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Abstract

This paper presents a tool called Gismo (Generator of In-
ternet Streaming Media Objects and workloads). Gismo

enables the speci�cation of a number of streaming media
access characteristics, including object popularity, tempo-
ral correlation of request, seasonal access patterns, user
session durations, user inter-activity times, and variable
bit-rate (VBR) self-similarity and marginal distributions.
The embodiment of these characteristics in Gismo enables
the generation of realistic and scalable request streams for
use in the benchmarking and comparative evaluation of
Internet streaming media delivery techniques. To demon-
strate the usefulness ofGismo, we present a case study that
shows the importance of various workload characteristics in
determining the e�ectiveness of proxy caching and server
patching techniques in reducing bandwidth requirements.

1 Introduction

The use of the Internet as a channel for the delivery of
streaming (audio/video) media is paramount. This makes
the characterization and synthetic generation of stream-
ing access workloads of fundamental importance in the
evaluation of Internet and streaming delivery systems.
Over the last few years, while many studies have con-
sidered the characterization of HTTP workloads [6, 7, 9,
11, 14, 15, 19, 22, 26, 28] and synthesis of HTTP request
streams [8, 10, 32, 33], only very few studies focused on
characterizing streaming media workloads [1, 3, 5, 13, 27],
and none has tried to generate representative streaming
media workloads. Because HTTP requests and streaming
accesses are di�erent, HTTP request generators are not
suitable for generating streaming access workloads. These
di�erences include the duration of the accesses, the size of
the objects, the timeliness requirements, etc.

In the absence of synthetic workload generators, and in
order to evaluate the performance of streaming access
techniques, one has to seek alternatives, such as using
real traces, or using analysis/simulation under simplify-
ing and often incorrect assumptions (e.g., unsing inde-
pendent reference model, sequential access, etc.). Indeed,
these alternatives have been used in prior work on caching
[2, 21, 30, 31, 34] and on patching [12, 21, 17], for ex-
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ample. While the use of such alternatives allows analysis
and performance evaluation, the resulting conclusions may
not be accurate enough, and certainly could not be reliable
enough to assess performance when conditions under which
the traces were collected (or modeling assumptions made
to simplify analysis) are violated. For example, when a lim-
ited trace is used in a trace-driven simulation, it may not be
possible to generalize the conclusions of such a simulation
when the system is subjected to scaled-up demand, or when
the distribution of some elements of the trace (e.g., size
and popularity distributions of objects) are changed. Syn-
thetic workload generators have the advantage of being able
to produce traces with controllable parameters and distri-
butions. The challenge is in ensuring that such synthetic
workload generators re
ect (in a parameterizable fashion)
known characteristics of streaming media and their access
patterns.

This paper describes a new tool Gismo for synthesizing
streaming access workloads that exhibit various proper-
ties observed in access logs and in real traces. One of the
salient features of our work is the independent modeling of
both session arrival processes and individual session char-
acteristics. For session arrival processes, we use a Zipf-like
distribution [11, 36] to model reference correlation due to
streaming object popularity. For individual sessions, we
use a model that exhibits rich properties, including session
durations, user interactivity times, VBR self-similarity and
heavy-tailed marginal distributions. Using Gismo, we are
able to generate synthetic workloads with parameterizable
characteristics. To demonstrate the usefulness of Gismo,
we present results from a case study comparing the ef-
fectiveness of recently proposed proxy caching and server
patching techniques. We show how workload characteris-
tics a�ect the performance of these techniques.

2 Related Work

2.1 HTTP Workload Characterization

Workload characterization is fundamental to the synthesis
of realistic workloads. Many studies [6, 7, 9, 11, 15, 19,
22, 26] focused on the characterization of HTTP requests.
Main �ndings include the characterization of Zipf-like doc-
ument popularity distribution [9, 11, 15], the characteriza-
tion of object and request size distributions [9, 15], and the
characterization of reference locality properties [6, 7, 22].
Zipf-like popularity distributions indicate that requests are



typically skewed to a very small fraction of \popular" ob-
jects. Heavy-tailed Web object size and request size distri-
butions entail the existence of high variability. Locality of
reference properties are the result of reference correlations.
In particular, temporal locality of reference means recently
accessed documents are more likely to be accessed again.

Web traÆc is self similar, exhibiting burstiness at di�erent
time scales [14, 24]. Self-similarity can be introduced by ag-
gregating many request streams. Each request stream cor-
responds to an ON-OFF process [35]. The ON period rep-
resents the period when an object is being transferred in the
network. The OFF period represents an idle period (e.g.,
user \think" time during browsing). If the distribution of
ON periods or OFF periods is heavy-tailed, then the ag-
gregated traÆc exhibits self-similarity. Thus, SURGE [10]
models the overall request streams as the aggregation of
many individual user request streams, which have heavy-
tailed inter-arrival time distribution, and/or heavy-tailed
request size distribution. Request streams generated in
such a way have signi�cantly di�erent characteristics than
the ones from the workloads generated by HTTP bench-
mark tools such as SpecWeb96 [32] and WebStone [33]. In-
deed, Banga and Druschel [8] have shown that SPECWeb96
behaves unrealistically compared to actual Internet loads.
They also developed a tool called S-Clients to introduce
a scalable mechanism for driving Web servers to overload
conditions.

2.2 Streaming Media Workload Characterization

As we mentioned at the outset, there have been few stud-
ies that considered the characteristics of streamed media on
the Web [1] and the characteristics of access patterns for
streamed media [3]. These studies revealed several �ndings
that are also known for non-streamed Web media, includ-
ing: high variability in object sizes, skewed object popular-
ity, and temporal locality of reference. In addition, these
studies highlighted the preponderance of partial accesses to
streamed media|namely, a large percentage of responses
to user requests are stopped before the streamed object is
fetched in its entirety. Recently, Chesire et al: [13] analyzed
a client-based steaming-media workload. They found that
most streaming objects are small, and that a small per-
centage of requests are responsible for almost half of the
total transfers. They also found that the popularity of
objects follows a Zipf-like distribution and that requests
during periods of peak loads exhibit a high degree of tem-
poral locality. Almeida el al: [5] analyzed workloads from
two media servers for educational purposes. They studied
the request arrival patterns, skewed object popularity, and
user inter-activity times. Examples of characterization ef-
forts targeted at non-web environments include the work
of Padhye and Kurose [27], which studied the patterns of
user interactions within a media server, and the work of
Harel et al: [20], which characterized a workload of media-
enhanced classrooms, and observed user inter-activity such
as \jumping behavior".

In Section 3, we incorporate many of these characteristics
in the models we use for workload generation in Gismo.

2.3 Evaluation Methodologies

In the absence of a uni�ed model for workload character-
istics (such as the one we aim to advance through the de-
velopment of Gismo), various proposals for streaming me-
dia protocols and architectures have used a variety of as-
sumptions and models. We discuss these below, focusing
only on caching [2, 30, 31, 34] and patching [12, 21, 17]
protocols|protocols we will be contrasting in a case study
using Gismo in Section 5.

A commonly used approach to enhance streaming access
performance is caching. The work in [34] proposes video
staging techniques. Their performance evaluation used
Zipf-like popularity distribution, random request arrivals,
and �ve real videos. Sen et al: [31] proposed proxy pre-
�x caching, combined with work-ahead smoothing. Their
performance evaluation used two MPEG video traces. Ac-
cess patterns re
ecting skewed object popularity and cor-
related request arrivals were not considered. Rejaie et al:
[30] proposed a proxy caching mechanism to increase the
delivered quality of popular streams. In their simulations,
popularity was assumed to follow Zipf's law, with requests
arriving sequentially. Acharya et al: [2] used a large video
server access log in trace-driven simulation to evaluate their
cooperative caching techniques.

Another technique to enhance streaming access perfor-
mance is patching [12, 21, 17, 16]. Patching leverages large
client bu�er to enable a client to join an ongoing multicast
for prefetching purposes, while using unicast communica-
tion to fetch the missed pre�x. A few patching protocol
studies have considered the e�ect of Zipf-like popularity
distributions on performance [17, 21]. In these studies,
the arrival processes for requests were assumed to follow
a Poisson distribution [17, 21]. None of the studies we are
aware of considered other workload characteristics, such as
stream length or user inter-activity.

3 Workload Characteristics Used in Gismo

Accurate workload characterization is essential to the ro-
bust evaluation of streaming access protocols. In fact, sev-
eral studies on streaming access workload characterization
[3, 5, 13, 27] considered the implications of observed charac-
teristics on the performance of various protocols, including
caching, prefetching, and stream merging techniques.

In order to generate realistic synthetic streaming access
workloads, we need to adopt an access model. We de�ne
a session as the service initiated by a user's request for
a transfer and terminated by a user's abortion of an on-
going transfer (or the end of the transfer). The workload
presented to a server is thus the product of the session ar-

rivals and the properties of individual sessions. The �rst
three distributions in Table 1 specify the characteristics of
session arrivals, whereas the remaining distributions char-



acterize properties of individual sessions.

Session arrivals could be described through the use of ap-
propriate models for: (1) object popularity, (2) reference
locality, and (3) seasonal access characteristics. In Gismo,
and given the preponderance of �ndings concerning the �rst
two of these models, we use a Zipf-like distribution to model
object popularity, implying a tendency for requests to be
concentrated on a few \popular" objects, and we use a
heavy-tailed Pareto distribution to model reference local-
ity (i.e., temporal proximity of requests to the same ob-
jects). Given the application-speci�c nature of seasonal ac-
cess characteristics, we allow the overall request arrival rate
to vary with time according to an arbitrary user-supplied
function.

An individual session could be described through the use
of appropriate models for: (1) object size, (2) user inter-
activity, and (3) object encoding characteristics. InGismo,
we model object size (which determines the total playout
time of the streamed object) using a lognormal distribu-
tion. We model user inter-activity times which re
ect user
interruptions (e.g., VCR stop/fast-forward/rewind func-
tionalities) using a Pareto distribution. Finally, we model
object encoding characteristics by specifying the auto-
correlation of the variable bit rate needed to transfer that
object in real-time. Multimedia objects are known to pos-
sess self-similar characteristics. Thus, in Gismo, we model
the VBR auto-correlation of a streaming object using a
self-similar process. Also, we use a heavy-tailed marginal
distribution to specify the level of burstiness of the bit-rate.

3.1 Modeling Session Arrivals

The �rst aspect of a workload characterization concerns the
model used for session arrivals. We de�ne the session inter-

arrival time to be the time between two session arrivals. We
consider both the inter-arrival time of consecutive sessions

(i.e., general inter-arrival time), and the inter-arrival time
of sessions requesting the same objects, which is a measure
of temporal locality of reference [6, 7, 11].

General inter-arrival times can be generated by distributing
the requests over the spanning time of the synthetic work-
load. If the requests are distributed uniformly, then general
inter-arrival times roughly follows the exponential distribu-
tion. However, several studies have shown that streaming
accesses exhibit diurnal patterns [3, 5, 13, 20, 25]. We call
such phenomena seasonal patterns, i.e., there are, hourly,
daily, and weekly patterns. Users are more likely to request
streaming objects during particular periods, making a uni-
form distribution of requests over the spanning time of the
synthetic workload unrealistic.

For HTTP requests, the distribution of inter-arrival time
of requests to the same object was found to be the result
of two phenomena: the popularity distribution of objects
and the temporal correlation of requests [22]. The skew
in Web object popularity was found to be directly related

to the skew in the inter-arrival time distribution [11, 22].
This skew was further increased by temporal correlations of
requests. For streaming media accesses, we need to model
both of these phenomena.

Popularity Distribution: The skewed popularity of
streaming media objects was documented in [3, 4, 5, 13, 25].
In particular, several studies observed a Zipf-like distribu-
tion of streaming object popularity [5, 13, 25]. Zipf-like
distributions imply that the access frequency of an ob-
ject is inversely proportional to its popularity (rank), i.e.,
P (r) � r��, 1 < r � N , where N is the number of objects,
r is the rank, and P is the access frequency of the r-ranked
object. A discrete form of the probability density function
is f(x) = 1


x� , x = 1; 2; :::; N , where 
 =
PN

i=1 i
��. The

parameter � is called the shape parameter since it deter-
mines the level of skewness in the popularity pro�le. The
parameter N is called the scale parameter.

Temporal Correlation: If requests to the same object
are independent, then they are distributed randomly. This
was shown not to be accurate enough for HTTP requests
[22]. Similarly, in a number of recent studies, streaming
media accesses were shown to exhibit temporal correlations
[3, 5, 13]. For example, it was observed that streaming ac-
cesses have much higher overlap during peak loads. To
re
ect this, we assume that a portion of all request arrivals
are correlated, while the remaining request arrivals are in-
dependent.

To model correlated inter-arrival times, we use a Pareto
distribution. The Pareto distribution has a density func-
tion f(x) = �k�x���1, where �; k > 0 and x > k. In [22],
it was observed that temporal correlations were stronger
when request inter-arrival times were shorter [22]. The
Pareto distribution models such a condition well. The
Pareto distribution used to characterize temporal correla-
tions has two parameters. The shape parameter (�) indi-
cates the skewness of inter-arrival time distribution. The
scale parameter (k) indicates the time scale of observations.
Since we are only interested in a �nite period but the ran-
dom variable with a Pareto distribution can have arbitrar-
ily large values, we need to cut o� the Pareto distribution at
unity (corresponding to the maximum possible inter-arrival
time, or the spanning time of synthetic request stream).
Introducing a cuto� for the Pareto distribution necessi-
tates that we normalize it. We do so by de�ning a trun-

cated Pareto distribution with a PDF f(x) = � k�

1�k�x
���1,

where �; k > 0 and k < x < 1. In implementation, we use
inverse method to generate Pareto-distributed random val-
ues.1

Seasonal Access Frequency: In Gismo, we do not make
any assumptions related to the seasonal patterns of the

1To generate a random variate following Pareto distribution f(x),
we �rst compute the inverse CDF F�1(x). A random variable r 2

(0; 1), i.e., uniformly-distributed r is generated, and the inter-arrival
time is F�1(r).



Table 1: Distributions used in the workload generator
Component Model PDF Parameters

Popularity Zipf-like f(x) � 1

x�
, x = 1; 2; :::;N �, N

Temporal Correlation Pareto f(x) = � k
�

1�k� x
���1, k < x < 1 �, k

Seasonal Access Frequency User-speci�ed

Object Size Lognormal f(x) = e
�(ln x��)2=2�2

x�
p
2�

, x > 0 �, �

User Inter-activities Pareto f(x) = � k
�

1�k� x
���1,k < x < 1, �, k

VBR Auto-correlation Self-similarity H

VBR Marginal Distribution(body) Lognormal f(x) = e
�(ln x��)2=2�2

x�
p
2�

, 0 < x < C �, �

VBR Marginal Distribution(tail) Pareto f(x) = �k�x���1, x � C �, k

overall access frequency. Such patterns are application-
speci�c, and depend on various aspects of location and
time. For example, several studies [3, 5, 13, 20, 25] observed
such patterns over signi�cantly di�erent time scales (from
hours to months). Hence, we assume that a histogram of
access frequency (request arrival rate) at di�erent times is
provided by users of Gismo.

3.2 Modeling Individual Sessions

The second aspect of a workload characterization concerns
the model used for determining the speci�cs of each user
session.

First, the distribution of object sizes is a main determinant
of session duration|the larger the object, the longer the
session. HTTP requests are usually shorter, while stream-
ing accesses have much longer durations (typically a few
KB for Web objects but up to hundreds of MB for stream-
ing objects). The work of Acharya el al: [1, 3] reached a
conclusion that sizes can vary signi�cantly, and may in-
crease with time (as server storage and network capac-
ity increase, and streaming content becomes more popu-
lar). Chesire et al: [13] observed that streaming objects
are usually small, but that the size distribution has a long

tail, underscoring the existence of very large streaming ob-
jects. Several other studies also observed that the session
length has heavier tails than an exponential distribution
[5, 25, 27].

Second, user activities (including VCR-like stop/fast-
forward/rewind/pause functionalities) a�ect session dura-
tion. User interventions are not unique to streaming ac-
cess and were documented for HTTP requests (e.g., \in-
terrupted" transfers). Such e�ects are much more common
for streaming accesses. For example, it has been observed
that nearly a half of all video requests are not completed
[3]. In addition, jumps become popular in streaming media
access workloads [5, 20, 27].

Third, the bit-rate of streaming objects exhibits impor-
tant properties which may have implications on transfer
time. Speci�cally, streaming media bit rates exhibit long-
range dependence. With long-range dependence, the auto-
correlation function decays slowly, meaning that burstiness

persists at large time scales. Notice that long-range depen-
dence does not measure the variability of the VBR frame
size itself (which is known to be quite high). The high vari-
ability in frame sizes (a property of the encoding scheme
used) can be modeled using a heavy-tailed distribution.
Both long range dependence and high variability of VBR
have been characterized in [18].

Object Size Distribution: InGismo, we use the Lognor-
mal distribution to model streaming object sizes. Several
studies on workload characterization [5, 25, 27] found that
the Lognormal distribution �ts the distribution of object
sizes well. The Lognormal distribution has two parame-
ters, �, the mean of ln(x), and �, the standard deviation
of ln(x). To generate a random variable that follows the
Lognormal distribution, we �rst generate x from an ap-
proximation of the standard Normal distribution, and then
return e�+�x as the value of the Lognormally-distributed
random variable representing the streaming object size.

Notice that Gismo allows our choice of the Lognormal dis-
tribution to be changed. Speci�cally, several other distri-
butions (e.g., Pareto and Gamma) were found to provide
a good �t for streaming object sizes measured empirically
[5, 27]. This is one way in whichGismo is extensible: Users
of Gismo can easily replace the module for generating ob-
ject sizes for the synthetic workload with their own module.

User Inter-activity Times: In Gismo, two forms of user
interventions (or activities) are modeled|namely, partial
accesses due to \stop" activity and jumps due to \fast for-
ward and rewind" activities.

For partial accesses (resulting from a \stop" activitiy), we
need to model the duration of an aborted session. Unfortu-
nately, there are very few empirical studies characterizing
partial accesses. The work presented in [3] implies that the
stopping time (time until a session is stopped) is not uni-
formly or exponentially distributed. Instead, stopping is
more likely to occur in the beginning of a stream playout.
We model such a behavior with a Pareto distribution. We
make this choice since stopping probability decreases as the
session grows longer (indicating interest in the streamed
content, and hence a lower probability of stoppage). A



Pareto distribution models this behaviors very well.2

For intra-session jumps (resulting from a \fast forward" or
\rewind" activity), we need to model the distribution of
jump distances. In previous work [27], it was found that
jump distances tend to be small but that large jumps are
not uncommon. In our current implementation of Gismo,
we model jump distances using Pareto distributions. In
addition to jump distances, we also need to model the du-
ration of continuous play (i.e., intra-jump times). In our
current implementation of Gismo, we assume that the du-
ration of continuous play follows an exponential distribu-
tion e��t, where � is the frequency of jumps.

Notice that a random variable with a Pareto distribution
can be arbitrary large, but for both partial accesses and
jumps the random variable (stopping time or jump dis-
tance) is bounded (it cannot exceed the size of the object).
Hence, we truncate the Pareto distribution and normalize
it. The cut-o� of the distribution is unity, representing the
maximum possible value.

Two previous studies [5, 27] have used active period (ON
period) and silent period (OFF period) in modeling user in-
teractivities. The duration of continuous play (ON period)
tends to be heavier-tailed, but for small objects exponen-
tial distribution is the most observed [5]. The duration of
the silent period is best �t by a Pareto distribution. We
are considering to provide such features in the future.

VBR Self-Similarity: We model the sequence of frame
sizes for a streaming object as a self-similar process [18].
A time series X is said to be exactly second-order self-

similar if the corresponding \aggregated" process X(m) has
the same correlation function as X, for all m � 1, where
the process X(m) is obtained by averaging the original X
over successive non-overlapping blocks of size m. The vari-
ance of the aggregated process behaves for large m like
V ar(X(m)) � m��(�2)X , resulting in a single Hurst pa-
rameter H = 1� �=2. A property of self-similar processes
is that the auto-correlation function decays much slower
when H > 0:5. This means that burstiness persists at
large time scale, and implies the ine�ectiveness of bu�er-
ing to smooth out burstiness.

In Gismo, we generate fractional Gaussian noise by, �rst,
generating a fractional Brownion motion (FBM) (which is
simply the integrated version of FGN, i.e., FGN is the in-
crements of FBM). We implemented a simple and fast ap-
proximation of FBM called \Random Midpoint Displace-
ment" (RMD). The RMD method was proposed in [23].
RMD works in a top-down fashion. It progressively subdi-
vides an interval over which to generate the sample path.

2A Pareto distribution (with shape parameter � and scale param-
eter k) has complementary CDF ( k

x
)�. That means, the random

variable (the stop time in our case) has probability ( k
x
)� to be larger

than x. Hence, the conditional probability for a user to proceed �x

further is ( x

x+�x
)�, which grows larger as x gets larger.

f(x
)

ln(x), x:frame size

Lognormal Body
Pareto Tail

Cut point

Figure 1: A hybrid distribution with Lognormal body/Pareto
tail.

At each division, a Gaussian displacement, with appropri-
ate scaling (dH , where d is the length of the interval and
H is the target Hurst parameter), is used to determine the
value of the midpoint. This recursive procedure stops when
it gets the FBM process of the required length. The time
complexity for RMD is only O(n), where n is the length of
the FBM process. Note that RMD generates a somewhat
inaccurate self-similar process and that the resulting Hurst
parameter may be slightly smaller than the target value.
Other methods such as the fast Fourier Transform [29] can
be implemented and used to replace this module in Gismo.

VBR Marginal Distribution: To model the high vari-
ability of streaming media bit rates, we use a heavy-tailed
marginal distribution to characterize the bit rate. A heavy-
tailed distribution is one whose upper tail declines like a
power law, i.e., P [X > x] � x��, where 0 < � < 2. In [18],
it was found that the tail of the VBR marginal distribu-
tion can be modeled using a Pareto distribution. The CDF
of Pareto distribution is F (x) = P [X � x] = 1 � (k=x)�,
where k; � > 0 and x � k. Pareto distributions yield ran-
dom variables with high variability. If 1 < � < 2, the
random variable with Pareto distribution has �nite mean
and in�nite variance; if � � 1, it has in�nite mean and
variance.

To model the marginal distribution, and in addition to
modeling the \tail" of the distribution, we also need to
model the \body" of the distribution. Garrett and Will-
inger [18] found that the Gamma distribution is a good �t
for the body, so they used a hybrid Gamma/Pareto for the
marginal distribution. We use a Lognormal distribution for
the body along with a Pareto tail.

Finally, to complete our model of VBR marginal distribu-
tion, we use the following approach to \connect" the body
to the tail. Given the Lognormal distribution for the body
with parameters u and �, and the cut point between the
body and the tail, we can derive the scale and shape param-
eter of the Pareto tail by equalizing both the value and the
slope of the two distributions at the cut point. Certainly,
the resulting hybrid distribution needs to be normalized.
Also, one can get di�erent tail distributions by moving the
cut point. Figure 1 illustrates the �t of a Lognormal dis-
tribution and a Pareto distribution.



We use a transformation to generate the required marginal
distribution from the FGN Gaussian marginal distribution
(CDF G�;�). The parameters � and � can be computed
from FGN samples. Then we transform it to a hybrid Log-
normal/Pareto distribution with CDF Fhybrid. To do this,
for each sample value x in the FGN process, the new value
is computed as F�1hybrid(G�;�(x)). To compute G�;�(:) and

F�1hybrid(:), we use approximations since there is no closed
form for Gaussian CDF or Lognormal inverse CDF.

We test the Hurst parameter of the resulting VBR frame
size series using variance-time plot. A variance-time plot
should show that if the sample is aggregated by a factor of
m, then the variance decreases by a factor of m�� , where
� = 2�2H. Since the RMD algorithm is an approximation,
and the transformation of marginal distribution may not
preserve the Hurst parameter very well, we repeat the last
two steps if the resulting H value is not close enough to
the target value.

As an illustration, we generate a VBR series for 100,000
frames with target Hurst parameter 0:8. The given
marginal distribution parameters are � = 6, � = 0:4, and
cut point 560. We derive other parameters � = 2:05 and
k = 335 for the Pareto tail. The hybrid distribution needs
to be normalized by a factor 0.876. Figure 2(a) shows
the resulting marginal distribution of the synthetic trace
(dots). It �ts the target hybrid distribution (solid curve)
well. We also test the Hurst parameter with larger number
of samples. Figure 2(b) shows the variance-time plot from
a sequence of one million frame sizes. It shows that the
resulting H value is smaller than the target value when the
aggregation level is low. At intermediate and high aggre-
gation level, the di�erence between the target Hurst value
and the resulting is less than 0.01.

4 Adapting Gismo for Various Architectures

Gismo was designed as a \toolbox" that allows the eval-
uation of variety of content delivery architectures. A typ-
ical architecture for a streaming media application would
involve a set of users accessing a set of streaming objects

stored on a set of streaming servers via a network. Figure 3
illustrates such an architecture. The media players are usu-
ally the Plug-ins of the Web browsers (we show them cou-
pled). When a user is browsing an HTTP page with links to
streaming objects, a media player is launched. The media
player may be using di�erent protocols to stream the data
from the streaming server, e.g., UDP, TCP, and RTSP. In
addition to the entities shown in Figure 3, there could be
other components that may play a role in the delivery of
streaming media (e.g., caching proxies inside the network,
or replicated servers for parallel downloads).

The workload generated by Gismo for the performance
evaluation of a given architecture consists of two parts:
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Figure 2: Comparisons of synthetic VBR sequence with target
parameters.

(a) the set of phantom streaming objects3 available at
the server(s) for retrievals, and (b) a schedule of the re-
quest streams generated by various clients.4 To use such a
workload, the set of streaming objects are installed on the
servers and schedules specifying client accesses are installed
on the clients. Once installed, a Gismo workload can be
played out simply by having clients sending requests to the
server(s) according to the schedule of accesses at such a
client.

By virtue of its design, Gismo allows the evaluation of any
\entity" in the system (lying between request generating
clients and content providing servers). To do so requires
that such entities be \coded" as part of an end-to-end ar-
chitecture to be evaluated. While a user of Gismo is ex-
pected to develop one or more modules for the entity to be
evaluated (e.g., a caching or patching algorithm), he/she is
not expected to provide the many other entities necessary
to complete the end-to-end architecture. To that end, and
in addition to the above two main components of a work-
load (the objects on the servers and the schedules at the
clients), Gismo provides support for various other ingre-
dients of a streaming media delivery system. Examples of

3While the contents of \phantom" objects generated by Gismo

are not comprehensible (not real audio or video), their characteristics
conform to the speci�c parameters of desired distributions (e.g., VBR
auto-correlation, VBR marginal distributions, sizes, etc.)

4A Gismo client is a software entity that mimics a con�gurable
set of real users, each generating requests conforming to the various
distributions of popularity, inter-activities, etc.
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Figure 4: Base server bandwidth requirements.

these include modules to implement simple transport pro-
tocols (e.g., UDP, TCP, RTP) and modules to interface
clients and server to an emulated network (e.g., NistNet).5

5 Caching versus Patching: A Case Study

To demonstrate its usefulness, we describe how Gismo

was used to generate realistic workloads, which were used
to compare the e�ectiveness of proxy caching and server
patching techniques in reducing bandwidth requirements.

We conducted a base experiment to measure the server
bandwidth requirements for a system using neither caching
nor patching. Gismo was used to generate a total of 50,000
requests to 500 streaming objects stored on the server. Re-
quests were over a one-day period, with three hours of peak
activities. We used � = 0:7 to describe the popularity skew.
Requests were not temporally correlated and the streams
were played out without interruptions. We used a Lognor-
mal distribution with � = 10:5 and � = 0:63 to model the
streaming object sizes (in number of frames), resulting in a
mean object size of approximately 43K frames. To model
the VBR frame sizes, we used Lognormal with � = 5:8,
� = 0:4 to model the body of the distribution and a Pareto
with � = 1:82 and k = 248 bytes to model its tail, with
the cut point between the body and the tail set to 400
bytes. Under this model, the mean bit-rate was close to
100Kbps, assuming 24 frames per second. The sequences
of frame sizes were generated with a target Hurst parame-
ter H = 0:8. Figure 4 shows the base bandwidth (bytes per

5Other modules, such as various simple caching modules, are in
development and will be added to the Gismo \tool box".
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Figure 5: Server bandwidth reduction ratios of proxy caching
and server patching schemes when popularity parameters
change. Larger � is more important for caching.

second) needed by the server to respond to this workload.

Next, we conducted a number of experiments to study the
e�ectiveness of proxy caching and server patching tech-
niques. To that end, we considered bandwidth reduction

ratio as the metric of interest. This metric is computed
by normalizing the mean bandwidth requirement for a sys-
tem using caching or patching with respect to the base
bandwidth requirement (similar to that shown in Figure
4). In our experiments, we varied various parameters of
the workload and report the bandwidth reduction ratio (as
a function of such parameters), focusing only on the 3-hour
period of peak load.

To study the e�ectiveness of caching, we considered a sys-
tem with 100 proxies, each with in�nite cache size. A proxy
can satisfy a request if it has a previously-fetched copy of
the streaming object in its cache. To study the e�ective-
ness of patching, we considered a system in which the server
patches its response to requests it receives (to the same ob-
ject) within a short period of time. This was done using
the optimal threshold-based patching schemes proposed in
[17] (assuming that clients had enough bu�er space).

Figure 5 shows the performance of proxy caching and server
patching when the total number of requests and the skew-
ness parameter � change. We observe that for proxy
caching, a larger � results in higher bandwidth reduction
ratio. This means that for proxy caching, the concentra-
tion of requests on a smaller number of \popular" objects
is much more important than it is for server patching tech-
niques. Recent studies [3, 13, 5] of streaming access logs
suggest that such popularity skew for streaming media ac-
cess is limited, i.e., � is likely to have small values. This
suggests that it is diÆcult to achieve high bandwidth re-
duction ratios using proxy caches. From Figure 5, we also
observe that increasing the number of requests in the work-
load increases the eÆciency of both techniques. Since we
assume a �xed number (100) of proxies, increasing the num-
ber of requests in e�ect increases sharing among users.

Figure 6 shows the performance of proxy caching and server
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Figure 6: Server bandwidth reduction ratios of proxy caching
and server patching schemes when correlation parameters
change. Strong temporal correlation favorites server patching.
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Figure 7: Server bandwidth reduction ratios of proxy caching
and server patching schemes when size distribution parameters
change. Larger sizes favorites server patching.

patching when the percentage of temporally correlated re-
quests and the correlation skewness � are changed. For
proxy caching, the correlation of requests is almost irrel-
evant.6 For server patching, increasing the percentage of
correlated requests or increasing the skewness of correlated
inter-arrival times results in higher reduction ratios. Never-
theless, when correlation is not strong, the reduction ratio
is only slightly higher than when no correlation exists.7

Figure 7 shows the performance of proxy caching and server
patching when object sizes are scaled and the size skewness
parameter � changes. Again, the e�ectiveness of proxy
caching is not a�ected by size distribution. For server
patching, the larger the objects, the higher the reduction
ratio. This is expected since long streams o�er more op-
portunities for patching. However, the skewness parameter
has less of an e�ect, suggesting that it is adequate to use
a mean-size streaming object to study the e�ectiveness of
server patching. One implication from this experiment is
that a good hybrid strategy would involve using caches for
smaller objects and patching for longer streams.

Figure 8 shows the performance of proxy caching and server

6Request correlation (a.k.a. locality of reference) would be rele-
vant for �nite-size proxy caches because it impacts the e�ectiveness
of cache replacement algorithms.

7This implies that for evaluating server patching techniques, Pois-
son arrivals are adequate in workloads with weak correlations.
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Figure 8: Server bandwidth reduction ratios of proxy caching
and server patching schemes when partial access parameters
change. Early stops degrade server patching performance sig-
ni�cantly, but only a�ect caching moderately.

patching, when the probability of partial accesses and the
partial access skewness parameter � are varied. Increasing
the fraction of partially-accessed objects (i.e., probability
of early stops) hurts the performance of both proxy caching
and server patching. While the impact on proxy caching
performance is marginal, the impact on server patching is
disastrous. This suggests that for streaming access allowing
a high degree of user inter-activity, server patching is not
a promising technique at all.

To summarize, our case study demonstrates the importance
of a realistic and scalable streaming access workload gen-
erator by showing that the characteristics of a workload
may have great impacts on the e�ectiveness of a streaming
content delivery solution. Changing the workload char-
acteristics does indeed change the relative performance of
various techniques.

6 Summary and Future Work

Gismo generates streaming access workloads, which are pa-
rameterized so as to match properties of real workloads, in-
cluding object popularity, temporal correlation of requests,
seasonal access patterns, user session durations, user inter-
activity, and VBR long-range dependence and marginal
distribution. We demonstrated the value of Gismo by
showing that the relative performance of proxy caching and
server patching techniques is inherently dependent on prop-
erties of the workload used to evaluate them.

Our future work revolves around the extension of Gismo
to implement other workload characteristics and additional
architectural components of streaming delivery systems.
Also, one of our main thrusts is to validate that Gismo
captures all \signi�cant" characteristics that may impact
performance of streaming delivery delivery systems. To do
so requires us to establish that the performance of a sys-
tem under a given trace is fairly similar to its performance
under a Gismo-generated workload parametrized to match
the characteristics of that trace.
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