
Cache-and-Relay Streaming Media Delivery for
Asynchronous Clients∗

Shudong Jin
Computer Science Department

Boston University, Boston, MA 02215, USA

jins@cs.bu.edu

Azer Bestavros
Computer Science Department

Boston University, Boston, MA 02215, USA

best@cs.bu.edu

ABSTRACT
We consider the problem of delivering popular streaming media to
a large number of asynchronous clients. We propose and evaluate
a cache-and-relay end system multicast approach, whereby a client
joining a multicast session caches the stream, and if needed, relays
that stream to neighboring clients which may join the multicast ses-
sion at some later time. This cache-and-relay approach is fully dis-
tributed, scalable, and efficient in terms of network link cost. In this
paper we analytically derive bounds on the network link cost of our
cache-and-relay approach, and we evaluate its performance under
assumptions of limited client bandwidth and limited client cache
capacity. When client bandwidth is limited, we show that although
finding an optimal solution is NP-hard, a simple greedy algorithm
performs surprisingly well in that it incurs network link cost that is
very close to a theoretical lower bound. When client cache capacity
is limited, we show that our cache-and-relay approach can still sig-
nificantly reduce network link cost. We have evaluated our cache-
and-relay approach using simulations over large, synthetic random
networks, power-law degree networks, and small-world networks,
as well as over large real router-level Internet maps.

1. INTRODUCTION
The delivery of streaming media objects presents a formidable strain
on server and network capacity due to the long duration and high
bandwidth requirement which are characteristic of streaming me-
dia workloads. For highly popular streaming media objects, it is
especially desirable to utilize truly scalable delivery techniques.
As such, multicast solutions are attractive. Multicast reduces both
network link cost and server bandwidth requirement for serving a
large number of clients. Previous studies along these lines have
assumed that client requests are synchronous [9, 8], or that only
server bandwidth [30, 18, 17, 23] is to be minimized. In this pa-
per, we depart from both of these assumptions. Specifically, we
consider the delivery of popular streaming media objects to a large
number of asynchronous clients with the ultimate goal of minimiz-
ing the network link cost subject to various constraints on client
bandwidth and storage capacity.

∗This work was partially supported by NSF research grants ANI-
9986397, ANI-0095988, and ANI ANI-0205294.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2002 ACM 1-58113-619-6/02/0010 ...$5.00.

1.1 Motivation
Client requests for streaming media objects are likely to be asyn-
chronous. This is true for requests to stored streaming media ob-
jects (e.g., on-demand delivery of popular movie clips or news
briefs to clients), as well as for requests to buffered live streams
(e.g., playout of a webcast to a large number of clients requesting
that webcast asynchronously but within a short interval).

To enable asynchronous access to streaming media objects, var-
ious periodic broadcasting and stream merging techniques [30, 18,
17, 23] have been proposed. Using these techniques, scalability in
terms of network link cost is assured by virtue of multicast messag-
ing, whereas scalability in terms of server bandwidth requirement
is achieved by ensuring that a relatively small number of multicast
sessions (possibly coupled with short unicast sessions) are enough
to cater to a large number of asynchronous client requests.

Periodic broadcasting and stream merging techniques assume the
availability of a network infrastructure that is supportive of multi-
cast delivery—IP multicast, for example. While such an assump-
tion may be practical within the boundary of a multicast-enabled
intranet, it is not a viable alternative in today’s Internet. This real-
ization has led to a large body of work on application layer (or end
system) approaches. However, existing end system multicast solu-
tions [9, 8] have focused on synchronous real-time delivery—i.e.,
all clients receive the same content at the same time. As such, these
techniques can not be used to service asynchronous clients.

There are several requirements for asynchronous streaming de-
livery.

• Scalability: Consider a large number of clients requesting
a streaming media object—for example a popular video or
news clip—at different times. Also assume that clients re-
quire immediate on-demand service of the objects. For such
applications, one requirement of any acceptable delivery so-
lution is scalability: even when the number of concurrent
clients is high, there should not be a single service bottle-
neck in the system, and the overall overhead should be kept
as low as possible. Clearly, unicast service is not scalable
since it consumes server bandwidth and network resources
too fast.

• Deployability: As we discussed earlier, existing multicast-
based broadcasting and stream merging techniques minimize
server bandwidth requirement and assume that low-level mul-
ticast support is available to mitigate network link cost. This
assumption restricts the usefulness of these techniques to IP-
multicast-enabled networks, and thus makes them of limited
value for Internet deployment. Therefore, the second desir-
able property of any acceptable delivery solution is deploya-
bility.

• Client heterogeneity: Clients (or client-side proxies) can be

5

8
2

3

4
6

7
10

11

Client
progress

1
9

(a)

8

9
1

2

3

4
6

7
10

11

Client
progress

5

(b)

Figure 1: Illustrations of the cache-and-relay approach. Earlier clients temporarily keep the objects and relay them to later clients.
(a) Scenario with unconstrained clients. (b) Scenario with bandwidth-constrained clients, whereby client 2 is limited to receive and
send at most three streams.

heterogeneous. For example, they may reside at different
parts of the Internet and may have very different connection
speeds and may command different cache capacities. It is de-
sirable that different clients be able to join the system. There-
fore, the third property of any acceptable delivery solution is
that it would tolerate client heterogeneity.

1.2 Paper Contributions and Overview
In this paper, we propose and evaluate a scalable “cache-and-relay”
end system multicast protocol for the asynchronous delivery of
streaming media objects. Unlike existing periodic broadcasting
and stream merging techniques, our protocol relies only on unicast
messaging, and unlike existing end system multicast techniques,
our protocol supports asynchronous delivery. Using our approach,
upon joining an ongoing end system multicast session, a client
caches the stream either partially or entirely, and if needed, relays
that stream to neighboring clients which join the multicast session
at some later time. The paper mainly analyzes the network link cost
of this approach, studies the effect of limited client-side bandwidth
and limited client cache capacity, and uses simulations to validate
our findings.

The remainder of this paper is organized as follows. In Section 2,
we describe the cache-and-relay approach. In Section 3, we derive
the network link cost of the cache-and-relay approach and present
its specific instances under assumptions of limited client bandwidth
and limited client cache capacity. In Section 4, we evaluate our
approach using simulations over large synthetic random networks,
synthetic power-law degree networks, and synthetic small-world
networks, as well as over large real router-level Internet maps. In
Section 5 we present an overview of related works. In Section 6,
we conclude the paper with a summary of findings.

2. THE CACHE-AND-RELAY APPROACH
Under the cache-and-relay approach, the network (including routers)
does not support multicast functionalities. Instead, end-hosts are
responsible for the caching and distribution of streaming media.
Here, end-hosts can be client machines or proxies thereof. End-
hosts keep retrieved media objects in their local caches temporar-
ily, as the results of client requests. If another client requests the
media objects later, the original server can redirect the request to
those end-hosts who are geographically closer to the client.

We illustrate our cache-and-relay approach using the example
in Figure 1.1(a). In that example, there are 11 clients requesting
an object. These clients are placed on a two-dimensional grid to
visualize network “distance” between these clients. Clients arrive
at different times. In Figure 1.1(a), each client is marked with a
number denoting the order of its arrival. Also, the value of the z-
axis for a given client indicates the progress of the playout for that

client. The figure shows how an object is forwarded from “earlier
clients” to “later clients”. Clearly, such an approach assumes that
clients (or client-side caching proxies) have enough cache space
to temporarily keep the received media objects either partially or
entirely. Also, it assumes that a non-leaf client, while receiving
and playing out an object, has additional bandwidth to forward that
object to (one or more) neighboring clients who may arrive later.

Without loss of generality,1 we assume that the objective of our
cache-and-relay approach is to minimize the total network link cost,
or hop-distance. It is not difficult to establish that the cache-and-
relay solution shown in Figure 1.1(a) is optimal when client-side
bandwidth and client cache capacity are unlimited. Each client re-
ceives the object from the nearest on-going peer. The total hop-
distance is 28.

Despite the seeming simplicity of this approach, there are several
issues that need to be addressed in order for an implementation of
this approach to be practical. We discuss these below.

• One requirement of our cache-and-relay approach is the need
for an effective discovery mechanism for close-by peers who
can satisfy a request—that is, how to find the closest client
with a cached copy of the requested stream and with suffi-
cient bandwidth to serve that stream. One simple peer dis-
covery mechanism works as follows. The server maintains
a set of IP address of on-going clients. When a new client
requests the media object, the server provides a subset of
candidates (from its list of on-going clients) based on effi-
cient clustering techniques, for example, the one in [22]. The
new client may then choose one of these candidates based on
measurements of the characteristics of its paths to those can-
didates.

• Another concern regarding our cache-and-relay approach is
reliability. For example, if one client is relaying some me-
dia object to a another client, then if the first client dies, the
latter one needs to figure out how and from where to receive
the remainder of the object. One solution for this vulnerabil-
ity is for the latter client to contact the original server, and
establish a connection with another client. In the worst case,
the client may have to download the remainder of the object
from the original server. To minimize the implications of this
“switch-over” on real-time playout, clients may wish to ac-
tively maintain a list of alternate sources, and to factor in the
delay of a switch-over into their buffering requirements.

• Finally, security is a common concern of application layer
approaches, including our proposed cache-and-relay proto-
col. Since clients can access the caches at other end-hosts,

1Specifically, our discussion and results can be easily adapted to
allow for the minimization of other metrics such as delay, packet
loss rates, etc.

the system must prevent unauthorized accesses, for example
access without digital rights. Security support can be im-
plemented by either the original server (alone or assisted by
trusted clients).

A full consideration of each of the above dimensions of our
cache-and-relay approach is interesting and potentially quite chal-
lenging. However a comprehensive study of these issues is beyond
the scope of this paper, which mainly focuses on the promise of the
cache-and-relay approach in reducing network link cost.

3. SCALABILITY AND INSTANTIATIONS
In this section, we first show how effectively the cache-and-relay
approach can reduce network link cost, given unlimited client-side
bandwidth and cache space. Then we formalize the problem when
either client-side bandwidth or cache size is limited. In each case, a
specific instantiation of the cache-and-relay algorithm is proposed.

3.1 Lower Bound on Network Link Cost
Assuming unlimited client-side bandwidth and cache capacity, a
new client can always fetch the object from the nearest ongoing
peer client—a peer that started receiving that object but have not
finished. We define the cost of serving the new client to be the hop-
distance between that client and the nearest ongoing peer. Let L(n)
denote the total network link cost for n consecutive client arrivals
within a unit time, whereby each client fetches the object from the
nearest ongoing peer. Here, a unit time is defined as the duration
of the media object, and hence n is the average client concurrency
level. L(n) reflects how the cache-and-relay approach scales (in
terms of network link cost) as the level of client concurrency n
increases.

In random networks, which have exponential neighborhood ex-
pansion functions, we have computed the following asymptotic scal-
ing behavior (see the Appendix for a detailed derivation):

L(n) ∼ n

(
1 − ln n

ln N

)
, (1)

where N is the total number of nodes in the network. This result
implies that the increase in network link cost is a sub-linear func-
tion of the client arrival rate n. This underscores a clear reduction
in network link cost compared to unicast service whose cost is lin-
ear in n.

The key to the derivation of L(n) is the neighborhood expansion
function E(d) of the network, which is defined as the average frac-
tion of vertices reachable in d hops, starting from an arbitrary ver-
tex. In random networks, this function is approximated by an ex-
ponential function. For example, Figure 2 shows the neighborhood
expansion function of a random network with 119,259 vertices and
with an average degree of 3.2. The network was generated using

the ER model [14]. The function is well fitted to E(d) = 3.2d

119259
for a wide range of values, except when the actual function reaches
a saturation point, i.e., the edge effect of the network is reached.

While the derivation of L(n) for an arbitrary network is impossi-
ble, we have also considered networks whose neighborhood expan-
sion functions follow a power-law. As detailed in the Appendix, we
found that if the neighborhood expansion function is a power-law
with exponent H , then L(n) increases asymptotically as

L(n) ∼ n1− 1
H (2)

Example networks with power-law neighborhood expansion func-
tion include two-dimensional and three-dimensional grids.

1e-05

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12 14 16

E
(d

)

d (# of hops)

Random network
3.2^d / 119259

Figure 2: In random networks, neighborhood expansion func-
tions are approximately exponential.

1

10

100

1000

1 10 100 1000

Li
nk

 c
os

t L
(n

)

Client concurrency level n

n
n(1-ln(n)/ln(N))

n^0.8

Figure 3: In limited scales, network link costs under different
neighborhood expansion functions appear to be close.

These results show that the effectiveness of the cache-and-relay
approach is largely determined by the topological properties of net-
works. With different neighborhood expansion functions, the net-
work link cost reductions are much different.

We should also point out that the above theoretical results are
valid only in asymptotic cases. In limited scales (small network
size N and low client concurrency level n), the difference between
these equations is less pronounced. Figure 3 plots an example to
show that equation (1) and (2) are close when N = 10, 000.

3.2 Handling Limited Client Bandwidth
In practice, clients may have limited bandwidth to receive and send
streams. Therefore, it may be infeasible for a client to receive
a stream from the nearest on-going peer. For example, in Fig-
ure 1.1(a), if we assume that each client can receive and send at
most three streams, then the solution shown in the figure becomes
infeasible since client 2 cannot receive and send four streams in
total. In Figure 1.1(b), a feasible solution is shown.

It is difficult to find the optimal solution when bandwidth is lim-
ited. Indeed, even the off-line algorithm (with prior knowledge of
client arrivals) is NP-hard. To explain why this is the case, it suf-
fices to note that the construction of a degree-constrained spanning
tree2 is an NP-complete problem [16]. By restricting our problem

2Given a graph G = (V, E) and a positive integer K ≤ |V |, find a
spanning tree for G in which no vertex has degree larger than K.

1

10

100

1000

1 10 100 1000

Li
nk

 c
os

t L
(n

)

Client concurrency level n

n
Simulated

n(1-ln(n)/ln(119259))
n^0.87

(a) Random network

1

10

100

1000

1 10 100 1000

Li
nk

 c
os

t L
(n

)

Client concurrency level n

n
Simulated

n(1-ln(n)/ln(120037))
n^0.93

(b) Power-law network

Figure 4: Comparisons of theoretic network link cost and simulation results using synthetic networks.

to synchronous clients and integer bandwidth values, finding an op-
timal cache-and-relay solution is equivalent to finding a solution to
the degree-constrained spanning tree problem.

A simple greedy solution for the bandwidth-constrained cache-
and-relay problem works as follows. Each new client receives the
object from the nearest ongoing peer client who still has abundant
bandwidth. The solution in Figure 1.1(b) is obtained using this
greedy algorithm. Client 5 receives a stream from client 4 and
client 8 receives data from client 3. The total hop-distance is 32.
Our simulation results suggest that this greedy algorithm usually
finds good solutions.

3.3 Handling Limited Cache Capacity
In practice, clients may have limited cache capacity. For example,
in a caching proxy, it might be unrealistic to cache a whole video
whose size is up to Giga bytes, especially when many such media
objects may be competing for cache space.

When cache space is limited, the solutions in Figures 1.1(a) and
1.1(b) may become infeasible. For example, if client 1 has a cache
capacity that enables it to keep only 50% of the object, then when
client 9 arrives, it is already too late for that client to fetch the object
from client 1. Instead, a feasible solution is for client 6 to relay the
object to client 9.

To handle cache capacity constraints, it is necessary to determine
a cache replacement policy. It is straightforward to use a FIFO
policy: a sliding window indicates the current segment in the cache.
The client can relay the object to other clients who start slightly
later (i.e., within that window). In the next section, we show how
constraints on cache capacity impact the reduction of network link
cost.

4. PERFORMANCE EVALUATION
In this section, we validate through simulation the network link cost
of our proposed cache-and-relay approach, and study the effect of
limited client-side bandwidth and cache capacity. Large, synthetic
and real networks are used in simulation. Experimental results are
compared to theoretical results.

4.1 Networks Used in Our Simulations
In our simulations, four synthetic and real networks were used. All
four networks have approximately 110000-120000 nodes and have
an average degree of 3.2. The topologies we consider are:

• A random network generated using the ER model [14]. In
this model, there is a uniform probability of having an edge
between any pair of vertices in the graph. The model does

not guarantee that the network is connected. So, we use the
largest connected component with 119,259 vertices.

• A random power-law degree network with 120,037 vertices
generated using the model in [2]—namely, the probability of
having node degree larger than d is proportional to d−α (we
set α = 2.5).

• A small-world network with power-law degree distribution,
generated using the model in [21]. The network has 120,000
vertices. The resulting topology is different from random
power-law degree networks as it features a large clustering
coefficient. In generating this network, we not only used
power-law vertex degree with α = 2.5, but also considered
the physical distance of the vertices in creating edges.

• A router-level Internet map (Lucent) available from [29]. This
map has 112,269 vertices and it less strictly follows a power-
law degree distribution. In addition, it has a high clustering
coefficient [21]. We have found that our small-world net-
work is the closest to this real Internet in terms of average
path length and clustering coefficient.

4.2 Network Link Cost Validation
Our simulation proceeds as follows. Client arrivals are Poisson,
with each client residing at a random node of the simulated net-
work. We vary the client arrival rate (or concurrency level n) and
obtain the corresponding network link cost L(n) scaling as a func-
tion of n.

We first assume unlimited client bandwidth and cache capacity in
validating the network link cost presented in the last section. Here
only the results using the random network and using the power-law
random network are presented.

Figure 4(a) shows that when the random network is used, the
network link cost is well-predicted by Equation (1). In addition, it
appears that Equation (2) also provides a good fit. This is explained
by our discussion in the last section, i.e., in limited scales, this two
equations are close.

Figure 4(b) shows that the network link cost is clearly higher
than that predicted by Equation (1). Notice the log-scale of L(n)
in the figure. This is because power-law random networks do not
have an exponential neighborhood expansion function.

4.3 Effect of Limited Client Bandwidth
Figure 5 shows the resulting scaling behavior when the client-side
bandwidth is chosen in different ways. Also, for comparison pur-
poses, it shows the cost of unicast delivery.

When client-side bandwidth is chosen uniformly between object

playback rate and four times that rate, the network link cost is not
significantly higher than what is achievable with infinite bandwidth.
This result suggests that our approach is effective even when client-
side bandwidth is low.

Again, the simulation results using power-law networks appear
to be rather different from those obtained using router-level Inter-
net maps. In the power-law network, the network link cost reduc-
tion is less than that in router-level maps. However, we found that
the simulation results using a small-world, power-law network is
close to that obtained using router-level Internet maps. This under-
scores the importance of capturing small-world behaviors in Inter-
net topologies–namely clustering in networks is important to the
scaling behavior of multicast delivery [21].

4.4 Effect of Limited Client Cache Capacity
Figure 6 shows the resulting scaling behavior when the client cache
capacity is constrained. In our simulations, we choose different
cache capacities, corresponding to 10%, 30%, and 100% of the
object size. Buffer management uses a FIFO replacement policy.

The results in Figure 6 indicate the follows. First, even when
cache space is limited, the reduction in network link cost is still
significant compared to that of unicast delivery. Second, there is
still a room for improvement when cache capacity is small. Notice
that we use a simple FIFO policy which can be less efficient than
others. In addition, it is also possible to combine prefetching tech-
niques to better utilize limited cache space. For example, assume
the client cache can only store a S-minute segment of the object.
When a later client starts, it may prefetch the object from any client
who started less than 2S minutes earlier. Therefore, it works as if
the cache size is doubled.

5. RELATED WORK
End system multicast was advanced by the authors of [9] as a de-

ployable alternative to IP multicast. In their Narada protocol, end
systems self-organize into an overlay network using a fully dis-
tributed protocol, with fairly low delay and bandwidth overheads.
Recently, the same research group conducted an extensive evalua-
tion of schemes for constructing overlay networks on a wide-area
testbed [8]. This study demonstrated that end system multicast is
promising for conferencing applications in a dynamic and hetero-
geneous Internet environment, and highlighted the importance of
adapting to latency and bandwidth while constructing overlays op-
timized for the real-time delivery of content to synchronous clients.

Delivery of content to asynchronous clients is the focus of many
recent studies, including periodic broadcasting [30, 18, 17, 23]
and stream patching/merging techniques [6, 15, 11, 12]. These ap-
proaches are targeted mainly at video-on-demand applications. In
periodic broadcasting techniques, segments of an object (with in-
creasing sizes) are repeatedly transmitted on dedicated channels,
and asynchronous clients simply join one or more broadcasting
channels to receive this data. Using stream patching/merging tech-
niques, asynchronous clients are merged into larger and larger groups
that share a single multicast channel. Both techniques assume the
availability of a lower-level multicast delivery infrastructure. In
that respect, they are scalable in minimizing server bandwidth re-
quirement [13, 20], but do not specifically attempt to optimize for
network link cost.

The idea of utilizing client-side cache space was also developed
in several previous work [28, 27]. Their main objective was to re-
duce server load, but did not evaluate their network link cost reduc-
tion. A network level scheme was presented in [19], which caches
data at routers in the network to service subsequent requests. It is
therefore different from our application layer approach. In addition,

it also aimed at lightening the demand on the server bandwidth.
Another class of content delivery techniques originated with the

use of periodic broadcasting of encoded content as was done over
broadcast disks [3] using IDA [26], and later using the Digital
Fountain approach which relied on more efficient Tornado encod-
ing [5, 4]. These approaches enable end-hosts to efficiently recon-
struct the original content of size n from a subset of any n symbols
from a large universe of encoded symbols. Such approaches enable
reliability and a substantial degree of application layer flexibility.
The primary weakness of these techniques is their inability to effi-
ciently deal with real-time (live or near-live) streaming media ob-
jects due to the necessity of encoding/decoding rather large stored
data segments.

Several recent studies have addressed the impact of topology on
IP multicast using shortest path trees. The authors of [25] showed
how the size of a multicast tree increases with the size of the multi-
cast group, primarily under an assumption of exponentially increas-
ing network neighborhood (the number of vertices within a certain
distance). They provided a theoretical result which roughly obeys
the Chuang-Sirbu law for IP multicast scaling [10]. This law asserts
that multicast tree size increases as n0.8, where n is the group size.
This was generalized in [7] for more realistic multicast tree shapes.
The authors of [24] considered a stricter approximation of the link
cost reduction. Their results show that the Chuang-Sirbu law is
not asymptotic for random graphs and k-ary trees. Recently, [1]
also re-examined the analysis in [25] and provided precise asymp-
totic scaling behavior of tree size. This asymptotic term scales as
n(1 − ln n

ln N
) where n is the group size and N is the network size.

More importantly, they showed that by replacing the k-ary com-
plete tree topology by a self-similar tree, multicast tree size sat-
isfies a power law. This finding strongly supports the claim that
the essence of the problem lies in the modeling assumptions on
the topology. Our results have shown that the network link cost
of cache-and-relay approach also largely depends on the network
topology.

6. SUMMARY
We proposed and evaluated a cache-and-relay application layer mul-
ticast delivery mechanism for streaming media objects. Our cache-
and-relay approach minimizes the total network link cost and is
especially tailored for applications featuring asynchronous client
requests to popular streaming media objects. This approach has
several salient features:

• It is fully distributed as it enables the replication of media ob-
jects in a demand-driven fashion, keeping the server and the
end systems lightly-loaded. It thus provides a highly scalable
solution.

• It is flexible to implement and easier to deploy, as it relies on
an application layer multicast delivery technique, by utilizing
client-side cache space and abundant bandwidth.

• It allows heterogeneous clients to join in the multicast deliv-
ery asynchronously. The clients may have different available
bandwidths and different cache spaces devoted to peer coop-
eration.

We derived the theoretical network link cost. In a random net-
work, the link cost asymptotically scales as n(1 − ln n

ln N
) where n

is the client concurrency level and N is the network size. The link
cost is different under different network topology assumptions. In
addition, we found that the network cost is close to its theoreti-
cal lower bound when client-side bandwidth is limited; compared
to unicast service, the link cost is still significantly reduced when
client-side cache size is limited.

0

100

200

300

400

500

600

700

800

1 10 100 1000

Li
nk

 c
os

t L
(n

)

client concurrency level n

unicast
bandwidth is 1-4 times playback rate
bandwidth is 1-8 times playback rate

infinite bandwidth

(a) Random network

0

100

200

300

400

500

600

700

800

1 10 100 1000

Li
nk

 c
os

t L
(n

)

client concurrency level n

unicast
bandwidth is 1-4 times playback rate
bandwidth is 1-8 times playback rate

infinite bandwidth

(b) Power-law network

0

100

200

300

400

500

600

700

800

1 10 100 1000

Li
nk

 c
os

t L
(n

)

client concurrency level n

unicast
bandwidth is 1-4 times playback rate
bandwidth is 1-8 times playback rate

infinite bandwidth

(c) Small-world power-law network

0

100

200

300

400

500

600

700

800

1 10 100 1000

Li
nk

 c
os

t L
(n

)

client concurrency level n

unicast
bandwidth is 1-4 times playback rate
bandwidth is 1-8 times playback rate

infinite bandwidth

(d) Router-level Internet map

Figure 5: Simulation results when client-side bandwidth is limited.

0

100

200

300

400

500

600

700

800

1 10 100 1000

Li
nk

 c
os

t L
(n

)

client concurrency level n

unicast
10% buffer space
30% buffer space

100% buffer space

(a) Random network

0

100

200

300

400

500

600

700

800

1 10 100 1000

Li
nk

 c
os

t L
(n

)

client concurrency level n

unicast
10% buffer space
30% buffer space

100% buffer space

(b) Power-law network

0

100

200

300

400

500

600

700

800

1 10 100 1000

Li
nk

 c
os

t L
(n

)

client concurrency level n

unicast
10% buffer space
30% buffer space

100% buffer space

(c) Small-world power-law network

0

100

200

300

400

500

600

700

800

1 10 100 1000

Li
nk

 c
os

t L
(n

)

client concurrency level n

unicast
10% buffer space
30% buffer space

100% buffer space

(d) Router-level Internet map

Figure 6: Simulation results when client-side cache space is limited.

APPENDIX
In this appendix, we derive the asymptotic scaling behavior of net-
work link cost given in Section 3.

A.1 The General Case
The key to our derivation is the notion of network neighborhood
size (or expansion) function E(d), which is defined as the fraction
of nodes in the network that are reachable in d hops.

Consider a general neighborhood expansion function E(x), which
is defined over a < x < b in continuous form. Let us consider the
probability that an arbitrary peer is not within distance x. By defi-
nition, this probability is 1 − E(x). Since there are n independent
data sources in the network, the probability that none of them is
within distance x is (1 − E(x))n.

Let F (x) = 1 − (1 − E(x))n. The probability density function
f(x) (i.e., the probability that the nearest peer is at distance x) is
computed as dF (x)

dx
. Let g(n) denote the expected distance of the

nearest peer.

g(n) =

∫ b

a

xf(x)dx

=

∫ b

a

xdF (x) Substituting y for F (x)

=

∫ 1

0

F−1(y)dy. (3)

A.2 Exponential Neighborhood Expansion
Let E(x) = kx−D , 0 ≤ x ≤ D, where D is called the diameter of
the network. Thus, F (x) = 1− (1−E(x))n = 1− (1−kx−D)n,

and the inverse function F−1(y) = D + ln(1−(1−y)
1
n)

ln k
. From

equation (3), g(n) is computed as

g(n) =

∫ 1

0

F−1(y)dy

= D +
1

ln k

∫ 1

0

ln(1 − (1 − y)
1
n)dy

= D +
1

ln k

∫ 1

0

ln(1 − y
1
n)dy

Consider the term − ∫ 1

0
ln(1 − y

1
n)dy in the above equation. No-

tice that ln(1+x) can be expanded to x− x2

2
+ x3

3
−· · · . Therefore,

−
∫ 1

0

ln(1 − y
1
n)dy =

∞∑
i=1

∫ 1

0

y
i
n

i
dy

=
∞∑

i=1

n

(n + i)i

=
n∑

i=1

1

i

Thus, − ∫ 1

0
ln(1 − y

1
n)dy is equal to the sum of a harmonic num-

ber series which is equal to ln n + 0.5772156 · · · + 1
2n

. This term
is asymptotically close to ln n. Therefore, g(n) ≈ D − ln n

ln k
. No-

tice that ln N
ln k

= D. Thus, g(n) ≈ D(1 − ln n
ln N

), which grows
asymptotically as 1 − ln n

ln N
.

A.3 Power-law Neighborhood Expansion
Let neighborhood expansion function E(x) = (x/D)H , 1 ≤ x ≤
D, where D is called the diameter of the network. F (x) = 1 −
(1 − E(x))n = 1 − (1 − (x/D)H)n. Inverse function F−1(y) =

D(1 − (1 − y)
1
n)

1
H . From equation (3), g(n) is computed as

follows

g(n) =

∫ 1

0

F−1(y)dy

= D

∫ 1

0

(1 − (1 − y)
1
n)

1
H dy

= D

∫ 1

0

(1 − y
1
n)

1
H dy.

The computation of g(n) is complicated (more details are in the
next paragraph). It is easier to numerically solve g(n)

D
for different

values of n. We have done so using different choices of H . The
results are plotted in Figure 7. Interestingly, the results show that
g(n)

D
match n− 1

H very well for various choices of H when n is
not too small. Notice that, the numerical lines are parallel to the
corresponding n− 1

H lines. It means their slight difference does not
change the asymptotic scaling behavior.

0.01

0.1

1

1 10 100 1000 10000 100000 1e+06

g(
n)

/D

n

Numerical analysis, H=3
n^(-1/3)

Numerical analysis, H=5
n^(-1/5)

Numerical analysis, H=8
n^(-1/8)

Figure 7: Numerical result of lower bound with power-law
neighborhood expansion.

Now let us recall the computation of g(n)
D

:

g(n)

D
=

∫ 1

0

(1 − y
1
n)

1
H dy Let x = 1 − y

1
n

= n

∫ 1

0

x
1
H (1 − x)n−1dx

= n
Γ(1 + 1

H
)Γ(n)

Γ(n + 1 + 1
H

)
,

where Γ(a) is the Gamma function defined as
∫ ∞
0

xa−1e−xdx. It

appears, due to the factorial nature of Gamma function, Γ(n)

Γ(n+1+ 1
H

)

is roughly proportional to n−1− 1
H when n is large. In addition,

Γ(1+ 1
H

) is a constant, corresponding to the displacement between

the numerical lines g(n)
D

and n− 1
H lines in Figure 7.

REFERENCES
[1] C. Adjih, L. Georgiadis, P. Jacquet, and W. Szpankowski.

Multicast tree structure and the power law. In Proceedings
of ACM-SIAM Symposium on Discrete Algorithms (SODA),
2002.

[2] W. Aiello, F. R. K. Chung, and L. Lu. A random graph model
for massive graphs. In ACM Symposium on Theory of Com-
puting (STOC), pages 171–180, 2000.

[3] A. Bestavros. AIDA-based real-time fault-tolerant broad-
cast disks. In Proceedings of IEEE RTAS’96, Boston, Mas-
sachusetts, May 1996.

[4] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost. In-
formed content delivery across adaptive overlay networks. In
Proceedings of ACM SIGCOMM, 2002.

[5] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digi-
tal fountain approach to reliable distribution of bulk data. In
Proceedings of ACM SIGCOMM, 1998.

[6] S. W. Carter and D. D. E. Long. Improving video-on-demand
server efficiency through stream tapping. In Proceedings of
IEEE International Conference on Computer Communica-
tions and Networks (ICCCN), September 1997.

[7] R. Chalmers and K. Almeroth. Modeling the branching char-
acteristics and efficiency gains in global multicast trees. In
Proceedings of IEEE INFOCOM, 2001.

[8] Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling con-
ferencing applications on the internet using an overlay multi-
cast architecture. In Proceedings of ACM SIGCOMM, August
2001.

[9] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. In Proceedings of ACM SIGMETRICS, June 2000.

[10] J. Chuang and M. Sirbu. Pricing multicast communications:
A cost based approach. In Proceedings of Internet Society
INET, 1998.

[11] D. Eager, M. Vernon, and J. Zahorjan. Minimizing bandwidth
requirements for on-demand data delivery. In Proceedings of
Workshop on Multimedia Information Systems (MIS), 1998.

[12] D. Eager, M. Vernon, and J. Zahorjan. Bandwidth skimming:
A technique for cost-efficient video-on-demand. In Proceed-
ings of S&T/SPIE Conference on Multimedia Computing and
Networking (MMCN), January 2000.

[13] D. Eager, M. Vernon, and J. Zahorjan. Minimizing bandwidth
requirements for on-demand data delivery. IEEE Transactions
on Data and Knowledge Engineering, 13, 2001.

[14] P. Erdős and A. Rényi. The evolution of random graphs. Pupl.
Math. Inst. Hungar. Acad. Sci., 7:17–61, 1960.

[15] L. Gao and D. Towsley. Supplying instantaneous video-on-
demand services using controlled multicast. In Proceedings
of IEEE International Conference on Multimedia Computing
and Systems (ICMCS), June 1999.

[16] M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-completeness. Freeman, 1979.

[17] A. Hu. Video-on-demand broadcasting protocols: A com-
prehensize study. In Proceedings of IEEE INFOCOM, April
2001.

[18] K. A. Hua and S. Sheu. Skyscraper broadcasting: A new
broadcasting scheme for metropolitan video-on-demand sys-
tems. In Proceedings of ACM SIGCOMM, September 1997.

[19] K. A. Hua, D. A. Tran, and R. Villafane. Caching multi-
cast protocol for on-demand video delivery. In Proceedings
of S&T/SPIE Conference on Multimedia Computing and Net-
working (MMCN), 2000.

[20] S. Jin and A. Bestavros. Scalability of multicast delivery for
non-sequential streaming access. In Proceedings of ACM SIG-
METRICS, June 2002.

[21] S. Jin and A. Bestavros. Small-world internet topologies: Pos-
sible causes and implications on scalability of end-system
multicast. Technical Report BUCS-2002-004, Boston Univer-
sity, 2002.

[22] B. Krishnamurthy and J. Wang. On network-aware clustering
of web clients. In Proceedings of ACM SIGCOMM, August
2000.

[23] A. Mahanti, D. Eager, M. Vernon, and D. Sundaram-Stukel.
Scalable on-demand media streaming with packet loss recov-
ery. In Proceedings of ACM SIGCOMM, August 2001.

[24] P. V. Mieghem, G. Hooghiemstra, and R. van der Hofstad.
On the efficiency of multicast. IEEE/ACM Transactions on
Networking, 9(6):719–732, 2001.

[25] G. Phillips, S. Shenker, and H. Tangmunarunkit. Scaling of
multicast trees: Comments on the Chuang-Sirbu scaling law.
In Proceedings of ACM SIGCOMM, 1999.

[26] M. O. Rabin. Efficient dispersal of information for security,
load balancing and fault tolerance. Journal of the Association
for Computing Machinery, 36(2):335–348, April 1989.

[27] S. Ramesh, I. Rhee, and K. Guo. Multicast with
cache(mcache): An adaptive zero-delay video-on-demand
service. In Proceedings of IEEE INFOCOM, April 2001.

[28] S. Sheu, K. Hua, and W. Tavanapong. Chaining: A general-
ized batching technique for video on demand. In Proceedings
of IEEE International Conference on Multimedia Computing
and Systems (ICMCS), 1997.

[29] USC Information Sciences Institute. Internet maps.
http://www.isi.edu/div7/scan/mercator/maps.html.

[30] S. Viswanathan and T. Imielinski. Pyramid broadcasting for
video on demand service. In Proceedings of S&T/SPIE Con-
ference on Multimedia Computing and Networking (MMCN),
1995.

