semiunify(s; n; t;m) does not execute line (3),
and it must execute lines (1), (2), (4), (5), (6) and (7). Let G6 be the graph after the execution of
line (6). It is easy to show, using a very similar argument to the one used for the base case, that
E(G6) has a solution if and only if E has one. We just need to show that GS, the graph after the
execution of line (7), which comes after a call to function Sulist, is such that E(GS) has a solution
if and only if E has a solution.

Observe that function Sulist simply takes two nodes of the graph and calls Semiunify on
all descendants of both nodes from left to right. Let s1; : : : ; sk and t1; : : : ; tk be the descendants

19

(subterms) of s and t respectively, i.e., s = f(s1; : : : ; sk), and t = f(t1; : : : ; tk) for some functional
symbol f . We de�ne, for i 2 f1; : : : ; kg the sets of equations

Ei = E(G(i�1)) [f'
nsi

?
='mti; f(s

!
1; : : : ; s

!
i; : : : ; sk)

?
= f(t!1; : : : ; t

!
i; : : : ; tk)g;

where G(i) is the graph that results after the call Semiunify(si; n; ti;m), and G(0) = G6.

By the induction hypothesis, and since each of the calls to Semiunify will generate less than
n recursive calls, we have that Ei has a solution if and only if E(G(i)) has a solution. Using rule
)7 we get the result we require. 2

Proposition 1 A set of equations E containing an equation of the form 'n(x) = t, where bt is in
the form bt ['mx]; n � m, has no solution.

De�nition 8 An equation of the form 'nx = t, where bt has the form bt ['mx]; n � m, is called
unsolvable.

Lemma 6 Let � = ft�? ug be an instance of semi-uni�cation, and let G and GS correspond to
the graphs associated with � and the graph resulting from the call to Semiunify on �. Then, if the
call to Cycle on GS returns false, then there is no solution for GS.

Proof: If Cycle returns false on GS , then there is a bad cycle of the form

'n1x1 = 'm1s1; : : : ; '
nkxk = 'mksk

where si[xi+1] for i 2 f1; : : : :k� 1g, and sk[x1], or a cycle with a self loop, which is analogous to a
bad cycle.

We now show, by induction on k, the number of equations in the cycle, that an unsolvable
equation can be deduced from the equations in the cycle. For one equation, 'n1x1 = 'm1s1 with
s1[x1], we observe that during the execution of Cycle the value c = cyclecost(x1) is greater than
c+ n1 �m1, which means that n1 � m1 and therefore the equation shown is unsolvable.

We assume the result true for all integers smaller than k, and prove it now for k. The �rst
step is to reduce the equations 'n1x1 = 'm1s1 and 'n2x2 = 'm2s2. There are two cases that
we have to consider. If m1 � n2, using)1 we can get the equation 'n1 = d'm1s1 = s01. We
observe that s01['

n2x2], and therefore we can apply rule)8, to obtain the equation 'n1x1 =
s01['

m1�n2+m2s2='
m
1 x2].

We now have k� 1 equations, and therefore we can conclude, by induction hypothesis, that an
unsolvable equation can be derived. If m1 < n2 we �rst apply)3 as many times as necessary to
obtain the equation 'n1+n2�m1x1 = 'n2s1, and then we proceed as above. 2

Lemma 7 Let � = ft�? ug be an instance of semi-uni�cation, and let G and GS correspond to
the graphs associated to � and the graph resulting from the call to Semiunify on �. Then, if the
call to Cycle on GS returns true, then there is a solution for GS.

20

Proof: We show this by constructing a solution for the set of equations E(GS). We �rst note that
if the equations are oriented in such a way that the class representative is on the right hand side,
then we have one equation for each of the variables appearing in �. The �rst step in constructing
the solution is to apply rule)8 to the set of equations until it can be applied no more. This is
possible since there are no bad cycles in the graph. We also observe that the new set of equations
obtained, we call it E1, is such that Sol(E1) = Sol(E(GS)).

Once the above procedure is done, we know that no term appearing on the left-hand side of an
equation appears on the left hand side of an equation. We now describe the procedure to build the
solution. (This procedure is basically the same described by Kapur et. al. in [8]). We start with
� = � = ;.

1. Eliminate all occurrences of terms of the form 'n(x) from the right sides of equations in E1

as follows: While there is a term of the form 'n('(x)) on the right side of an equation in E1,
make � = � [fx 7! x0g, where x0 is a fresh variable, and replace '(x) with x in E1.

2. Now build � as follows, for every equation of the form x = t, where x is a variable make
x� = t.

3. Finish building �. For every remaining equation of the form 'nx = t, we let � = � [fx 7!
x1; x1 7! x2; : : : ; xn�2 7! xn�1; xn�1 7! tg.

It is trivial to check that � and � are a solution to E1. 2

The correctness of the decision procedure now follows directly from lemmas 4, 5, 6 and 7.

Theorem 2 Let � = ft�? ug be a semi-uni�cation instance. Then the call to SU on � returns
true if and only if � has a solution.

5.1 Complexity Analysis

The decision procedure is based on the well known O(n�(n)) uni�cation algorithm of Huet, where
�(n) is the inverse of Ackerman's function [1], and n is the number of symbols in the semi-uni�cation
instance. The central part is played by function Semiunify and it is easy to check that if the call
is made with both numeric parameters equal to 0, then the algorithm would behave as Huet's
algorithm for uni�cation.

To analyze the complexity of the algorithm we count pointer assignments, comparisons of point-
ers or symbols, and primitive operations on bits. We consider the following points:

� Semiunify is called at most n times, where n is the number of symbols in the original
equation to be solved;

� A sequence of O(n) calls to Union (implicit in our algorithm) and Find can be performed with
O(n�(n)) assignments, comparisons, or additions of two numbers, where � is the functional
inverse of Ackermann's function [1];

21

� All other operations add at most a constant number of assignments, comparisons, or addi-
tions/subtractions of two numbers to each call to Semiunify;

� The arithmetic operations of the algorithm may be analyzed as follows: if we start with two
numbers of constant size (number of bits), and create a list of O(m) new numbers by addition
and subtraction of previous members of the list, we can create numbers of size at most O(m);
thus at each step we need to do at most O(m) bit operations, which gives a total cost of
O(m2) (in our algorithm, m = n�(n)).

This gives us our complexity result.

Theorem 3 Under the uniform-cost RAM model (counting assignments, comparisons, additions
and subtractions), a call to Semiunify(s,j,t,k), where the combined size of s and t is n symbols,
costs O(n�(n)). For a RAM model counting assignments and bit operations, the cost is O(n2 �(n)2)
assignments, comparisons, or bit operations.

Note that a Union-Find problem can be reduced to a Semi-Uni�cation problem in a trivial way,
which shows that we cannot improve the O(n�(n)) bound unless we can do the same for Union-
Find, which is unlikely. What is interesting about this result is that the purely symbolic operations
cost no more than for standard uni�cation (O(n�(n)); the dominate cost is for the arithmetic on
weights. In Section 8 we compare this result with previous algorithms, which do not closely analyze
the cost of the arithmetic.

6 Solution Extraction

6.1 An Example of Solution Extraction

The decision procedure described in Section 3 does not give enough information to construct the
principal semi-uni�er for a given instance. Consider the instance of the example in Section 4.1. In
this case, the links added by the algorithm to the original DAG are x -

1 0 f(z; x); y -
5 0 f(z; x)

and z -
0 2 y. Considering these links as equations we can deduce that x�� = f(z; x), but this

says nothing about x�.

In following the execution of the decision procedure for this example we notice that there are
three calls to the Semiunify function involving variable x. These calls represent links between x
and the other terms involved. If an ordering is given to the variables, say z > y > x, and links are
always assumed to be from greater to smaller, then the links associated with x during execution
are x -

1 0 f(z; x); x -
0 1 f(y; z) and z -

2 0 x. We can see these links as rewrite rules,
and do a reduction. In this case, we can reduce the two links coming out of x, and keep the one
with cost 0 on x. This operation would produce a rewrite rule between the two f terms, which can
be ignored.

If all these possible links coming out of variables are considered, what we get is a system of
rewrite rules that can be used to extract the solution of an instance of uniform semi-uni�cation.

22

We are interested in obtaining the semi-uni�er, since the matching substitution is determined by
the semi-uni�er.

The links obtained are:

z -
2 0 x z -

0 2 y

y -
5 0 f(z; x)

x -
1 0 f(z; x) x -

0 1 f(y; z)

After simplifying the links from z:

z -
0 2 y

y -
5 0 f(z; x) y -

4 0 x

x -
1 0 f(z; x) x -

0 1 f(y; z)

After simplifying y:

z -
0 2 y

y -
4 0 x

x -
1 0 f(z; x) x -

0 1 f(y; z) x -
1 0 f(z; x)

Finally, after simplifying the links (rules) that correspond to x we have one link (rule) for each
variable. The links that have a 0 as the weight on the side of the variable indicate the �.

z -
0 2 y y -

4 0 x x -
0 1 f(y; z)

Which says that x� = �(f(y; z)); y� = y; z� = y��.

6.2 The Solution-Extraction Procedure

The algorithm for extracting a principal solution is an extension of the decision procedure. A few
more data structures are needed to extract the solution. Weights on the self loops are added, since
they also are links between nodes in the graph, and the weights on them are needed to obtain
the solution. Self loops on non-variable nodes have to be pushed to the descendant variable nodes.
Also, a list of all links encountered during the decision procedure is kept to build �. We also assume
a total ordering > among the variables. The following properties are added to the graph nodes:

23

1. slw : A pair of weights for a self loop. If t is a term, slw:w1(t) denotes the �rst element of
the pair and slw:w2(t) the second.

2. extract : A list of links encountered during the decision procedure.

The extraction algorithm starts by pushing the self loops to the variables. It then pushes links
between functional symbol nodes that have not been pushed before, which are those in the extract
property of the nodes. Each pushed link is then removed from extract. At the end, each of the
links in the extract property of a variable is viewed as a rewrite rule. These rewrite rules are
reduced until there is only one rewrite rule per variable. These rewrite rules de�ne the semi-uni�er.
Function SU calls function Extract when the call to Semiunify returns true.

The Semiunify function in the decision procedure has to be modi�ed so that it initializes
the properties slw and extract for each node. The change is basically to add to extract the link
represented by the call. This is done right after the check for a symbol clash. Also, the link between
the class representatives is added to the extract property of one of them, making sure that the links
are not in the extract property already. The other functions used in the decision procedure of
section 3 are the same. To save space, we do not show the modi�ed procedure since it is basically
the same as for the decision part.

The function Extract receives as a parameter a graph that corresponds to the Semi-Uni�cation
instance. It basically processes each variable in the graph until there is only one link associated with
each variable, including self loop. This is possible given that function Semiunify has determined
that there is a solution, and this means that there are no bad loops in the resulting graph. At this
point the graph is solved, and the links from the variables indicate which is the semi-uni�er �.

Function Pushlinks takes all links between two functional nodes stored in the extract property
of one of the nodes and pushes the links to the variables, so that simpli�cation can take place.
Function Pushloops takes the self loops in the graph and pushes them to the variables. If more
than one self loop is found in a node they are simpli�ed in the same way as in function Semiunify
and only one is pushed.

The function Simplify var takes the list of extraction links of a variable and simpli�es it until
only one extraction link is left. These links are then used in the extraction of � (the semi-uni�er)
and � (the matching substitution). The function takes a pair of links and simpli�es the one with
the larger weight with the one with the smaller weight. This links are treated as rewrite rules.

The code for the function may now be given.

Simplify var(term t)

// First simplify the links on Extract, and then deal with a self loop.
// First choose the good link, and then simplify the others.
// We assume that the links in the extract property are sorted in ascending order using the
// ordering of integer pairs induced by the normal integer order relation.
if (extract is not empty) then

Let l1 be the smallest link in extract, with n1 and m2 as its costs
for each link l2 in extract

24

let n2 and m2 be the costs associated to l2 // n1 � n2

// The links are t -
n1 m1 t1 and t -

n2 m2 t2.
// Where t1 and t2 are terms, and t is a variable.
Remove l2 from extract
Simplify rule(l2; l1; t)

end for
if (t has a self loop) then // self-loop, simplify

Let l be t -
n m t1, the only link in extract

while (slw:w1(t) � n) // slw:w1(t) � slw:w2(t)
n := (n� slw:w1(t)) + slw:w2(t)

end while
Let l1 be a new link t -

n1 m1 t1, where
m1 := (slw:w1(t)� n) +m
n1 = slw:w2(t)

if (n > n1) then
Simplify rule(l; l1; t)

else
Simplify rule(l1; l; t)
Add l1 to extract(t) and remove l.

end if
end if

end if
end Simplify var

The function Simplify rule simpli�es the rewriting rule represented by t1 using the one rep-
resented by t2.

Simplify rule(link l1; link l2; term t)

// The two links are: t -
n1 m1 t1 and t -

n2 m2 t2. Simpli�cation makes a link for t1 and t2
// If the two nodes are distinct functional nodes, then the link must
// be pushed to the variables. Otherwise a self-loop must be processed.
if (t1 6= t2)

m := (n1 � n2) +m2;
n := m1;
Add link l = t1 -

n m t2 to extract(t1).
if (func(t1) 6= null and func(t2) 6= null) // Both are functional nodes.

// The link has to be pushed to the variables and processed,
// if there is no other link between the nodes. Otherwise ignore.
if (there is no link between t1 and t2)

PushLink(l); // Push the links to the variables for processing.
end if

end if

else if (t1 = t2) then // This is a self loop, process

25

if (n 6= m) then

// If the costs are the same then this self loop must be ignored.
// Otherwise it has to be added if there is no self loop,
// or simpli�ed if there is another self loop on the variable.

if (exists self loop on t1)
// If there is a self loop then simplify the self loops.

slw:w1(t1) := gcd(abs(n�m); abs(slw:w1(t1)� slw:w2(t1)))
if (m < slw:w2(t1))

slw:w1(t1) := slw:w1(t1) +m
slw:w2(t1) = m

else
slw:w1(t1) := slw:w1(t1) + slw:w2(t1)

end if

else // There is no previous self loop.
Add a self loop on t1
slw:w1(t1) := maxfn;mg
slw:w2(t1) := minfn;mg

end if
end if

if (t1 is a functional symbol) // If the term is a functional symbol, push self loop
Pushsubterm(t1; slw(t1))

end if

end if
end Simplify rule

6.3 Correctness of Principal Solution Extraction

The proof of correctness of the principal solution extraction procedure is very simlar to the one
for the decision procedure of section 3. We have to change the de�nition of the set of equations
represented by the graph.

De�nition 9 For any graph G obtained from a semi-uni�cation instance � through a call to func-
tion SU the set of equations represented by G is:

E(G) = f'ns=? 'mt j there is an unmarked arc s -
n m t in extract(s) [extract(t)g[

f'ns=? 'ms j a self-loop was added to s with weights m;ng

26

The main di�erence between the two procedures is that the principal solution extraction keeps
all the links encountered during the algorithm, and therefore the set of solutions is preserved. The
set of equations that a graph represents is now given by the unmarked links stored in the extract
property of the nodes.

We start by showing that the algorithm terminates. It is obvious that the new function Semi-
unify ends since it is basically the same as in section 3.

Lemma 8 A call to function Simplify var terminates.

Proof: The function simply takes all links on the extract property of a node and removes them one
by one, until only one is left. The only function calls inside Simplify var are to Simplify rule,
which obviously terminates if there are no self loops involved. If there is a self loop involved,
the only problem would be to have a cycle preventing termination. This is not possible since the
decision procedure would have detected a cycle with a self loop. 2

The equation transformations de�ned in section 5 are now di�erent, since we don't have to
deal with the elimination of certain equations from the original set. The transformations are now
basically the same as those in section 2. The transformations are:

De�nition 10 Let E be a set of equations on '-terms, and let s; t, and u be '-terms.

� E [fs=? tg)0 E [ft=? sg.

� E [fs=? tg)1 E [ft̂=? ŝg.

� E [f'nf(s1; : : : ; sn)=
? 'mf(t1; : : : ; tn)g)2

E [ff(s1; : : : ; s
!
i; : : : ; sn)=

? f(t1; : : : ; t
!
i; : : : ; tn); si=

? tig for some i 2 f1; : : : ; ng with si and
ti unmarked.

� E [fs=? t; t=? ug)3 E [fs=? u; s=? t t=? ug.

� E [ff(s!1; : : : ; s
!
n)=

? f(t!1; : : : ; t
!
n)g)4 E.

� E [fs['nx] =? t; 'nx=? ug)5 E [fs[u='nx] =? t; 'nx=? ug.

Let) =)0 [)1 [: : :[)5.

The following may be proved easily by inspection of the rules.

Proposition 2 If E) E0 then Sol(E) = Sol(E0).

We now need to show that the sets of equations corresponding to the di�erent graphs produced
by the procedure described above can also be obtained through some sequence of transformations,
starting from the set of equations that corresponds to the �rst graph.

27

The proof that procedure Semiunify produces a graph G whose set of equations E(G) is
equivalent to the �rst graph is very similar to the one presented in section 5. The main di�erence
here is that in this case no links, and therefore no equations, are removed. We need to show that
a call to Simplify var preserves solutions.

Lemma 9 Let � = ft�? ug be an instance of seminuni�cation. Then the call Semiunify(t; 1; u; 0)
returns a graph GS such that � is a solution to � if and only if � is a solution to E(GS).

Proof: The proof is straightforward using the proof of correctness of Semiunify in section 5. 2

The case for function Cycle is the same, and we omit the proof.

We now need to show that the solution extraction part produces a solution to the corresponding
set of equations, and therefore a solution for the semi-uni�cation instance. We prove this by
pointing out that all the push operations preserve solutions, since they correspond to decomposition
operations in the set of equations, and the �nal solution extraction is done by simple substitution.

Proposition 3 Let � be an instance of semi-uni�cation, and let G be the graph obtained from
calling functions Semiunify and Cycle on �. A call to function Pushlinks returns a graph G0

such that Sol(E(G)) = Sol(E(G0)).

Proposition 4 Let � be an instance of semi-uni�cation, and let G be the graph obtained from
calling functions Semiunify and Cycle and Pushlinks on �. A call to function Pushloops
returns a graph G0 such that Sol(E(G)) = Sol(E(G0)).

Proposition 5 Let � be an instance of semi-uni�cation, and let G be the graph obtained from
calling functions Semiunify Cycle Pushlinks and Pushloops on �. Then a call to function
Simplify var returns a graph G0 such that Sol(G) = Sol(G0).

The last proposition determines the correctness of function Simplify rule.

Lemma 10 Let � be an instance of semi-uni�cation, and let G be the graph obtained from calling
functions Semiunify Cycle Pushlinks, Pushloops and Simplify var on �. Then a call to
function Simplify rule returns a graph G0 such that Sol(G) = Sol(G0).

Proof: The function Simplify rule simply applies the rules)5 and)2. 2

Finally, we need to show how to read the semi-uni�er from the resulting graph, and show that
it actually is a principal semi-uni�er.

The �nal graph, after the call to Simplify, contains one link in the extract property for each
variable. It is from these links that the solution is extracted. This is a solution to the set of
equations represented by the graph, and therefore it is a solution to the semi-uni�cation instance
given as input.

28

The semi-uni�er � can be read in the following triangular form: For each variable x, such that
the extract property contains the link x -

0 t n make x� = d'nt. The matching substitution, �,
can also be read in this form, but in this case it is given by the links that have something di�erent
from 0 as the source cost, so a link x -

n m t with n 6= 0, we do:

x� = x1; : : : ; xn�1� = d'mt;
where the xi; x 2 X are fresh variables that appear nowhere else, and x� = x.

6.4 Complexity Analysis

The algorithm presented in this section can be divided into two parts. The �rst one is very similar
to the algorithm presented in section 3 and the other part consists of all the processing that takes
place in the actual �nding of the solution. These two parts are done in parallel, but here we discuss
them separately.

The �rst part is the decision algorithm plus some extra processing to deal with self-loops. This
extra processing makes the part more expensive than before. The analysis is very similar to the
one presented in section 5.1, and goes as follows:

� Semiunify is called at most n times, where n is the number of symbols in the original
equation to be solved;

� A sequence of O(n) calls to Union (implicit in our algorithm) and Find can be performed with
O(n�(n)) assignments, comparisons, or additions of two numbers, where � is the functional
inverse of Ackermann's function [1];

� All other operations add at most a constant number of assignments, comparisons, or addi-
tions/subtractions of two numbers to each call to Semiunify;

� The bit-cost of the arithmetic operations of the algorithm may be analyzed as follows: if
we start with two numbers of constant size (number of bits), and create a list of O(m) new
numbers by addition, subtraction and Greatest Common Divisor (GCD) of previous members
of the list, we can create numbers of size at most O(m). Subtraction and addition have a cost
of O(m), while it has been shown that GCD can be performed in O(m log2(m) log log(m))
operations on bits, thus at each step we need to do at most O(m) operations, which give a
total cost of O(m2 log2(m) log log(m)) (where m = n�(n)).

� If we are using the uniform-cost model, then there can be at most O(n�(n)) steps involv-
ing addition, subtraction, or GCD. The GCD of two m-bit numbers can be found in O(m)
arithmetic operations. Hence the total cost of the arithmetic is O(n2 �(n)2) operations.

The second part of the process deals with the links in the extract property of each sub-term. These
links must be pushed down to the variables for processing, and more links may be generated during
this processing at the variable level. Since the procedure does not allow more than one link to
be pushed per pair of functional nodes, the worst case is O(n2) added to the cost of the decision
procedure. The other signi�cant process in the extraction part is the actual simpli�cation of links.
There may be, in total, at most O(n2) links that need processing, taking O(n2).

29

In either cost model, the GCD operations dominate the other costs of the algorithm. This gives
us the following complexity result:

Theorem 4 Under the uniform-cost model, the algorithm to produce principle solutions runs in
O(n2 �(n)2). Under the bit-oriented RAM model the cost is

O(n2 log2(n�(n)) log log(n�(n))�(n)2)

assignments, comparisons, or bit operations.

7 On the Relationship between Uni�cation and Semi-Uni�cation

The basic approach taken in this paper is to encode semi-uni�cation instances as uni�cation in-
stances over '-terms, apply the Huet uni�cation closure algorithm while keeping track of the number
of ''s at each subterm, and end up with a solved form from which a solution can be extracted. This
does not produce principal solutions, but a more complex version of the same basic idea, which
keeps the DAG in a certain minimal form, does produce principal solutions.

This approach suggests that we might try to use other algorithms for standard uni�cation, e.g.,
Robinson's simple algorithm Corbin-Bidoit rehabilitation of Robinson's algorithm [3], or Patterson-
Wegman's linear-time algorithm.

Unfortunately, adapting such algorithms to semi-uni�cation is not straight-forward, because in
fact one needs to be able to unify '-terms in which the standard occur check fails. For example,
the instance x�? f(x) has Id as a semi-uni�er (and so � would be fx 7! f(x)g). In other words,
one needs an algorithm which can �nd uni�ers for rational trees (terms represented by graphs
which may have cycles), and none of the algorithms mentioned above, except for Huet's, have this
property. Indeed, our �rst (doomed) attempt at a fast semi-uni�cation algorithm was based on
the Patterson-Wegman approach, but we were not able to prove termination, nor to �nd a way
of producing principal solutions. The diÆculty is that Patterson-Wegman uses a extension of the
subterm order to equivalence classes to �nd the optimal ordering for the steps of the algorithm, and
in the case of cyclical terms no such ordering exists. Similarly, ensuring termination when modifying
Robinson's or Corbin-Bidoit's algorithm for cyclical terms is not straight-forward, and since cycles
lead to the generation of non-principal solutions, we believe it would be especially diÆcult to adapt
such algorithms to produce principal solutions. Hence the approach using Huet's algorithm for
rational trees appears to be the optimal approach, both in terms of asymptotic complexity and in
terms of the practical complexity of the algorithm.

8 Previous Work

The semi-uni�cation problem was introduced in the late 70's by Lankford and Musser [10]. Purdom
presented an algorithm for uniform semi-uni�cation in [16], but his algorithm, as observed in [8], is
incorrect. Other decision procedures for the uniform case can be found in [5, 6], in [15], and in [11].
F. Henglein showed that his algorithm, which �nds principal solutions, is in PSPACE.

30

The �rst rigorous treatment of an eÆcient algorithm for the uniform case was given by Kapur
et al. in [8]. In this paper, an (exponential time) algorithm based on completion (given above in
Section 2), and a method for extracting solutions, was presented, and this leads to a graph-based
decision procedure which is shown to terminate in polynomial time; the procedure does not produce
solutions. It was conjectured (Paliath Narendran, personal communication) that the algorithm ran
in cubic time under the uniform cost RAM model, but this was never proved.

The possibility of applying the Corbin-Bidoit method [3] to '-terms was explored by Ru�zi�cka
in [17]. The algorithm is fairly simple to implement and analyze, and is shown to run in quadratic
time (under the uniform cost RAM model). However, it does not produce principal solutions, and
unfortunately (for reasons discussed in the previous section) there appears to be a serious bug. We
conjecture that this can be patched, but we do not know whether this would still run in quadratic
time. If we suppose that it did, then under the (perhaps more reasonable) RAM model counting
assignments and bit operations, it should be possible to retro�t fast algorithms for arithmetic (e.g.,
GCD) into his approach, giving a complexity of O(n3log2n), however we have not con�rmed this.
Do do not think it is possible to modify the algorithm in any reasonable way to produce principal
solutions.

This paper represents the core of the �rst author's thesis [13], and was �rst published in pre-
liminary form in [12].

9 Conclusion

We have presented the fastest algorithms to date for uniform semi-uni�cation, based on the uni-
�cation closure method for standard uni�cation. Our decision procedure is asymptotically faster
than our method for generating principal solutions. In the context of other algorithms for uniform
semi-uni�cation, these results show that the uni�cation closure method for standard uni�cation
can be adapted for semi-uni�cation, and the cost in terms of symbolic operations (assignment and
comparison of pointers) is the same for both problems. However, semi-uni�cation introduces arith-
metic (most critically, the use of GCD) for counting the number of �'s applied to subterms, and
this arithmetic dominates the cost of the symbolic operations. Since it is not possible to adapt the
Patterson-Wegman approach to semi-uni�cation, we surmise that our approach is the fastest pos-
sible under the uniform cost RAM model; it may be possible to trim the bound for the bit-oriented
RAM model somewhat by a more precise analysis of the arithmetic operations required, however
we leave this as a subject for future research.

31

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Algorithms. Addison-Wesley,
Reading, MA, 1983.

[2] F. Baader and W. Snyder. Uni�cation theory. In A. Robinson and A. Voronkov, editors,
Handbook on Automated Deduction, volume 1, chapter 8, pages 445{533. Elsevier, 2001.

[3] J. Corbin and M. Bidoit. A rehabilitation of Robinson's uni�cation algorithm. In Proceedings
of the 9th World Computer Congress (IFIP'83), pages 909{914. Elsevier, 1983.

[4] N. Dershowitz and J.-P. Jouannaud. Notations for rewriting. Bulletin of the EATCS, (43):162{
172, 1991.

[5] F. Henglein. Type inference and semi-uni�cation. In ACM Conference on Lisp and Functional
Programming, pages 184{197. ACM, 1988.

[6] Fritz Henglein. Polymorphic Type Inference and Semi-Uni�cation. PhD thesis, Rutgers Univer-
sity, April 1989. Available as NYU Technical Report 443, May 1989, from New York University,
Courant Institute of Mathematical Sciences, Department of Computer Science, 251 Mercer St.,
New York, N.Y. 10012, USA.

[7] G. Huet. R�esolution d'Equations dans les Langages d'Ordre 1; 2; : : : ; !. PhD thesis, Universit�e
de Paris VII, 1976.

[8] D. Kapur, D. Musser, P. Narendran, and Stillman J. Semi-uni�cation. In Proc. of 8-th
Conference on Foundations of Software Technology and Theoretical Computer Science, Dec.
1988.

[9] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. The undecidability of the semi-uni�cation problem.
Information and Computation, 102(1):83{101, January 1993.

[10] D.S. Lankford and D.R. Musser. A �nite termination criterion. Unpublished Draft, USC
Information Sciences Institute, 1978.

[11] H. Leiss. Semi-uni�cation and type inference for polymorphic recursion. Technical Report
INF-2-ASE-5-89, Siemens, Munich, Germany, 1989.

[12] A. Oliart and W. Snyder. A fast algorithm for semi-uni�cation. In CADE-15, volume 1421 of
LNAI, pages 239{253. Springer-Verlag, 1998.

[13] Alberto Oliart. Uniform Semi-Uni�cation. PhD thesis, Boston University, 1998.

[14] I. Privara and P. Ru�zi�cka. An almost linear Robinson uni�cation algorithm. Acta Informatica,
27(1):61{71, 1989.

[15] P. Pudl�ak. On a uni�cation problem related to Kreisel's conjecture. Commentationes Mathe-
maticae Universitatis Carolinae, 29(3):551{556, 1988.

[16] P.W. Purdom. Detecting looping simpli�cations. In P. Lescanne, editor, Proceedings 2nd
Conference on Rewriting Techniques and Applications (RTA'87), Bordeaux, France, volume
250 of Lecture Notes in Computer Science, pages 54{61. Springer, Berlin, May 1987.

32

[17] P. Ru�zi�cka. An eÆcient decision algorithm for the uniform semi-uni�cation problem. In A. Tar-
lecki, editor, Proceedings 16th International Symposium on Mathematical Foundations of Com-
puter Science (MFCS'91), volume 520 of LNCS, pages 415{425. Springer-Verlag, September
1991.

33

